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Abstract: Background and Objective: In 2019, a corona virus disease (COVID-19) was detected in
China that affected millions of people around the world. On 11 March 2020, the WHO declared
this disease a pandemic. Currently, more than 200 countries in the world have been affected by
this disease. The manual diagnosis of this disease using chest X-ray (CXR) images and magnetic
resonance imaging (MRI) is time consuming and always requires an expert person; therefore, re-
searchers introduced several computerized techniques using computer vision methods. The recent
computerized techniques face some challenges, such as low contrast CTX images, the manual initial-
ization of hyperparameters, and redundant features that mislead the classification accuracy. Methods:
In this paper, we proposed a novel framework for COVID-19 classification using deep Bayesian
optimization and improved canonical correlation analysis (ICCA). In this proposed framework, we
initially performed data augmentation for better training of the selected deep models. After that,
two pre-trained deep models were employed (ResNet50 and InceptionV3) and trained using transfer
learning. The hyperparameters of both models were initialized through Bayesian optimization.
Both trained models were utilized for feature extractions and fused using an ICCA-based approach.
The fused features were further optimized using an improved tree growth optimization algorithm
that finally was classified using a neural network classifier. Results: The experimental process was
conducted on five publically available datasets and achieved an accuracy of 99.6, 98.5, 99.9, 99.5,
and 100%. Conclusion: The comparison with recent methods and t-test-based analysis showed the
significance of this proposed framework.

Keywords: COVID-19; deep learning; Bayesian optimization; fusion; optimization; neural network

1. Introduction

In December of 2019, the consumption of bat meat at an unusual animal meat market
in Wuhan, Hubei, China was connected to a group of people contracting pneumonia of an
unknown origin [1]. The pandemic soon spread to other regions of the globe, and on 11
March 2020, the World Health Organization declared COVID-19 a worldwide pandemic
outbreak that continues to this day. A new type of beta coronavirus was found using the
unbiased sequencing of patient samples. The 2019-nCoV coronavirus, in comparison to
the Middle East respiratory syndrome (MERS) and the severe acute respiratory syndrome
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(SARS), has a higher transmission potential and a lower mortality rate; SARS and MERS are
both animal-borne diseases, and civets and camels, respectively, were known to carry the
diseases [2]. The emergence of diseases like SARS and MERS, both of which are suspected
to have been brought on by new coronaviruses, is more possible when there are no borders
between human civilization and the natural environment. In the early days, the number of
deaths continued because there was no vaccination [3].

Research into different early detection techniques was essential to combating this pan-
demic epidemic [4]. To date, according to the updated figures from the WHO, 6.49 million
fatalities have occurred all over the world, and 30,581 have been from Pakistan, while
104,000,000 have been Americans [5]. Reverse transcription polymerase chain reaction is
presently the gold standard for detecting coronavirus infections (RT-PCR). Using a nasopha-
ryngeal swab, the RT-PCR technique identifies viral RNA. The most significant limitation
of the RT-PCR test is its limited sensitivity range. As a result, the RT-PCR test is useless for
quickly determining the rate of positive instances. To resolve this restriction, imaging-based
biomedical methods, including computed tomography (CT) images, radiography, and chest
X-rays, are cheap methods for the diagnosis of COVID-19 [6]. It is possible to stop the
spread of a coronavirus infection if biomedical imaging is utilized to detect an infection in
its initial phases [7]. Methods for automatically classifying COVID-19 images that typically
include preprocessing, feature extraction, and selection have been demonstrated to be
better than human COVID-19 classification techniques. As a direct result, it is important to
create a decision assistance system that uses artificial intelligence (AI) [8]. The AI method
uses images to distinguish the illness apart from others and identify it at the lung level. In
COVID-19 patients, CT scans help locate organ damage and classify its development. This
is because some COVID-19 patients contract lung infections [9]. The radiological imaging
of COVID-19 patients may reflect that of individuals with bacterial or viral pneumonia,
especially SARS and MERS-associated pneumonia. Consequently, the ability to effectively
differentiate diseases via the analysis of medical images has arisen as a significant challenge,
and its resolution requires supporting health personnel with early disease diagnosis, as
well as the rapid separation of infected patients [10].

The development of machine learning approaches that might help in the diagnosis of
COVID-19 using chest X-ray or CT scan images is the subject of several initiatives in the area
of medical image processing. CT scans have disadvantages over CXR, including restricted
access to equipment, radiologists, physicians, higher prices, and longer image-acquisition
periods [11]. Usually, the handcrafted features are extracted from the input images and
passed to the ML method for classification [12]. The handcrafted features include texture,
shape, and point-based information of the image. Recently, the entrance of deep learning
has shown huge success in the area of medical imaging [13]. Deep learning is a type of
machine learning that need a considerable amount of data for training a model. It enables
the development of computer models with many processing layers that can learn how to
represent data at various levels of complexity. This technology facilitates the development
of recognition-based applications, such as object detection, speech recognition [14], and
medical imaging [15].

The medical images of COVID-19 patients may reveal a pattern based on the presence
of common traits [16]. Deep learning is a useful approach that researchers employ to help
medical practitioners comprehend huge amounts of data, such as chest X-ray scans [17].
However, some challenges that are faced in the deep learning research for COVID-19
include: (i) inadequate amounts of training data; (ii) manual initialization of the hyperpa-
rameters of the deep model; and (iii) the addition of some irrelevant features that degrade
the accuracy of a proposed framework. In this work, we proposed an automated optimized
Bayesian deep learning-based framework for COVID-19 classification, as shown in Figure 1.
The major contributions of the proposed framework are listed as follows:

• Prepared a large dataset using flip and rotation operation from the original dataset
and trained pre-trained deep learning models;
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• Opted for the freezing weights procedure and selected hyperparameters through
Bayesian optimization for efficient training using selected datasets;

• Proposed an improved canonical correlation analysis fusion technique for feature
fusion of both deep learning models;

• Proposed an improved tree growth optimization for best feature selection.
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proved tree growth optimization.

The rest of the manuscript is organized in the following order. Related works are
discussed under Section 2, which includes the recent studies and their brief summaries,
such as cutting-edge work and gaps in the research. The proposed framework is presented
under Section 3, which includes the detailed mathematical formulation and visual facts.
The results are presented under Section 4. Finally, Section 5 concludes the paper.

2. Literature Review

In earlier years, computer vision researchers developed many algorithms for the
identification and classification of COVID-19 using CXR images [18,19]. Few researchers
developed innovative deep learning (DL) architectures for the detection and identification
of corona viruses from CXR and CT images, while the majority of studies focused on
traditional techniques [20,21]. Muhammad et al. [16] presented a framework for corona
virus classification from CXR images using deep explainable AI. For the training and feature
extraction processes, two deep learning models were used. They used canonical correlation
analysis to improve feature fusion. Furthermore, the hybrid whale-elephant herding feature
section was used to optimize fused features. Three publicly available datasets were used
by the authors. They achieved accuracies of 99.1, 98.2, and 96.7%, which were better than
previous techniques. The limitation of this work was the optimization algorithm’s static
threshold value, which will be resolved in future work. Ameer et al. [22] presented a
framework by employing CNN-LSTM for corona classification using CXR images. They
developed a novel CNN-LSTM method with modified EfficientNetB0 for deep feature
extractions. Additionally, extracted features were fused using serial-based maximum
value fusion techniques, and improved moth flame feature selection was employed on
the fused vector. The studies were carried out on three publicly available datasets and
yielded accuracy rates of 93.0, 94.5, and 98.5%, respectively. The drawback of this work was
the fusion process, which controlled the vector size and increase the computational time.
Xiaole et al. [23] introduced a novel branch model network using transformations and CNN
for the recognition of CT scan images. They implemented two branches-based models.
One was built using CNN and the second one using transformation-based branches. The
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features were fused the using bi-directional approach. They used a large scale COVID-19
dataset for the experiment and achieved a 96.7% accuracy rate. The limitation of this
research was the incomplete information of patients and the inadequate amount of features.
Aksh et al. [24] implemented an efficient CNN model for the detection of COVID-19 using
CXR and CT images. They designed a CNN model that included several layers and
visualized weights through GradCam visualization. The entire introduced method was
implemented on the COVID-19 multiclass CT dataset and achieved a 97.6% accuracy rate.
The drawback of this research was the inadequate amounts of data used for the training
process. Gayathri et al. [25] created a computer-aided mechanism for the diagnosis of
COVID-19 via CXR images. The presented method was based on the DCNN and sparse
auto encoder. The experiments were performed on COVID-19 and non-COVID images
and attained an accuracy of 95.7%. AbdElhamid et al. [26] developed a COVID-19 multi-
classification technique using CXR images. An XceptionNet pre-trained model that was
trained using TL, and obtained features from the GAP layer were part of the proposed
model. A three-class, open source dataset was used in the experiment, which had a 99.3%
accuracy rate. The limitation of this method was the inadequate number of images used in
the selected dataset. Rahul et al. [27] employed a framework that diagnosed COVID-19
using deep features and correlation coefficients. In that study, the authors applied DCNN
for feature extraction that was further utilized for the classification. Veerraju et al. [28]
implemented a novel technique that diagnosed COVID-19 by adapting hyperparameters
via a hosted cuckoo optimization algorithm. Samritika et al. [29] designed an automated
detection and classification framework using chest images via CNN. The authors performed
two classification tasks—binary and multiclass—and achieved improved accuracy. Vruddhi
et al. [30] presented a method of diagnosing COVID-19 using CT images and deep learning
methods. They designed a novel CNN model named CTnet-10. The selected dataset
consisted of two classes, and the experiments attained a higher accuracy of 82.1%. Moreover,
they used traditional DCNN networks and achieved a 94.52% accuracy rate. Umut et al. [31]
presented an automated and effective method for the detection of coronavirus disease. The
authors extracted the features using four CNN architectures and fused the information
using the ranking-based technique. The proposed method achieved a 98.93% accuracy
rate. The disadvantage of this work was the ranking-based fusion, because it missed the
important features. Ghulam et al. [32] presented a multi-layer fusion for the classification
of coronavirus disease from lung ultrasound images. The presented model was designed
by five main blocks of convolutional connectors and employed the fusion technique. The
open source dataset was selected for the experimental process and achieved a 92.5%
accuracy rate. The high number of parameters was the major limitation of this work.
Emtiaz et al. [33] presented a deep learning-based classification framework using CXR
images. The authors designed novel CNN architecture based on 22 layers that were further
employed for the classification. For a binary dataset, the presented framework obtained
99.1% accuracy, whereas the multiclass accuracy was 94.2%. Dalia et al. [34] presented
an optimized deep learning network using the GSO algorithm. The employed approach
was performed on the binary class dataset. By this approach, they achieved a significant
accuracy of 98%. Abirami et al. [35] presented a novel framework based on generative
adversarial networks for the classification of COVID-19 using medial CXR images. The
augmentation process was employed by using GAN, and the generated samples fed to
a novel created network. The described framework achieved 99.78% accuracy. Abirami
et al. [36] presented a framework that automated segments and identified COVID-19
lung infection using CT-scan images. The created model achieved 98.10% accuracy for
classification and the segmentation achieved 81.1% accuracy for the dice coefficient using
GAN segmentation. Irfan et al. [37] presented an automated framework for diagnosing
the COVID-19 disease using X-ray images. The models Densenet121, Resnet50, VGG16,
and VGG19 were trained using transfer learning. The CXR and normal images were
collected from four different publically available datasets. The dataset consisted of two
classes (COVID and normal). Using this approach, the presented framework achieved
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99.3% accuracy. VGG16 and VGG19 outperformed the other two models. The limitation of
this work was that the authors only collected the COVID-19 and normal images from the
different datasets. The authors removed other classes, such as pneumonia. The presented
framework was unable to diagnose the other respiratory infections. Naeem et al. [38]
presented a novel method that detected the infection of the COVID-19 disease by using chest
radiography images. The described model had nine convolutional and one fully connected
layer. The provided architecture used two activation functions: the ReLu activation function
and the Leaky Relu. The model experiments were conducted on multiclass datasets.
The datasets consisted of three classes (COVID-19, normal, and pneumonia). Using this
approach, the authors achieved 98.40% accuracy. Shifat et al. [39] described a technique
based on a Bayesian optimization of deep learning approach for the classification of the
COVID-19 disease using X-ray images. The presented framework developed a novel DCNN
model named COVIDXception-Net and it was trained by employing Bayesian optimization
for the selection of the best-trained model. The authors performed the whole experiment on
four publically available datasets, and the provided framework achieved 99.2% of accuracy.
At the end, they performed qualitative analysis by utilizing the GRAD-CAM visualization.

In the summary, the authors in the literature used pre-trained models with transfer
learning concepts for COVID-19 classification. Few of them focused on the binary class
problem, and many of them considered the multiclass problem. The deep models were
trained using static hyperparameters, such as learning rate, depth section momentum, and
the number of epochs. In addition, the authors selected a relatively small number of datasets
for the training process. There are several challenges in effectively classifying COVID-19
using standard chest X-rays. Individuals with COVID-19 may have radiological imaging
that resembles that of patients with bacterial or viral pneumonia, most notably those caused
by SARS and MERS. As a result, the ability to correctly diagnose diseases by examining
medical imagery has become a critical challenge. The first issue is the classification of
multiple classifications, including COVID-19, viral pneumonia, lung opacity, TB, fibrosis
patterns, and normal images. This is a challenge, since there are so many different types
of lung diseases. These images are shown quite well in Figure 2. This figure illustrates
that there is a high degree of resemblance between each image, which means that there is a
chance that an incorrect classification will be made. The second challenge is the removal
of redundant and useless information, which lowers the accuracy of classification, while
simultaneously increasing computation time.
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3. Proposed Methodology

This section explains the proposed COVID-19 classification method using DCNN
via Bayesian optimization and an improved tree growth feature selection with detailed
visual illustrations and mathematical equations. Figure 1 depicts the proposed COVID-19
classification framework. This diagram shows that the publicly available datasets were
obtained, and data augmentation was performed at the first step. Following that, two
pre-trained deep models, ResNet50 and Inception V3, were used and modified based
on the nature of the selected datasets. Transfer learning (TL) was used to train both
models, and Bayesian optimization was used to initialize the hyperparameters. Features
were extracted from both trained models and fused using improved canonical correlation
analysis that used the activation function. Improved tree growth optimization was used
to further optimize the fused features. The best features were then fed into neural network
classifiers for final classification accuracy. Below is a brief description of each step.

3.1. Dataset Selection and Normalization

In this work, we used five publically available datasets for the experimental process.
The selected datasets are Chest X-ray (https://www.kaggle.com/datasets/prashant268
/chest-xray-covid19-pneumonia (accessed on 27 November 2022)), COVID-19 Patients
Lungs X-ray Images (https://www.kaggle.com/datasets/nabeelsajid917/covid-19-x-
ray-10000-images (accessed on 27 November 2022)), COVID-19 Lung CT Scans (https:
//www.kaggle.com/datasets/luisblanche/covidct (accessed on 27 November 2022)),
COVID-19 Detection (https://www.kaggle.com/datasets/donjon00/covid19-detection
(accessed on 27 November 2022)), and COVID-19 Image dataset (https://www.kaggle.
com/datasets/pranavraikokte/covid19-image-dataset (accessed on 27 November 2022)).
The three classes in the Chest X-ray dataset include COVID-19, normal, and pneumonia.
COVID-19 Patients Lungs X-ray Images dataset has two classes, which are COVID-19 and
normal. The COVID-19 Lung CT Scans dataset consists of CT images. It has two classes:
COVID-19 and non-COVID-19. COVID-19, normal, pneumonia, tuberculosis, and fibrosis
are the five classes in the COVID-19 Detection dataset. In the COVID-19 Image dataset,
three classes exist: COVID-19, normal, and viral pneumonia. A few sample images are
shown in Figure 2. The images in these datasets were not enough for training, as is shown
in Table 1 (training images column). Therefore, we performed data augmentation based
on three operations: flip right, flip left, and rotate 90 degrees. These operations were
performed for each class for all five selected datasets. The number of target images for
each class included 4000; therefore, we performed these operations multiple times. The
details of the datasets are shown in Table 1. Moreover, these operations are visually
shown in Figure 3.

Consider the input image denoted by f (x,y) with dimension r × c, where x rep-
resents the row pixels {x ∈ (1, 2, 3, . . . , r)} and y represents the columns pixel values
{y ∈ (1, 2, 3, . . . , c)}, respectively. On input image f (x,y), three operations are performed to
augment the data. The performed operations are flip right, flip left, and rotate 90 degrees.

f Right
(x,y) = fx(c + 1− y) (1)

f Le f t
(x,y) = fy(m + 1− x) (2)

f rot90
(x,y) =

[
cos 90 − sin 90
sin 90 cos 90

][
fx
fy

]
(3)

where f Right
(x,y) denotes the flip right, f Le f t

(x,y) denotes the flip left, and f rot90
(x,y) represents rotate

90 degrees, respectively. This process was performed on all the classes of selected datasets,
which had an inadequate amount of images.

https://www.kaggle.com/datasets/prashant268/chest-xray-covid19-pneumonia
https://www.kaggle.com/datasets/prashant268/chest-xray-covid19-pneumonia
https://www.kaggle.com/datasets/nabeelsajid917/covid-19-x-ray-10000-images
https://www.kaggle.com/datasets/nabeelsajid917/covid-19-x-ray-10000-images
https://www.kaggle.com/datasets/luisblanche/covidct
https://www.kaggle.com/datasets/luisblanche/covidct
https://www.kaggle.com/datasets/donjon00/covid19-detection
https://www.kaggle.com/datasets/pranavraikokte/covid19-image-dataset
https://www.kaggle.com/datasets/pranavraikokte/covid19-image-dataset
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Table 1. Description of five different COVID-19 datasets.

Dataset Training Images Augmented Images Training/Testing Images

Chest X-ray (COVID-19 & Pneumonia)

• COVID-19
• Normal
• Pneumonia

576
1583
4273

4000
4000
4273

2000/2000
2000/2000
2137/2136

COVID19 Patients Lungs X-ray Images

• COVID-19
• Normal

70
28

1000
1000

500/500
500/500

COVID-19 Lung CT Scans

• COVID
• NON-COVID

7496
944

7495
5000

3748/3747
2500/2500

COVID-19 Detection

• COVID-19
• Fibrosis
• Normal
• Pneumonia
• Tuberculosis

3616
1686

11,767
4265
3500

5000
5000
8000
5000
5000

2500/2500
2500/2500
4000/4000
2500/2500
2500/2500

COVID-19 Image Dataset

• COVID-19
• Normal
• Viral Pneumonia

111
70
70

1000
1000
1000

500/500
500/500
500/500
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3.2. Updated Pre-Trained RestNet50

ResNet-50 is a convolutional neural network with 50 layers. ResNet, which stands
for residual networks, is a neural network type that facilitates the development of several
computer vision applications [40]. Its most significant breakthrough was its capacity to
train neural networks with over 150 layers. Deep CNN networks have several difficulties,
including degradation concerns, gradient vanishing problems, and network optimization
difficulties. They also facilitate complex jobs and enhance detection precision. ResNet seeks
to address the saturation and precision loss issues that emerge during CNN training [41].
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In this paper, we used the ResNet50 model for feature extraction. The model was originally
trained with the ImageNet dataset, which includes 1000 object classes. The weights of the
first 110 layers of the model were frozen. The FC layer, softmax layer, and classification
layer were replaced with a new FC Layer, softmax layer, and a new classification layer to
achieve transfer learning. We trained the updated model by using Bayesian optimization
on selected datasets. The explanation of BO is provided in Section 3.4. The process of
freezing weights and updating the ResNet50 architecture is visually shown in Figure 4.
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3.3. Updated Pre-Trained InceptionV3

The GoogleLeNet network, which is similar to CNN, was created in 2014 [42]. It makes
use of the inception network design, which increases overall node count while reducing
a total number of network parameters [43]. GoogleNet is sometimes referred to as the
Inception Network in acknowledgment of the inception network acting as the network’s
skeleton. Inception v1 (2014), Inception v2 (2015), Inception v3 (2015), Inception v4 (2016),
and Inception-ResNet are the most widely used GoogleNet versions (2016). In contrast to
Inception v1 and v2, Inception v3 uses a convolution kernel splitting technique to divide
large volume integrals into tiny convolutions. For instance, 33 convolutions are split into
31 and 13 convolutions. By minimizing the number of parameters, a splitting strategy
may speed up network training and improve the retrieval of spatial data. The network
structure module’s usefulness is improved in Inception v3 by using three different grid sizes
(35 × 35, 17 × 17, and 8 × 8) [44]. In this research, we have utilized the Inception v3 model
for deep feature extraction. The original model was trained on 1000 classes, and the size
of the input layer was 299 × 299 × 3. The original network was updated by freezing the
weights of 110 additional layers, and modifying the FC, softmax, and classification layers
for achieving the TL. The updated model was trained using BO. The hyperparameters were
selected via Bayesian optimization, as is described in Section 3.4. Visually, the process of
freezing weights via the transfer learning of Inception v3 is presented in Figure 5.

3.4. Hyperparameters Tuning Using BO

Bayesian optimization (BO) is a method for optimizing the parameters of any black-box
function f (y). Black-box optimization issues employing a black-box objective function f are
a part of deep learning optimization (y). When reducing the number of layers, it is crucial
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to decrease the number of samples used for each step. Bayesian optimization is highly
useful when human expertise cannot improve accuracy in a particular sector. By using
previous knowledge about the function f and updating posterior information, Bayesian
optimization reduces loss and increases model accuracy. Since hand tuning is based on
trial and error, it is difficult to replicate. Although a grid search is not scalable to bigger
dimensions, the enhanced random search is similar to the greedy method in that it settles
for local optima and is unable to identify global optima. Other evolutionary optimization
techniques need a lot of training cycles and are noisy. All of these problems are solved using
Bayesian optimization, which properly reveals the global optimum’s black-box function. It
achieves global minima by using discontinuous sections and successfully handling noisy
data [45]. The optimization is achieved using the Bayes theorem, where the equation is
derived as the model M and observation D.

P(M|D) =
(P(D|M)× P(M)

P(M)
(4)

where (P(D|M) is the posterior probability of given model M and observation Y. The
(P(D|M) increases the chance of observation D of given model M, and P(M) is the marginal
probability of M. To identify the minimal value of a function f (y) on a limited set D, the
Bayesian optimization is utilized. It is allowed to choose better decisions when further
evaluations of the function f (y) are performed.
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Hyperparameters are a set from variables that are employed in training and testing to
speed up the learning process. The deep learning model will use a range of samples and
weights to learn many feature combinations as patterns. Examples of hyperparameters in-
clude learning rate, iterations, hidden layers, batch size, activation functions, momentum,
and regularization. For image classification, convolutional neural networks consider the
pooling and convolutional layer fields, as well as the stride parameter-controlled step
size. The parameters may range between the upper and lower limits and can be discrete,
continuous, or categorical variables. In intermediate layers, the number of neurons may
vary between layers, which may result in the formation of new hyperparameters. Before
training the model, consider the hyperparameters p1, p2, and p3 in the configuration
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space P, where p may be initialized as P = p1× p2× p3. To properly train the model,
the appropriate hyperparameters should be set during the training process, since this
may have a substantial impact on the model. If the model learning rate is slower, it may
accidentally overlook important patterns. The right combination of parameters should
improve the model efficiency or accuracy while minimizing its loss function. Thus, the
topic of modifying hyperparameters may be regarded as an optimization issue [46]. In
our work, we have used the Bayesian optimization for optimizing the hyperparame-
ters of the DCNNs for improving the efficiency and minimizing the loss factor. We
considered the following hyperparameters (HP): learning rate, section depth, momen-
tum, L2Regularization, dropout rate, and activation function type. The ranges of these
hyperparameters is given under Table 2.

Table 2. Ranges of hyperparameters for BO.

Hyperparameters Ranges

Learning Rate [0.0001, 1]
Section Depth [1, 3]
Momentum [0.5, 0.98]
L2Regularization [1e−9, 1e−3]
Dropout [0.0, 0.8]
Activation type RELU, tanh, sigmoid

Features are extracted from both trained models using some specific layers, such
as fully connected or average pooling. For the newly trained ResNet50 deep model,
the average pooling layer is selected and performs the activation function. On this
layer, we obtained 2048 features; hence, the required vector size was of the dimension
N × 2048 Similarly for the newly trained Inception v3 deep model, features were ex-
tracted from the GAP layer, and 2048 features were obtained for each image. Hence, the
resultant vector was obtained of dimension N × 2048. In the later step, features were
fused using an ICCA-based approach.

3.5. Improved Canonical Correlation Analysis Fusion

Feature fusion is a technique for combining many features into a single vector. The
fusion technique significantly improves the performance of pattern recognition applications
due to the unique properties of each feature type. When all features are merged, then there
is a chance that performance will be improved. However, duplicate information might
appear if many attributes are combined into one vector. In this research, we employed
improved canonical correlation analysis (ICCA) for feature fusion. In the ICCA fusion, we
first fused the training and testing features of both models using a serial-based approach.
To resolve the high dimension and redundant problem, the features were further passed to
the CCA process.

Consider the training and testing features V f 1
N , V f 2

N , V f 3
N , V f 4

N having size N × 2048,
which is obtained from the trained Resnet50 and Inception v3. Suppose Vtrain

f used and Vtest
f used

are fused vectors having a size of N × F.

Vtrain
f used =

(
V f 1

N
V f 3

N

)
N×F

(5)

Vtest
f used =

(
V f 2

N
V f 4

N

)
N×F

(6)

where Vtrain
f used and Vtest

f used represent the serial-based fusion of training and testing features
of both models, respectively. The sizes of both fused vectors are N × 4096. After that,
both fused vectors are utilized for the improved canonical correlation analysis of features.
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Consider,
{

Vtrain
f used

}n

i=1
∈ Rk and

{
Vtest

f used

}n

i=1
∈ Rm, where k, m denotes the size of sample

space and n represents the number of observations. CCA finds the projection among the
features and the derived equation as:

X Vtrain
f used
∈ Rk, X Vtest

f used
∈ Rm (7)

The correlation among XT
Vtrain

f used
P, XT

Vtest
f used

Q, where P = [p1, p2, p3, . . . , pn],

Q = [q1, q2, q3, . . . , qn], denotes the sample vectors. Formally, the CCA is defined as:

projv = max

(
XT

Vtrain
f used

X Vtest
f used

Spq

)
√(

XT
Vtrain

f used
SppX Vtrain

f used

)(
XT

Vtest
f used

SqqX Vtest
f used

) (8)

where Spq = PQT presents the covariance matrix among the features sets, and Spp = PPT

and Sqq = QQT denote the covariance within the two features sets. The resultant matrices
are combined using simple concatenation as follows:

VICCA(i) =

XT
Vtrain

f used
P

XT
Vtest

f used
Q

 (9)

where VICCA(i) denotes the resultant vector. By this approach, we obtained a fused ICCA-
based feature vector of dimension ×Ki, where I ∈ { N × 1292, N × 382, N × 2333, N × 2049,
and N × 232 } . These ith vectors denote the fused vectors of all five selected datasets. These
feature vectors were further optimized using an improved tree growth selection algorithm.
The working of improved method is described below.

3.6. Improved Tree Growth Feature Selection

Feature selection (FS) in computer vision is the process of identifying the most relevant
subset of the original group of features by deleting duplicate, unnecessary, or disturbing
features [47]. FS enhances the accuracy while accelerating computational time. In this
research, we modified the tree growth optimization algorithm for the best feature selection
to become improved tree growth optimization. The adopted algorithm draws its inspiration
from the battle for food and light among trees [48]. The work of the original tree growth
algorithm is described by the following points:

• Randomly generate the population of trees using lower and upper bounds, and
calculate the fitness values;

• Considering feature selection, the objective is to minimize the solution. So, the mini-
mum tree value is selected as the fittest value. At the kth iteration, Pk

GB presents the
global best;

• Allow local search for B1 better solutions using the Equation (10). For every solution,
do many local searches. If the value of the new answer is greater than the first response,
then replace it with old value.

Pk+1
i =

Pk
i

β
+ rPk

i (10)

where β presents the reduction rate of trees caused by aging high growth, and less
food, and r presents U (0, 1), which causes the trees to satisfy the light, and the roots
are instructed to move, absorb food and grow at a rate of rPk

i units.
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The best solutions that are close together under different angles should be moved B2
solutions to the space between them. Using Equation (11), compute the separation between
the selected trees and other trees:

di =

√√√√(B1+B2

∑
i=1

(
Pj

B2 − Pk
i

)2
)

& di =


di i f Pk

B2 6= Pk
i

∞ i f Pk
B2 = Pk

i

 (11)

In the next step, choose two solutions n1 and n2 with the smallest di, and get a linear
combination among the trees. The linear combination is derived in Equation (12).

z = λn1 + (1− λ)n2 (12)

where λ = U(0, 1) and, finally, the algorithm moves this tree among two adjacent trees
with θi = U (0, 1) angles, which are obtained from the Equation (13).

Pk
B2 = Pk

B2 + θiz (13)

B3 worse solutions should be replaced with randomly generated ones.
Generate a new population using B = B1 B2 + B3. The mask operator randomly gen-

erates B4 new solutions, and each new solution is modified in relation to the best solution
(from the population B1) before being added to the new population (new population = new
population + B4).

We consider the number of original populations B from the new population after
sorting it as the starting population for the subsequent iteration.

Compute the entropy value of all populations for each iteration and define an activa-
tion function for the selection of important features.

This process continues for the selected number of iterations.
Based on the above selection process, we obtained a feature vector of dimension ×K̃i,

where i ∈ {N × 637, N × 176, N × 1177, N × 960 and N × 97}. These feature vectors
were obtained for all selected datasets separately. The final selected features were fed
into neural network classifiers for the final classification.

4. Experiment and Results

In this section, the experimental approach of the proposed framework is described.
This research utilized five datasets for the experimental process (details of the datasets
have been described under Section 3.1). The datasets were partitioned in a 50:50 ratio. This
indicated that 50% of the sample images were used for training the proposed framework,
while the remaining 50% were used for testing. All proposed framework results were
evaluated using 10-fold cross validation. Several hyperparameters of deep learning models
were initialized statically and by using a Bayesian optimization technique. We established
the initial learning rate, stochastic gradient descent, momentum, L2Regularization, dropout
rate, activation type, and section depth using a Bayesian optimization method. Neural
networks classifiers were utilized to evaluate the results. The evaluating parameters were
sensitivity rate, precision rate, false positive rate, kappa index, MCC, accuracy, and time
(seconds). The kappa and MCC measures were computed by Equations (14) and (15).

k =
P0 −Pe

1−Pe
(14)

where, Pe denotes the predicted agreement and P0 is the actual agreement. In essence,
it reveals you how much better your classifier performs than a classifier that just makes
accurate predictions based on the frequency of each class.

MCC =
T + ve× T − ve− F + ve× F− ve√

(T + ve + F + ve)(T + ve + F− ve)(T − ve + F + ve)(T − ve + F− ve)
(15)
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where T + ve, T− ve, F + ve, F− ve denotes the True Postive, True Negative, False Positive
and False Negative, respectively. We conducted all simulations on MATLAB2022a utilizing
a work station PC with an Intel Core i7 5570 processor, 380 SSD, 1TB hard drive, and
32 GB of RAM, as well as a 6 GB NVIDIA RTX graphics card. The results of the proposed
framework are presented in two different experiments. In the first experiment, the proposed
ICCA-based fusion results are discussed, whereas in the second experiment, the proposed
optimization algorithm-based results are discussed.

4.1. Chest X-ray (COVID-19 and Pneumonia) Dataset Results

The results of the first experiment (ICCA-based fusion) for the Chest X-ray dataset
are presented in Table 3. This table shows that the MNN classifier outperformed the other
classifiers. The MNN classifier beat the other classifiers based on the numerical stats.
This classifier achieved a 99.6% accuracy rate in 16.316 s. The values for the sensitivity,
precision, F1-score, kappa index, MCC rate, and FPR were 99.59, 99.60, 99.60, 99.08, 99.39,
and 0.002, respectively. The confusion matrix of the MNN classifier is shown in Figure 6,
and it was utilized to verify the MNN classifier accuracy and other computed measures.
Computationally, the tri-layered NN required the longest computation time of 29.912 s,
whereas the narrow NN classifier required the shortest computation time of 14.949 s.

Table 3. Proposed improved CCA fusion results on Chest X-ray dataset.

Classifiers Precision Sensitivity F1-Score FPR Kappa MCC Accuracy Time (s)

NNN 99.54 99.53 99.53 0.002 98.94 99.29 99.5 14.949
MNN 99.60 99.59 99.60 0.002 99.08 99.39 99.6 16.316
WNN 99.59 99.58 99.58 0.002 99.05 99.37 99.6 21.932
Bi-layered NN 98.90 98.89 98.90 0.005 97.51 98.34 98.9 19.737
Tri-layered NN 98.57 98.57 98.57 0.007 96.67 97.85 98.6 29.912
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Table 4 demonstrates the proposed optimization results (second experiment) for the
Chest X-ray dataset. This table illustrates that the WNN classifier had the greatest accuracy
of 99.6%. For this classifier, the sensitivity was 99.58%, the accuracy was 99.58%, the F1-
score was 99.58%, the kappa index was 99.05%, the MCC was 99.37%, and the false positive
rate was 0.002. These numbers were also calculated for the other neural kernels, and it was
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found that the WNN performed the best based on the numerical values. Figure 7 depicts the
WNN confusion matrix, which provides further confirmation of the computed values. The
computational time was also noted for each classifier, and the shortest time was 9.97 s for
the narrow neural network classifier, while the longest time was 12.77 s for the tri-layered
neural network. In comparison with the first experiment results of this experiment, it
was shown that the accuracy was consistent for the initial three selected classifiers, but
for the last two classifiers, the accuracy was improved. Also, the computational time was
significantly reduced, which was the strength of this experiment.

Table 4. Proposed improved TGO optimization results on Chest X-ray dataset.

Classifiers Precision Sensitivity F1-Score FPR Kappa MCC Accuracy Time (s)

NNN 99.50 99.50 99.50 0.002 98.86 99.25 99.5 9.9754
MNN 99.55 99.55 99.55 0.002 98.97 99.32 99.5 8.6999
WNN 99.58 99.58 99.58 0.002 99.05 99.37 99.6 11.157
Bi-layered NN 99.21 99.21 99.21 0.004 98.20 98.81 99.2 12.029
Tri-layered NN 99.27 99.21 99.21 0.004 98.20 98.81 99.1 12.775
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4.2. COVID-19 Patients Lungs X-ray Images Dataset

Table 5 presents the classification results of the proposed features fusion for the COVID-
19 Patients Lungs X-ray dataset. In this table, the WNN classifier achieved the maximum
accuracy of 98.5%. The sensitivity rate for this classifier was 98.56%, the F1-score was
98.48%, the kappa index was 97.0%, the MCC rate was 97.03%, and the FPR was 0.002.
These measures were also computed for the rest of the classifiers mentioned in this table.
According to these results, it was noted that the WNN classifier achieved the better accuracy.
Figure 8 illustrates the confusion matrix of the WNN classifier for further validation of the
statistical values. In addition, the computational time was noted for each classifier during
the testing stage, and it was observed that the bi-layered neural network took the minimum
time for execution at 2.594 s.
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Table 5. Proposed fusion results on COVID-19 Patients Lungs X-ray dataset.

Classifiers Precision Sensitivity F1-Score FPR Kappa MCC Accuracy Time (s)

NNN 97.05 96.94 96.81 0.03 93.80 93.96 96.9 3.2829
MNN 98.21 98.32 98.27 0.002 96.60 96.64 98.3 3.1172
WNN 98.34 98.56 98.48 0.002 97.00 97.03 98.5 2.9841
Bi-layered NN 96.15 96.00 95.88 0.04 92.00 92.17 96.0 2.5945
Tri-layered NN 95.36 95.14 94.92 0.04 90.20 90.42 95.1 2.9175
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Table 6 presents the proposed optimization results on this dataset and the obtained
improved accuracy of 98.5% for the WNN. The other measures were a sensitivity rate
of 98.56%, a precision rate of 98.34%, an F1-score of 98.48%, a kappa index of 97.0%, an
MCC of 97.03%, and an FPR of 0.002. The computational time of this experiment was also
improved from the first experiment. Moreover, the Figure 9 showing the confusion matrix
of WNN for this dataset. Hence, we can conclude that the optimization process improved
the performance.

Table 6. Proposed feature optimization results on COVID-19 Patients Lungs X-ray dataset.

Classifiers Precision Sensitivity F1-Score FPR Kappa MCC Accuracy Time (s)

NNN 97.05 96.94 96.81 0.03 93.80 93.96 96.9 3.2829
MNN 98.21 98.32 98.27 0.002 96.60 96.64 98.3 3.1172
WNN 98.34 98.56 98.48 0.002 97.00 97.03 98.5 2.9841
Bi-layered NN 96.15 96.00 95.88 0.04 92.00 92.17 96.0 2.5945
Tri-layered NN 95.36 95.14 94.92 0.04 90.20 90.42 95.1 2.9175
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4.3. COVID-19 Lung CT Scans Dataset Results

Table 7 illustrates the proposed fusion results for the Covid-19 Lung CT Scans dataset.
This table demonstrates that the WNN classifier achieved the highest accuracy of 99.3%
across all neural networks. The other computed measures of the WNN were a sensitivity
rate of 99.25%, a precision rate of 98.9%, an F1-score of 99.23%, a kappa index of 98.12%, an
MCC rate of 98.12%, and an FPR of 0.01. The same computations were also conducted on all
other neural network classifiers, and it was seen that the WNN classifier performed better.
Figure 10 depicts the confusion matrix of the WNN that was used to validate the obtained
values (i.e., accuracy, precision). Computational time was also noted for all classifiers, and
the MNN classifier had the minimum time of 30.96 s, while the WNN classifier consumed
the maximum time of 41.36 s.

Table 7. Proposed fusion results on COVID-19 Lung CT Scans dataset.

Classifiers Precision Sensitivity F1-Score FPR Kappa MCC Accuracy Time (s)

NNN 98.55 99.00 99.00 0.01 97.54 97.57 98.8 31.86
MNN 98.62 99.00 99.03 0.01 97.61 97.63 98.8 30.96
WNN 98.9 99.25 99.23 0.01 98.11 98.12 99.3 41.36
Bi-layered NN 95.90 96.94 96.45 0.035 95.39 95.39 96.4 37.27
Tri-layered NN 95.65 94.55 95.75 0.04 91.66 91.63 96.0 41.88

Table 8 describes the proposed optimization results for the COVID-19 Lung CT Scans
dataset. This table shows that the narrow NN classifier performed better with a lower
computational time of 14.747 s and a maximum accuracy of 99.9%, which was better than
the other mentioned classifiers. The sensitivity rate was 99.93%, the precision rate was
99.81%, the F1-score rate was 99.88%, the kappa index was 99.70%, the mean correlation
coefficient (MCC) was 99.70%, and the FPR value was 0.001. On the basis of these statistics,
it was affirmed that that the NNN classifier was superior to the other stated neural networks.
Figure 11 shows the confusion matrix of the NNN that was utilized to verify the obtained
values. The execution time of the other neural networks was also noted, and the medium
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NN classifier took the minimum time of 14.687 s, whereas the maximum recorded time was
19.961 s for the WNN. In comparison with the first experiment results, it was noted that
the performance was improved for the second experiment. Moreover, it was also clearly
observed that the computational time was reduced for the second experiment than for
the first experiment. Hence, the second experiment showed the main strength in terms of
accuracy and time for this dataset.
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Figure 10. Proposed fusion method confusion matrix of WNN on COVID-19 Lung CT Scans dataset.

Table 8. Proposed ITCO optimization results on COVID-19 Lung CT Scans dataset.

Classifiers Precision Sensitivity F1-Score FPR Kappa MCC Accuracy Time (s)

NNN 99.81 99.93 99.88 0.001 99.70 99.70 99.9 14.747
MNN 99.85 99.75 99.83 0.001 99.57 99.57 99.8 14.687
WNN 99.73 99.82 99.85 0.001 99.70 99.70 99.9 19.961
Bi-layered NN 98.62 98.15 98.95 0.005 97.40 97.42 98.4 19.054
Tri-layered NN 96.95 97.05 97.56 0.032 93.94 93.94 97.1 37.34

4.4. COVID-19 Image Dataset Results

The results of this dataset using the proposed fusion method (first experiment) are
presented in Table 9. This table demonstrates that the maximum accuracy came from the
MNN classifier at 97.2%. The values of other measures of this classifier include sensitivity
rate, accuracy rate, F1-Score, Kappa index, MCC, and FPR values of 99.88%, 96.94%, 96.90%,
97.30%, 96.23%, and 0.006, respectively. These values were also computed for the other
neural classifiers, and the numerical results demonstrated that MNN outperformed the
other classifiers. Figure 12 depicts a confusion matrix that was used to validate these MNN
classifier performance values. The computational time was also noted for this experiment,
and it was observed that the minimum computed time was 25.885 s for the medium NN,
whereas the maximum time was 89.762 s for the bi-layered NN.
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Table 9. Proposed fusion method results on COVID-19 Image dataset.

Classifiers Precision Sensitivity F1-Score FPR Kappa MCC Accuracy Time

NNN 95.72 95.68 95.69 0.009 87.95 94.75 96.1 42.351
MNN 96.94 96.88 96.90 0.006 97.30 96.23 97.2 25.885
WNN 96.66 96.66 96.65 0.007 90.67 95.93 97.0 36.578
Bi-layered NN 92.22 92.18 92.19 0.017 78.17 90.49 93.0 89.762
Tri-layered NN 91.53 91.46 91.49 0.018 76.16 89.63 92.4 87.431Diagnostics 2023, 13, x FOR PEER REVIEW 19 of 26 
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Table 10 presents the optimization results (second experiment) that show the maximum
achieved accuracy was 99.5% for the MNN classifier. Moreover, the sensitivity rate was
99.43%, the F1-Score was 99.45%, the kappa index value was 98.45%, and the MCC was
99.33%. These values were also computed for the other classifiers shown in this table. Based
on these values, it was shown that the MNN performance was better. The values obtained
by the MNN could be further verified through a confusion matrix, as is shown in Figure 13.
Moreover, computationally, the narrow neural classifier took the least amount of time at
15.298 s. In comparison of this dataset result among both experiments, we conclude that
the optimization accuracy was better than in the first experiment. Also, the computational
time was significantly reduced in the second experiment.

Table 10. Proposed ITGO optimization approach results on COVID-19 Image dataset.

Classifiers Precision Sensitivity F1-Score FPR Kappa MCC Accuracy Time

NNN 99.04 99.02 99.03 0.002 97.28 98.82 99.1 15.298
MNN 99.47 99.43 99.45 0.002 98.45 99.33 99.5 12.939
WNN 99.49 99.49 99.49 0.001 98.57 99.38 99.5 20.814
Bi-layered NN 97.42 97.41 97.41 0.005 92.77 96.85 97.7 19.818
Tri-layered NN 97.79 97.79 97.79 0.004 93.84 97.31 98.0 45.819
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4.5. COVID-19 Detection Dataset Results

Table 11 presents the results of this dataset for the first experiment. In this table, it is
shown that the MNN classifier had highest accuracy of 100%, which was verified through
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a confusion matrix that is illustrated in Figure 14. Computationally, the narrow neural
network classifier had the best time of 2.1373 s. Moreover, the other classifiers also obtained
the maximum accuracies up to 99.9%. Table 12 presents the classification accuracy of the
second experiment (optimization) that shows the maximum accuracy of 100%. The accuracy
of both experiments was almost consistent, but the time was changed. The computational
time of the second experiment was lower than in the first experiment, and 1.4186 s was the
minimum reported time. Moreover, Figures 14 and 15 shows the confusion matrix of MNN
and tri-layered NN for this dataset.

Table 11. Proposed ICCA fusion approach results on COVID-19 Detection dataset.

Classifiers Precision Sensitivity F1-Score FPR Kappa MCC Accuracy Time

NNN 99.93 99.93 99.93 0.00 99.85 99.90 99.9 2.1373
MNN 100 100 100 0.00 100 100 100 2.2438
WNN 100 100 100 0.00 100 100 100 2.8256
Bi-layered NN 99.93 99.93 99.93 0.00 99.85 99.90 99.9 2.1971
Tri-layered NN 99.93 99.93 99.93 0.00 99.85 99.90 99.9 2.4073
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Table 12. Proposed ICCA fusion approach results on COVID-19 Detection dataset.

Classifiers Precision Sensitivity F1-Score FPR Kappa MCC Accuracy Time

NNN 100 100 100 0.00 100 100 100 2.3249
MNN 100 100 100 0.00 100 100 100 1.97
WNN 100 100 100 0.00 100 100 100 2.0038
Bi-layered NN 99.93 99.93 99.93 0.00 99.85 99.90 99.9 1.4186
Tri-layered NN 100 100 100 0.00 100 100 100 1.5376
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In conclusion, a comprehensive comparison was conducted with several recent tech-
niques, as is shown in Table 13. Several latest released techniques are included in this table,
and they all used the deep learning architecture. Recently, the highest recorded accuracy
was 99.2%. Our framework tested on five publically available datasets achieved accuracies
of 99.6, 98.5, 99.9, 99.5, and 100%.

Table 13. Proposed approach comparison with latest techniques.

Sr. No Reference Year Method Accuracy (%)

1 [49] 2022 Quantum Machine learning using GAN 95.0

2 [50] 2022 Classical and quantum transfer learning for COVID-19 classification 99.0

3 [51] 2022 Neighboring aware based deep graph network 99.2

4 [52] 2021 Ensemble Convolutional neural network 97.0

5 [53] 2021 Deep based fusion transfer learning and DCA 98.3

Proposed Deep learning, Bayesian optimization, ICCA fusion and best features selection

99.6
98.5
99.9
99.5
100

A comprehensive comparison was conducted with several recent techniques, as is
shown in Table 13. Several latest released techniques are included in this table, and they all
used the deep learning architecture. Recently, the highest recorded accuracy was 99.2%.
Our framework tested on five publically available datasets achieved accuracies of 99.6, 98.5,
99.9, 99.5 and 100%. Moreover, the in-depth analysis among original CCA and ICCA was
conducted at the end to show the change in accuracy after the improved fusion method.
Table 14 shows the results of this process, and it was observed that the accuracy of the
ICCA was improved, but the time also increased slightly. Overall, the ICCA-based fusion
approach showed the most improvement. Moreover, Figure 16 shows the impact of the data
augmentation process. This figure illustrates that the accuracy of the proposed framework
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was improved after the data augmentation. In addition, Figure 17 illustrates the infected
region visualization using the Grad-CAM approach on the proposed framework.

Table 14. Analysis of original CCA-based features fusion and ICCA-based fusion.

Datasets and Classifier CCA ICCA Accuracy (%) Time (s)

Chest X-ray (COVID-19 and Pneumonia) 3 98.4 14.215
3 99.6 16.316

COVID-19 Patients Lungs X-ray Images 3 96.2 1.9624
3 98.5 2.9841

COVID-19 Lung CT Scans 3 98.9 37.142
3 99.3 41.368

COVID-19 Detection
3 96.0 22.204

3 97.2 25.885

COVID-19 Image Dataset 3 99.2 2.0426
3 100 2.2438Diagnostics 2023, 13, x FOR PEER REVIEW 23 of 26 
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5. Conclusions

In this work, we proposed a framework for COVID-19 classification using deep
Bayesian optimization and an improved feature selection algorithm. The proposed frame-
work started with the augmentation process. This step improved the accuracy of the
proposed framework when it was compared with the original dataset results. The training
of deep models was performed through transfer learning, whereas the hyperparameters
were initialized through Bayesian optimization instead of manual initialization. The man-
ual initialization process did not improve the learning capability of selected deep models, as
determined after the experimentation process. After that, the deep features were extracted
and fused using an ICCA-based approach instead of serial-based fusion. This process not
only increased the accuracy, but it also controlled the computational time. The accuracy
and time of the original CCA-based approach was not better than the ICCA-based fusion.
Based on the analysis, it was also observed that a few redundant features were also present
during the ICCA-based fusion, which was a drawback of this step; therefore, we proposed
an improved optimization algorithm based on an entropy activation function. This step
improved the accuracy and reduced the testing computational time. The experimental
process was conducted on five publically available datasets and obtained improved accu-
racies of 99.6, 98.5, 99.9, 99.5, and 100%. The main drawback of this work was the use of
complex dataset and fusion processes that also added redundant information. Moreover,
the ICCA-based fusion method added some redundant information that caused higher
computational times. These drawbacks will be considered in a future work [54,55].
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