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Abstract

:

In epidemiology, a risk factor is a variable associated with increased disease risk. Understanding the role of risk factors is significant for developing a strategy to improve global health. There is strong evidence that risk factors like smoking, alcohol consumption, previous cataract surgery, age, high-density lipoprotein (HDL) cholesterol, BMI, female gender, and focal hyper-pigmentation are independently associated with age-related macular degeneration (AMD). Currently, in the literature, statistical techniques like logistic regression, multivariable logistic regression, etc., are being used to identify AMD risk factors by employing numerical/categorical data. However, artificial intelligence (AI) techniques have not been used so far in the literature for identifying risk factors for AMD. On the other hand, artificial intelligence (AI) based tools can anticipate when a person is at risk of developing chronic diseases like cancer, dementia, asthma, etc., in providing personalized care. AI-based techniques can employ numerical/categorical and/or image data thus resulting in multimodal data analysis, which provides the need for AI-based tools to be used for risk factor analysis in ophthalmology. This review summarizes the statistical techniques used to identify various risk factors and the higher benefits that AI techniques provide for AMD-related disease prediction. Additional studies are required to review different techniques for risk factor identification for other ophthalmic diseases like glaucoma, diabetic macular edema, retinopathy of prematurity, cataract, and diabetic retinopathy.
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1. Introduction


Diabetes has become the fifth leading cause of blindness across the globe, due to which ophthalmic diseases are a global concern. Retinal disorders can cause blindness, but early diagnosis and timely treatment can prevent vision loss. Therefore, there is a dire need for automated diagnosis systems to assist in the early diagnosis of ophthalmic disease. There exist many retinal diseases. Cataract refers to the clouding of the lens, and in glaucoma the optic nerve of the eye that provides information to the brain is damaged, which can lead to gradual vision loss when left untreated and in diabetic retinopathy, where the blood vessels of the eye are damaged owing to the complication of diabetes. Researchers developed automatic detection systems to detect cataract [1,2,3,4], glaucoma [5], and diabetic retinopathy [6,7].



Age-related macular degeneration is also a leading cause of visual impairment and severe vision loss and is the most common form of maculopathy leading to vision loss in people [8,9]. AMD affects individuals over the age of 55 years. According to the world report on vision, of the estimated 196 million people suffering globally from age-related macular degeneration, 10.4 million (5.3%) have moderate or severe distance vision impairment or blindness from more severe forms of the condition [10].



A meta-analysis [11] suggested that the number of people in Europe affected by any AMD is expected to increase by 15% by 2050. AMD can be divided into subgroups according to the presence/absence of neo-vascularization–dry/non-neo-vascular and wet/neovascular AMD (nAMD). Several risk factors of AMD have been identified: age; gender; race; obesity; hypertension; smoking; sunlight; diet; phenotypic; demographic; environmental; genetic; alcohol consumption; and molecular risk factors; etc. [12,13,14,15,16,17,18,19,20,21,22,23,24,25]. Therefore, using risk factors as biomarkers for predicting AMD and AMD progression is a significant area of research



Artificial intelligence (AI) in diagnosis and prognosis represents a paradigm shift in healthcare. Artificial intelligence (AI) has already demonstrated proof-of-concept in medical fields such as radiology, pathology, and dermatology, which are similar to ophthalmology as they are deeply rooted in diagnostic imaging, which is the most prominent application of AI in healthcare. AI in medicine has overwhelming advantages: it can detect and learn features from large volumes of imaging data using efficient algorithms, assisting clinical practice. It can foster personalized medicine and help reduce diagnostic and therapeutic errors. In addition, AI can correlate novel features and recognize disease-specific patterns to gain innovative scientific insight. AI aims to contribute to better care outcomes and improve the productivity and efficiency of care delivery.



Many statistical methods have been designed to identify important risk factors from clinical data in the context of risk factors. However, an AI-based risk identification tool is needed to identify risk factors for ophthalmic diseases. This will nullify practitioner-dependent biases seen commonly in assessments of patients and hence the conventional methods of identifying risk factors. Novel treatments are being widely investigated in several clinical trials for both forms of AMD [26,27]. A meta-analysis has shown promising results for the diagnostic accuracy of the machine learning classifiers for AMD and its implementation in clinical settings [28]. Hence, using AI with deep learning tools has excellent potential in AMD, for diagnostic purposes–while allowing for a more efficient and accurate approach–to prognostication of affected individuals and perhaps to directly determine the efficacy of investigational medical products.



This review aims to summarize the literature related to techniques used to study risk factors of AMD and investigate AI-based options available for the same.



The paper is organized as follows: Section 2 presents the methods used in this research. Section 3 reviews statistical techniques used to identify risk factors for AMD. Section 4 provides a review of artificial intelligence techniques used in AMD diagnosis. Section 5 discusses the significance of AI over traditional statistical methods. Section 6 includes the discussion, and Section 7 lists the conclusion.




2. Methods


2.1. Study Selection


Search Terms


We used PubMed as our primary electronic search engine for looking into published articles related to AMD from 1991 to 2019. The search terms used were “age-related macular degeneration,” “risk factors,” “prevalence,” and “incidence.” The search strategy used both text word searches and subject headings. Additionally, initial search terms were updated after searching the reference lists of relevant articles. The articles were restricted to only the English language.





2.2. Inclusion and Exclusion Criteria


After preliminary searches, criteria were developed in an iterative process. We included studies on AMD, which identified risk factors using different statistical techniques. All risk factors studied, from clinical variables to genes, were considered for inclusion. Studies that did not mention statistical techniques to identify the risk factors were excluded.




2.3. Selecting Studies


A total of 118 articles were retrieved from PubMed after the initial search, of which 34 articles met this study’s objective and were selected for review. The flow diagram describing the study selection is depicted in Figure 1. The year-wise classification of included articles is shown in Figure 2.





3. Statistical Techniques for Risk Factor Identification


In medical research, statistical analyses are an essential component that can further the understanding of risk factors, treatment effects, and other aspects of the disease when appropriately applied. Statistics has become an integral part of research in ophthalmology, and its use to evaluate experimental data in ophthalmology has increased. Figure 3 depicts the various application of statistical methods from a clinician’s perspective.



Table 1 illustrates the studies included in this review, the overview of the risk factors identified, and the statistical tools used to identify them. The commonly identified risk factors identified may be divided into ocular-based factors (focal hyperpigmentation, drusen, slow choroidal filling, cataract, hyperopia), susceptibility-based risk factors (age, gender, race, hypertension, cardiovascular status, body mass index, obesity, and cholesterol), exposure-related risk factors (smoking, alcohol, physical activity) and genetics (Table 1). Figure 4 depicts the classification by percentage of techniques used in included articles in Table 1.



The review identified 34 prospective studies investigating risk factors for AMD. There was good evidence that risk factors like smoking, alcohol consumption, previous cataract surgery, age, high-density lipoprotein (HDL) cholesterol, BMI, female gender, and focal hyper-pigmentation were more often associated with being independent risk factors for AMD. One study showed a significant association between cardiovascular disease and the risk factors associated with AMD. In contrast, two studies showed no significant association between cardiovascular disease and its risk factors with AMD. Therefore, more investigation is needed to identify the association of cardiovascular disease and its risk factors with AMD.




4. Artificial Intelligence in AMD


In AMD pathogenesis, genetics plays a critical role. Many variants associated with AMD have been identified by sequencing studies and genome-wide association studies [63]. Figure 5 depicts the various applications of artificial intelligence from a clinician’s perspective. The input to AI can be data of the following types: numerical/categorical, fundus images, and optical coherence tomography (OCT) volumes. The most common imaging modalities in AI for AMD are OCT, color fundus image, and fundus autofluorescence (FAF).



Based on the input to the AI techniques, the application of AI can be divided into the following categories:



4.1. Lesion Detection, Quantification, and Extraction


A European study was done by Grinsven et al. [64] to detect and quantify drusen on color fundus photographs in 407 eyes without AMD or with early to moderate AMD. This study demonstrated that for detecting the presence of drusen and estimating the area, it achieved an intraclass correlation coefficient (ICC) larger than 0.85 and was in keeping with experienced human observers. Consequently, another algorithm was explored for the automatic detection of reticular pseudo-drusen (RPD) [65]. Automated RPD quantification achieved an ICC of 0.7, similar to the observers. Consequently, Liefers et al. [66] used a deep learning model to segment and quantify retinal features in individuals with atrophic AMD and nAMD. The mean ICC obtained was 0.66 ± 0.22 and 0.62 ± 0.21 for the model and observers, respectively.




4.2. Automated Image Segmentation


Schmidt-Erfuth et al. [67] analyzed OCT volume scans features–intraretinal cystoid fluid (IR), subretinal fluid (SRF), and pigment epithelial detachments (PED) to evaluate the predictive potential of machine learning in terms of best-corrected visual acuity (BCVA). A modest correlation was found between BCVA and OCT at baseline (R2 = 0.21). Subsequently, the same group used a deep learning method and a convolutional neural network (CNN) to accurately measure fluid response to anti-vascular endothelial growth factor (VEGF) treatment in neovascular AMD [68] in the HARBOR study. For this purpose, the group used automatic volumetric quantification data of fluid volumes in the OCT. Subsequently, the authors also validated the retinal fluid volumes (intraretinal fluid (IRF), subretinal fluid (SRF), and pigment epithelial detachment (PED)) as important biomarkers in neovascular AMD [69]. Lee et al. [70] utilized a deep learning framework to perform automated diagnosis and segmentation of retinal diseases. They created a key OCT image segmentation model. The authors applied this methodology in 14,884 clinically heterogenous scans.




4.3. AMD Classification


Yim et al. [71] combined 3D OCT images and automatic tissue maps in individuals with nAMD in one eye to predict progression in the contralateral eye to nAMD. This system outperformed five out of six experts and achieved a sensitivity of 80% at 55% specificity and 34% specificity at 90% sensitivity. Yan et al. [72] used data of disease severity phenotypes and fundus images available at baseline and follow-up visits over 12 years from AREDS to predict late AMD progression. They achieved an average AUC value of 0.85 when fundus images were coupled with genotypes to predict late AMD progression. Only fundus images showed a middle area under the ROC curve value of 0.81. Peng et al. [73] combined deep learning (DL) and survival analysis to develop, train, and validate a framework for predicting individual risk of late AMD. The model achieved a 5-year C-statistic of 86.4 when validated against an independent test data set of 601 participants, which substantially exceeded that of retinal specialists using two existing clinical standards of 81.3 and 82.0, respectively. Ajana et al. [74] used genotypic, lifestyle, and phenotypic factors to develop a prediction model for advanced AMD. The training data set included Rotterdam Study I [75] (RS-I) enrolled participants. The validation dataset included antioxidants, lipides essentiels, nutrition et maladies oculaires [76] (ALIENOR) study enrolled participants. The cross-validated AUC estimation in RS-I was 0.92 at five years, 0.92 at ten years, and 0.91 at 15 years. In ALIENOR, the AUC reached 0.92 at five years. Seddon et al. [77] calculated the AMD progression risk score to discriminate progressors from nonprogressors to advanced AMD based on demographic, ocular, behavioral, treatment, and genetic factors. They obtained a C-statistic score of 0.83, compared to C statistics for coronary heart disease (CHD), 0.79 for white men, and 0.83 for white women in the Framingham study cohort, and somewhat lower in several replication samples [78].



Seddon et al. [79] included time-varying progression rates up to 12 years, macular drusen size in both eyes at baseline, AMD status at baseline, six genetic variants, and environmental and demographic factors to build a model for AMD progression. The model’s AUC for progression at ten years with drusen size, environmental covariates, and genetic factors was 0.915 in the total sample. Klein et al. [80] constructed a risk assessment model to develop advanced AMD incorporating phenotypic, demographic, environmental, and genetic risk factors. The model did well on performance measures, with excellent discrimination (C statistic = 0.872) and excellent calibration and overall performance (Brier score at five years = 0.08). Seddon et al. [81] developed an online application and a predictive model. The online application assists in clinical decision-making and is available at www.seddonamdriskscore.org. The model included age, ten genetic loci, sex, BMI, education, baseline AMD status, and smoking, and the AUC for progression to advanced AMD over ten years was 91.1%. Spencer et al. [82] combined the results from the grammatical evolution of neural networks (GENN) and logistic regression models using a consensus approach to build an algorithm using a constellation of environmental risk factors and knowledge of each individual’s particular genetic profile, which was successful in differentiating between low and high-risk groups for AMD with a sensitivity of 77.0% and specificity of 74.1%.



Fraccaro et al. [83] used black-box methods, such as random forests, AdaBoost, and SVM, as well as white-box techniques, including decision trees and logistic regression, to develop models to diagnose AMD, including demographics, depigmentation area, and, for each eye, presence/absence of significant AMD-related clinical signs (retinal pigment epithelium, soft drusen, defects/pigment mottling, subretinal fluid, subretinal hemorrhage, macula thickness, subretinal fibrosis, macular scar). The model’s logistic regression, AdaBoost, and random forests achieved an AUC of 0.92, followed by decision trees and SVM with an AUC of 0.90. Shin et al. [84] used ocular and systemic factors to develop a risk prediction model for the progression of AMD in Koreans. The model achieved a C statistic of 0.84, indicating excellent predictive power. The fundus images were used for AMD grading; they can also be used with genotypes to predict the probability of late AMD progression. Such predictions can slow the disease progression by urging the patients to start preventative care beforehand since late AMD is irreversible.



The review of AI techniques for AMD as described in Section 4.1, Section 4.2 and Section 4.3 is summarized in Table 2.





5. Significance of AI over Traditional Statistical Methods


Open Problems


Statistical methods can work only with numerical or categorical data. In contrast, artificial intelligence (AI) can detect AMD automatically. AI techniques can assist in extracting the vascular skeleton and thus compute features like tortuosity, fractal index, thickness, and vessel density of blood vessels in a fundus image. AI can also detect and quantify drusen present in a fundus image. Moreover, automatic image segmentation can also be performed using AI.



Traditional statistical methods rely on strong assumptions, such as the additivity of the parameters within the linear predictor, the type of error distribution, and proportional hazards. These assumptions are often overlooked in the scientific literature and are not met in clinical practice. For instance, when studying survival in gastric cancer patients, the assumption of proportional hazards has been violated, as nodal status and the prognostic significance of the depth of tumor invasion tend to decrease with increasing follow-up. At the same time, the loss of the TP53 gene and the histology acquire prognostic importance after at least two years of follow-up [85]. On the other hand, machine learning (ML) techniques in AI have considerable flexibility and are free from a priori assumptions.



Traditional statistical approaches often fail because they make an a priori selection of the variables to be considered. For instance, a Cochrane review in gastric cancer surgery dealing with the extension of lymphadenectomy was later withdrawn and criticized because it failed to assess the quality of surgical procedures under comparison [86]. Whereas in ML any number of features can be chosen based on all the available information.



Traditional regression models show several limitations in choosing the most important risk factors when there are many predictors and few observations, such as in transcriptomics, genomics, metabolomics, and proteomics [87]. In contrast, ML is particularly suited for such situations. Therefore, it is possible to use numerous approaches to apply small datasets in building ML predictive models.



Traditional statistical methods can only address interactions between single potential confounders and the primary determinant. For instance, in gastric cancer patients, the effect of the surgical approach on survival is modulated by histology and tumor stage [88]. However, within a Cox model, it is not easy to highlight this second-order interaction [89], as the interaction between lymphadenectomy and histology becomes apparent after the first two years of follow-up. ML can also efficiently address such interactions. Furthermore, ML algorithms can analyze various data types (imaging data, laboratory findings, and demographic data) and integrate them into predictions for illness risk, prognosis, diagnosis, and appropriate treatments [90].





6. Discussion


Out of the included studies, the review found that for identifying risk factors, 32.35% used logistic regression, 8.82% of each used univariate & multivariate analyses, multivariable logistic regression, multivariate stepwise logistic regression, generalized estimating equation logistic regressions, 5.88% used polychotomous logistic regression and 2.94% of each used Poisson regression, unconditional logistic analysis, standard bivariate, and multivariate analyses, multivariate Cox regression, logistic regression, and Mantel-Haenszel analysis, survival analysis and Cox proportional hazards regression. The classification by number and percentage of techniques used in included articles is depicted in Figure 3.



AI techniques often used are logistic regression and deep learning for predicting AMD. The metrics evaluated by the AI techniques are not comparable due to the different datasets used in these studies. The prediction of AMD can be done by acquiring dataset of OCT volumes, color fundus images, and clinical data of risk factors. However, there is a tradeoff between the cost of obtaining the dataset and the metrics (accuracy, AUC, etc.) of the AI models received to predict AMD. In this context, the cost of obtaining OCT volumes is higher than obtaining color fundus images which is higher than obtaining clinical risk factor data. In this context, Yim et al. [71] demonstrated that an AI system using deep learning which combined 3D OCT images and automatic tissue maps in individuals with nAMD in one eye to predict progression in the contralateral eye to nAMD. This system outperformed five out of six experts and achieved a sensitivity of 80% at 55% specificity and 34% specificity at 90% sensitivity. Grinsven et al. [64] developed a supervised learning algorithm to detect and quantify drusen on color fundus photographs without AMD or with early to moderate AMD. The system achieved areas under the receiver operating characteristic (ROC) curve of 0.948 and 0.954 for automatic AMD risk assessment, which was similar in performance compared to human observers. Moreover, Ajana et al. [74] used genotypic, lifestyle, and phenotypic factors to develop a prediction model for advanced AMD and achieved an AUC achieved of 0.92. Therefore, using OCT volumes, fundus images, and clinical data result in similar performance if the metrics are compared to predict presence of AMD. If a method performs only moderately better using OCT volumes of data as compared to using fundus or clinical data, then the method may not prove economical. Therefore, there is always a tradeoff between the cost of obtaining the data and the metrics achieved by the AI models to predict AMD.



AI-based methods can be vital in identifying potential biomarkers for guiding targeted therapy in ophthalmology. Many risk factors are embedded in the high dimensional data produced by various imaging modalities. AI can process this high-dimensional data to find some risk factors for AMD, whereas statistical methods do not have high-dimensional data as input. Saha et al. [91] used deep learning for the automated identification of these OCT-based AMD biomarkers.



Despite the AI-based models showing a high level of accuracy in many of the diseases in ophthalmology, there are still many technical and clinical challenges for real-time deployment and clinical implementation of these models in clinical practice. These challenges could arise in both the research and clinical settings. Many studies’ training datasets are from relatively homogeneous populations [92,93,94]. AI training and testing using retinal images are subject to numerous variabilities, including the field of view, the width of the field, image quality, image magnification, and participant ethnicities. Diversifying the data set regarding image-capture hardware and races could help address this challenge [95].



The limited availability of large amounts of data is another challenge in developing AI models in ophthalmology. The software will likely produce inaccurate outcomes if the training set of images given to the AI tool is too small or not representative of natural patient populations. In addition, more evidence on obtaining high-quality ground-truth labels is required for different imaging tools.



Many DL systems in AI have reported a robust diagnostic performance, although some papers did not show how the power calculation was performed for the independent data sets. A power calculation should consider the following: the prevalence of the disease, type 1 and 2 errors, CIs (confidence intervals), and desired precision. The desired operating threshold should be first preset on the training set, followed by an analysis of performance metrics such as sensitivity and specificity on the test set to assess the calibration of the algorithm.



AI is adopted in healthcare, but it is still not on the horizon as clinicians and patients are concerned about AI and DL being ‘black boxes.’ It is not only the quantitative algorithmic performance in healthcare but the underlying features essential to improve physicians’ acceptance through which the algorithm classifies the disease. Generating heat maps highlighting the regions of influence on the image which contributed to the algorithmic conclusion may be the first step, although such maps are often challenging to interpret [96]. Explainable artificial intelligence (XAI) can also be used, a set of methods and processes that allows human users to comprehend and trust the results and output created by machine learning algorithms.



There are some limitations to the review. First, the review is limited to a certain number of studies and the associated risk factors. Second, the review is limited to only AMD. It can be further extended to other ophthalmic diseases like glaucoma, retinopathy of prematurity, cataract, diabetic retinopathy, etc.




7. Conclusions


To the best of our knowledge, this review is the first of its kind which analyzes the techniques for identifying the risk factors and predicting the disease using risk factor datasets in ophthalmology. Other reviews in the literature find modifiable and non-modifiable risk factors related to AMD. However, such a review of techniques to identify risk factors for AMD is so far not looked upon. In the study, logistic regression was found as the most used technique to identify risk factors for AMD. This review has highlighted that ML techniques can also be used for similar purposes. The study has demonstrated that statistical methods were used to determine the risk factors for AMD to a large extent. AI-based tools have already started managing epidemics and discovering potential drugs. Therefore, AI technology is more suitable to play a significant role in identifying risk factors in ophthalmology. To a reasonable extent, AI techniques play an essential role in predicting AMD. They have great potential to be used for personalized care in diagnosing, prognosis, and treating diseases in ophthalmology. Future studies can focus on novel analysis methods and biomarkers diagnosing AMD. For example, many patients with diabetic retinopathy do not respond well to current therapeutics. Therefore, new analytical techniques related to molecular biomarkers should accelerate progress in recent research [97]. In this context, erythrocyte membrane fluidity has been found as a biomarker for diabetic retinopathy [98]. Novel segmentation methods should be developed to unveil metabolic features as future work in this research [99,100].
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Figure 1. Flow diagram describing study selection. 
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Figure 2. Year-wise classification of included articles. 
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Figure 3. Application of statistical methods concerning the perspective of a clinician. 
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Figure 4. The classification by percentage of techniques used in included articles. 
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Figure 5. Applications of artificial intelligence from the perspective of a clinician. 
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Table 1. The summarized review of statistical techniques for AMD.
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Technique

	
Source

	
Study Type

	
Country

	
Sex (%male)

	
Age Range

(Years)

	
AMD Type

	
Classification Criteria

	
Adjustment

	
Risk Factors

Identified






	
Poisson Regression Analysis

	
Holz et al. [29]

	
Prospective

	
London

	
46.8

	
Older than 50 years of age

	
AMD

	
Standardized grading scheme

	
Age, sex

and smoking

	
Focal hyperpigmentation, slow choroidal filling

and degree of confluence of drusen




	
Unconditional logistic analysis

	
Tamakoshi et al. [30]

	
Case-control

	
Japan

	
100

	
Aged 50 to 69 years

	
Neovascular AMD

	
NR

	
Age, sex

	
Cigarette smoking




	
Univariate and

multivariate analyses

	
Klein et al. [31]

	
Population-based

	
United States

	
NR

	
43–86 years of age

	
ARM

	
WARMGS

	
Age and gender

	
(No strong relation between cardiovascular disease and most of its risk factors with the incidence of lesions associated with age-related maculopathy)




	
Buch et al. [32]

	
Population-based

cohort

	
Denmark

	
36.2

	
Between 60 and 80 years

	
ARM

	
Modification of WARMGS

	
Age and gender

	
Age, cataract, family history,

alcohol consumption,

the apolipoproteins A1 and B




	
Women’s Health Initiative Sight

Exam ancillary study [33]

	
Ancillary

	
United States

	
0

	
63 years and older.

	
Late AMD

	
WARMGS

	
Age

	
Smoking, use of calcium

channel blockers, diabetes, and obesity




	
Logistic Regression

	
Chaine et al. [34]

	
Case-control

	
France

	
31

	
50–85 years

	
AMD

	
NR

	
NR

	
Arterial hypertension, coronary disease,

hyperopia, light-coloured irises,

lens opacities and previous cataract surgery




	
POLA study [35]

	
Prospective

	
France

	
43.8

	
60 years or over

	
AMD

	
International classification *

	
Age and gender

	
(No significant association of late AMD with a history of cardiovascular disease, diabetes, and hypertension)




	
Vine et al. [36]

	
Case-control

	
United States

	
41.8

	
≥65

Year old

	
AMD

	
NR

	
Age, CRP,

and homocysteine level

	
CRP

and homocysteine level




	
AREDS study [37]

	
Clinic-based

prospective cohort

	
NR

	
NR

	
55 to 80 years

	
Neovascular AMD

	
NR

	
Age, gender, and

AREDS treatment

	
Smoking, race, and BMI




	
Fraser-Bell et al. [38]

	
Population-based,

cross-sectional

	
United States

	
42

	
40 years old

	
Early and

advanced AMD

	
Modified WARMGS

	
Age, sex and

smoking status

	
Smoking and heavy alcohol consumption




	
Gemmy et al. [39]

	
Population-based, cross-sectional

	
Singapore and India

	
50.2 (Singapore) &

47.3 (India)

	
40–83 years

	
Early AMD

	
International classification of

the Wisconsin age-related maculopathy

	
Age, BMI, sex, cholesterol, myocardial infarction, hypertension, central corneal thickness

axial length, and

IOP.

	
Shorter axial length

higher BMI, previous cataract surgery,

lower cholesterol and hypertension.




	
Yip et al. [40]

	
Prospective cohort

	
United Kingdom

	
43.1

	
44–91 years

	
AMD

	
Modified Wisconsin protocol *

	
Sex, education, smoking,

and SBP.

	
Older age,

baseline CRP, and a higher baseline

and follow-up levels of HDL.




	
Raman et al. [41]

	
Population-based cross-sectional

	
India

	
NR

	
≥60 years

	
Early and

late AMD

	
International ARM

epidemiological

study group

	
Age and gender

	
Age per year increase,

middle socioeconomic status,

and smokeless tobacco




	
Myra et al. [42]

	
Observational

	
Australia

	
40

	
47–85 years

	
Late AMD

	
NR

	
Sex, age at fundus photography,

index of relative socioeconomic

disadvantage,

and the Mediterranean diet score

	
Current smokers




	
Connolly et al. [43]

	
Cohort

	
Ireland

	
44

	
≥50 years

	
AMD

	
A modified version of the

international classification

and grading system for AMD

	
Age, sex, education

and CFH

	
Older age, the presence of ARMS2 and CFH

risk alleles




	
Butt et al. [44]

	
Cross-sectional

	
United States

	
NR

	
45 to 74 years

	
Early and

late AMD

	
University of Wisconsin

ocular

epidemiology reading center

	
NR

	
Age and

HDL cholesterol




	
Polychotomous logistic

regression analyses

	
Hyman et al. [45]

	
Case-control

	
United States

	
40

	
Between the age

of 50 and 79 years

	
Neovascular AMD

	
Independent graders at the reading center

	
Age, sex,

and energy intake.

	
Moderate to severe hypertension




	
AREDS study [46]

	
Case-control

	
United States

	
44.2

	
Aged 60 to 80 years

	
AMD

	
The Wisconsin age-related

maculopathy grading system #

	
Age and gender

	
Smoking, hypertension,

lens opacities, hyperopia,

female gender, less education, white race, and increased BMI




	
Multivariable logistic

regression models

	
Klein et al. [47]

	
Cohort

	
United States

	
45.6

	
Aged 21 to 84 years

	
AMD

	
WARMGS

	
Age and sex

	
Smoking and

serum HDL cholesterol




	
Shim et al. [48]

	
Prospective cohort

	
South Korea

	
60.5

	
Older than 50 years

	
Early AMD

progression

	
International age-related maculopathy (ARM)

epidemiological study group and WARMGS

	
Age,

alcohol consumption, smoking status,

BMI, BP, HDL cholesterol, and total cholesterol

	
An increasing number of drusen,

central drusen location, hypertension,

and current smoking.




	
Erke et al. [49]

	
Population-based,

cross-sectional

	
Norway

	
43

	
65–87 years

	
AMD and

late AMD

	
International classification system *

	
Age, sex, smoking

and SBP

	
Smoking, higher SBP,

physical inactivity,

overweight and obesity in women




	
Standard Bivariate and

Multivariate Analyses

	
Krishnaiah et al. [50]

	
Population-based,

cross-sectional

	
India

	
47

	
Aged 40 to 102 years

	
AMD

	
International classification

and grading system

	
Age, area

and gender

	
Ageing, smoking, prior cataract surgery, and presence of cortical cataract.




	
Multivariate stepwise

logistic regression

	
Choudhury et al. [51]

	
Population-based

prospective cohort

	
United States

	
39.1

	
Aged 40 or older

	
Any AMD and

progression of AMD

	
Modified WARMGS

	
Age

	
Older age, current smoking

and higher pulse pressure




	
Jonasson et al. [52]

	
Population-based

prospective cohort

	
Iceland

	
42.4

	
Aged 67 years and older

	
AMD

	
Modification of WARMGS

	
Age and sex

	
Age, smoking,

plasma HDL cholesterol,

BMI and female sex




	
Saunier et al. [53]

	
Population-based

cohort

	
France

	
37.3

	
73 years or older

	
Early to

advanced AMD

	
International classification *

and to a modification of the grading scheme

used in the multi-ethnic study of atherosclerosis @

	
Age and sex

	
Fellow eye, smoking,

plasma HDL cholesterol concentration,

and CFH Y402H genotype




	
Multivariate Cox

regression survival analysis

	
Lechanteur et al. [54]

	
Retrospective

	
Netherlands

	
34.3

	
54.3–93.4 years.

	
End-stage AMD

	
NR

	
Age, education, sex,

baseline AMD grade, smoking,

BMI,

six genetic variants and associated genotypes, and treatment groups

	
Sex, smoking status, age,

to a lesser extent BMI,

CFI (rs10033900) and LPL (rs12678919)




	
Generalized estimating

equation logistic regressions

	
Cougnard et al. [55]

	
Population-based

	
France

	
38.1

	
65 years and older

	
Early and

any AMD

	
International classification *@

	
Age, educational level, sex,

BMI, smoking, lipid-lowering medication use for all relevant genetic polymorphisms, cardiovascular disease and diabetes,

	
HDL,

TC, LDL,

higher HDL,

and TG




	
Foo et al. [56]

	
Population-based

cohort

	
Singapore

	
49.7

	
NR

	
Early AMD

	
WARMGS

	
Age, gender, hypertension, total cholesterol,

cardiovascular disease, BMI categories,

smoking status, alcohol consumption frequency,

serum CRP

and ARMS2 genetic loci.

	


Heavy alcohol drinking, underweight BMI, ARMS2 rs3750847 homozygous genetic loci carrier, and cardiovascular disease history.




	
Wang et al. [57]

	
Population-based

cohort

	
Australia

	
39.2

	
49 years or older

	
AMD

	
WARMGS

	
Age, sex, smoking status

and the correlation between eyes

	
Eyes with indistinct soft drusen, large drusen, hyperpigmentation or

a large area of the macula

covered by drusen.




	
Logistic regression analyses

and Mantel-Haenszel analysis

	
Aoki et al. [58]

	
Cross-sectional

	
Japan

	
60

	
65–74 years and 75–84 years

	
AMD

	
Simplified severity scale for AMD

from the AREDS

	
Age

	
CFH I62V and

ARMS2 A69S variant




	
Survival analysis and

Cox proportional hazards regression

	
Hallak et al. [59]

	
Retrospective,

post hoc

secondary analysis

	
United States

	
40.8

	
50 years or older

	
Neovascular AMD

	
NR

	
NR

	
Mean drusen

reflectivity, the total en-face area of the drusen

restricted to a circular area of 3 mm

from the fovea and one genetic variant (rs61941274)




	
Others

	
Hammond et al. [60]

	
Case-control

	
United States

	
47

	
NR

	
Neovascular AMD

	
NR

	
NR

	
Smokers




	
Alain et al. [61]

	
Case-control

	
France

	
22.6

	
Mean age 77 years

	
AMD

	
WARMGS

	
NR

	
Perturbations of HDL metabolism




	
Tomany et al. [62]

	
Population-based

cohort

	
Australia,

Netherlands,

and the United States

	
43

	
43–95 years

	
AMD

	
Wisconsin and international

age-related maculopathy grading systems

	
Age, gender (when appropriate),

data source, and follow-up time

	
Smoking








AMD, age-related macular degeneration; ARM, age-related maculopathy; WARMGS, the Wiscon-sin age-related maculopathy grading system; CRP, C-reactive protein; BMI, body mass index; POLA, Pathologies Oculaires Liées à I’Age; AREDS, Age-Related Eye Disease Study; IOP, intraocular pressure; SBP, systolic blood pressure; HDL, high-density lipoprotein; CFH, complement factor H; ARMS2, age-related maculopathy susceptibility 2; BP, blood pressure; SBP, systolic blood pressure; LPL, lipoprotein lipase; CFI, complement factor I; LDL, low-density lipoprotein; TC, total cholesterol; TG, triglycerides. *: Bird AC, Bressler NM, Bressler SB, Chisholm IH, Coscas G, Davis MD, et al. An international classification and grading system for age-related maculopathy and age-related macular degeneration. The international ARM epidemiological study group. Surv Ophthalmol. 1995;39:367–74. #: Klein R, Davis MD, Magli YL, et al. The Wisconsin age-related maculopathy grading system. Ophthalmology 1991;98:1128–34. @: Klein R, Klein BE, Knudtson MD, et al. Prevalence of age-related macular degeneration in 4 racial/ethnic groups in the Multi-Ethnic Study of Atherosclerosis. Ophthalmology. 2006;113(3): 373–380.
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Table 2. The summarized review of AI techniques for AMD.
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	Source
	Technique
	Dataset
	Metrics
	Disease





	Grinsven et al. [64]
	Supervised machine learning algorithm
	A total of 407 images of different eyes with nonadvanced stages of AMD (i.e., stages 1, 2, and 3 according to the criteria shown in Table 1), with sufficient grading quality for human graders, were selected consecutively from the European genetic database (EUGENDA), a large multicenter database for clinical and molecular analysis of AMD.
	AUROC values of 0.948 and 0.954
	AMD risk assessment



	Grinsven et al. [65]
	Machine learning algorithm
	A set of subjects with and without RPD were selected from the Rotterdam Study. A prospective cohort study aimed to investigate risk factors for chronic diseases in the elderly.
	AUROC value of 0.941
	Reticular pseudo drusen (RPD) detection



	Liefers et al. [66]
	Deep learning model
	This study’s imaging data (OCT B scans) were obtained from 30,337 patients at five centres in the UK (NRES Committee London, City Road and Hampstead, London).
	On 11 of 13 features, the model obtained a mean Dice score of 0.63 ± 0.15, compared with 0.61 ± 0.17 for the observers. ICC was 0.66 ± 0.22, compared with 0.62 ± 0.21 for the observers
	Feature segmentation associated with neovascular and atrophic AMD



	Schmidt-Erfuth et al. [67]
	Random forest regression algorithm
	Data (spectral-domain (SD) OCT volume scans) of 614 evaluable patients receiving intravitreal ranibizumab monthly or pro re nata according to protocol-specified criteria in the HARBOR trial were studied.
	At baseline, OCT features and BCVA were correlated with R2 = 0.21.
	Predict best-corrected visual acuity (BCVA) outcomes



	Schmidt-Erfuth et al. [68]
	Deep learning method (convolutional neural network (CNN))
	SD-OCT scans of 1095 patients enrolled in the HARBOR trial
	NR
	Measure fluid response to anti-vascular endothelial growth factor (VEGF) treatment in neovascular AMD



	Keenan et al. [69]
	Artificial Intelligence Algorithms
	Data from (a) the HARBOR trial, (b) a tertiary referral retinal centre in the United Kingdom, (c) a tertiary referral retinal centre in Israel, and (d) the AREDS2 10-year follow-up. were studied,
	Large ranges that differed by population were observed at the treatment-naive stage: 0–3435 nL (IRF), 0–5018 nL (SRF), and 0–10,022 nL (PED).
	Validation of retinal fluid volumes (IRF, SRF and PED)



	Lee et al. [70]
	Automated segmentation algorithm with a CNN
	A dataset including 930 B-scans from 93 eyes of 93 patients with nAMD.
	Dice coefficients for segmentation of IRF, SRF, SHRM, and PED were 0.78, 0.82, 0.75, and 0.80
	To quantify and detect intraretinal fluid (IRF), subretinal fluid (SRF), pigment epithelial detachment (PED), and subretinal hyperreflective material (SHRM) with nAMD



	Yim et al. [71]
	Artificial intelligence system
	A cohort of 2,795 patients (OCT scans) across seven different sites who were first diagnosed with nAMD between June 2012 and June 2017
	Sensitivity of 80% at 55% specificity and 34% specificity at 90% sensitivity
	Progression to exudative wet AMD



	Yan et al. [72]
	Modified deep

convolutional neural network
	The data consisted of 52 AMD-associated genetic variants and 31,262 fundus images from 1,351 subjects from the age-related eye disease study (AREDS) fundus images coupled with genotypes.
	AUC value of 0.85
	AMD progression



	Peng et al. [73]
	Deep learning (DL)

and survival analysis
	AREDS and AREDS2
	5-year C-statistic 86.4
	Late AMD



	Ajana et al. [74]
	Prediction model used

bootstrap lasso for survival analysis
	The training data set included Rotterdam study I (RS-I) enrolled participants.
	AUC estimation in RS-I

was 0.92 at five years,

0.92 at ten years and 0.91 at 15 years
	Advanced AMD



	Seddon et al. [77]
	Predictive model
	The data was from 1446 individuals who

participated in the multicenter AREDS, of which 279 progressed to advanced AMD and 1167 did not progress during 6.3 years of follow-up
	C statistic score of 0.83
	Prevalence and

incidence of AMD



	Seddon et al. [79]
	Model of AMD progression
	Data consisted of 2937 individuals in the

AREDS
	AUC 0.915 in the total sample
	AMD Progression



	Klein et al. [80]
	Risk assessment model
	Longitudinal data from 2846 participants

in the AREDS
	C statistic = 0.872.

Brier score at 5 years = 0.08
	Advanced AMD



	Seddon et al. [81]
	Predictive model

and online application
	Data from the AREDS for Caucasian participants were used for this analysis
	AUC- 91.1
	Progression to

advanced AMD



	Spencer et al. [82]
	Logistic regression and

grammatical evolution of

neural networks (GENN) models
	A VM family dataset, the population-based age-related maculopathy ancillary (ARMA) study cohort, and Vanderbilt-Miami (VM) clinic-based case-control dataset.
	Sensitivity of 77.0%

and specificity of 74.1%
	High- and low-risk

groups for AMD



	Fraccaro et al. [83]
	Random forests,

AdaBoost and SVM, as well as white-box methods, including decision trees and logistic regression
	Data on healthy subjects, study participants, and patients with macular diseases were collected from March 2013 to January 2014 during routine clinical practice at the Medical Retina Center of the University Eye Clinic of Genoa (Italy).
	Logistic Regression, AdaBoost, and random forests achieved a mean AUC of 0.92, followed by decision trees and SVM with a mean AUC of 0.90.
	Diagnose AMD



	Shin et al. [84]
	Risk prediction model
	The study sample included 50 years of age or older individuals counting 10,890; 318 (2.92%) presented with early AMD findings in baseline examinations.
	C statistic-0.84
	Progression of AMD
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