Cardiac Magnetic Resonance in Hypertensive Heart Disease: Time for a New Chapter
Abstract
:1. Introduction
2. Technical Aspects and Possibilities of Cardiac Magnetic Resonance in Patients with Hypertensive Heart Disease
3. Morphological Changes in Patients with Hypertensive Heart Disease
4. Comparison of Cardiac Magnetic Resonance with Other Imaging Modalities in Evaluating Hypertensive Heart Disease
5. Ventricular Volumes and Left Ventricle Geometry Measured by Cardiac Magnetic Disease in Patients with HHD
6. Left Ventricle Function Accessed by Cardiac Magnetic Resonance
7. Tissue Characterization in Hypertensive Heart Disease—Clinical Aspects and Evaluation of Myocardial Fibrosis Using LGE, Myocardial Tissue Mapping and Extracellular Volume Fraction (ECV) Measurement
8. The Role of Cardiac Magnetic Resonance in the Estimation of Coronary Microvascular Dysfunction
9. Advantages of Cardiac Magnetic Resonance in Following the Effects of Anti-Hypertensive Treatment
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Lovic, D.; Stojanov, V.; Jakovljević, B.; Krotin, M.; Jurisic, V.; Djordjevic, D.; Paunović, K.; Zdravkovic, M.; Simonovic, D.; Bastac, D.; et al. Prevalence of arterial hypertension in Serbia: PAHIS study. J. Hypertens. 2013, 31, 2151–2157, discussion 2157. [Google Scholar] [CrossRef] [PubMed]
- Kokuba, Y.; Matsumoto, C. Hypertension Is a Risk Factor for Several Types of Heart Disease: Review of Prospective Studies. Adv. Exp. Med. Biol. 2017, 956, 419–426. [Google Scholar] [CrossRef]
- Kjeldsen, S.E. Hypertension and cardiovascular risk: General aspects. Pharmacol. Res. 2018, 129, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Saheera, S.; Krishnamurthy, P. Cardiovascular Changes Associated with Hypertensive Heart Disease and Aging. Cell Transpl. 2020, 29, 963689720920830. [Google Scholar] [CrossRef]
- Lai, Y.H.; Lo, C.I.; Wu, Y.J.; Hung, C.L.; Yeh, H.I. Cardiac Remodeling, Adaptations and Associated Myocardial Mechanics in Hypertensive Heart Diseases. Acta Cardiol. Sin. 2013, 29, 64–70. [Google Scholar]
- Díez, J.; González, A.; Kovacic, J.C. Myocardial Interstitial Fibrosis in Nonischemic Heart Disease, Part 3/4: JACC Focus Seminar. J. Am. Coll. Cardiol. 2020, 75, 2204–2218. [Google Scholar] [CrossRef]
- Schumann, C.L.; Jaeger, N.R.; Kramer, C.M. Recent Advances in Imaging of Hypertensive Heart Disease. Curr. Hypertens. Rep. 2019, 21, 3. [Google Scholar] [CrossRef]
- Mavrogeni, S.; Katsi, V.; Vartela, V.; Noutsias, M.; Markousis-Mavrogenis, G.; Kolovou, G.; Manolis, A. The emerging role of Cardiovascular Magnetic Resonance in the evaluation of hypertensive heart disease. BMC Cardiovasc. Disord. 2017, 17, 132. [Google Scholar] [CrossRef] [Green Version]
- Maceira, A.M.; Mohhiadin, R.H. Cardiovascular magnetic resonance in systemic hypertension. J. Cardiovasc. Magn. Reson. 2012, 14, 28. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, B.; Dick, A.; Treutlein, M.; Schiller, P.; Bunck, A.C.; Maintz, D.; Baeßler, B. Intra- and inter-observer reproducibility of global and regional magnetic resonance feature tracking derived strain parameters of the left and right ventricle. Eur. J. Radiol. 2017, 89, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.; Ravassa, S.; López, B.; Moreno, M.; Beaumont, J.; José, G.S.; Querejeta, R.; Bayés-Genís, A.; Díez, J. Myocardial Remodeling in Hypertension. Hypertension 2018, 72, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Bang, C.N.; Soliman, E.Z.; Simpson, L.M.; Davis, B.R.; Devereux, R.B.; Okin, P.M.; ALLHAT Collaborative Research Group. Electrocardiographic Left Ventricular Hypertrophy Predicts Cardiovascular Morbidity and Mortality in Hypertensive Patients: The ALLHAT Study. Am. J. Hypertens. 2017, 30, 914–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovic, D.; Erdine, S.; Catakoğlu, A.B. How to estimate left ventricular hypertrophy in hypertensive patients. Anadolu Kardiyol. Derg. 2014, 14, 389–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovic, D.; Narayan, P.; Pittaras, A.; Faselis, C.; Michael, D.; Kokkinos, P. Left ventricular hypertrophy in athletes and hypertensive patients. J. Clin. Hypertens. 2017, 19, 413–417. [Google Scholar] [CrossRef]
- Kahan, T. The importance of myocardial fibrosis in hypertensive heart disease. J. Hypertens. 2012, 30, 685–687. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, J.H. Role of echocardiography in clinical hypertension. Clin. Hypertens. 2015, 21, 9. [Google Scholar] [CrossRef] [Green Version]
- Burchell, A.E.; Rodrigues, J.C.L.; Charalambos, M.; Ratcliffe, L.E.K.; Hart, E.C.; Paton, J.F.R.; Baumbach, A.; Manghat, N.E.; Nightingale, A.K. Comprehensive First-Line Magnetic Resonance Imaging in Hypertension: Experience from a Single-Center Tertiary Referral Clinic. J. Clin. Hypertens. 2017, 19, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Cuspidi, C.; Tadic, M. Three-dimensional echocardiography: A further step in the evaluation of hypertensive heart disease. J. Hypertens. 2018, 36, 1648–1650. [Google Scholar] [CrossRef]
- Gonçalves, S.; Cortez-Dias, N.; Nunes, A.; Belo, A.; Cabrita, I.; de Sousa, C.I.S.; Pinto, F.J. Left ventricular systolic dysfunction detected by speckle tracking in hypertensive patients with preserved ejection fraction. Rev. Port. Cardiol. 2014, 33, 27–37. [Google Scholar] [CrossRef]
- Sokolska, J.M.; von Spiczak, J.; Gotschy, A.; Kozerke, S.; Manka, R. Cardiac magnetic resonance imaging to detect ischemia in chronic coronary syndromes: State of the art. Kardiol. Pol. 2019, 77, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Oparil, S.; Acelajado, M.C.; Bakris, G.L.; Berlowitz, D.R.; Cífková, R.; Dominiczak, A.F.; Grassi, G.; Jordan, J.; Poulter, N.R.; Rodgers, A.; et al. Hypertension. Nat. Rev. Dis. Primers. 2018, 4, 18014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seetharam, K.; Lerakis, S. Cardiac magnetic resonance imaging: The future is bright. F1000Research 2019, 8, 1636. [Google Scholar] [CrossRef] [Green Version]
- Pichler, G.; Martínez, F.; Calaforra, O.; Solaz, E.; Ruiz, A.; Marco, A. Cardiac morphology measured with magnetic resonance imaging is related to biomarkers of myocardial stretch and injury in hypertensive heart disease. J. Hypertens. 2019, 37, e4. [Google Scholar] [CrossRef]
- Lewis, A.J.M.; Rider, O.J. The use of cardiovascular magnetic resonance for the assessment of left ventricular hypertrophy. Cardiovasc. Diagn. Ther. 2020, 10, 568–582. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, H.M.; Boubertakh, R.; Miguel, M.E.; Petersen, S.E. Myocardial deformation assessment using cardiovascular magnetic resonance-feature tracking technique. Br. J. Radiol. 2017, 90, 20170072. [Google Scholar] [CrossRef]
- Neisius, U.; Myerson, L.; Fahmy, A.S.; Nakamori, S.; El-Rewaidy, H.; Joshi, G.; Duan, C.; Manning, W.J.; Nezafat, R. Cardiovascular magnetic resonance feature tracking strain analysis for discrimination between hypertensive heart disease and hypertrophic cardiomyopathy. PLoS ONE 2019, 14, e0221061. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Pan, Y.; Ge, Y.; Guo, Z.; Zhao, S. Early and Quantitative Assessment of Myocardial Deformation in Essential Hypertension Patients by Using Cardiovascular Magnetic Resonance Feature Tracking. Sci. Rep. 2020, 10, 3582. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.-J.; Lim, H.-S.; Choi, B.-J.; Choi, S.-Y.; Hwang, G.-S.; Yoon, M.-H.; Tahk, S.-J.; Shin, J.-H. Longitudinal strain and torsion assessed by two-dimensional speckle tracking correlate with the serum level of tissue inhibitor of matrix metalloproteinase-1, a marker of myocardial fibrosis, in patients with hypertension. J. Am. Soc. Echocardiogr. 2008, 21, 907–911. [Google Scholar] [CrossRef]
- Pichler, G.; Redon, J.; Martínez, F.; Solaz, E.; Calaforra, O.; Andrés, M.S.; Lopez, B.; Díez, J.; Oberbauer, R.; Adlbrecht, C.; et al. Cardiac magnetic resonance-derived fibrosis, strain and molecular biomarkers of fibrosis in hypertensive heart disease. J. Hypertens. 2020, 38, 2036–2042. [Google Scholar] [CrossRef]
- Romano, S.; Judd, R.M.; Kim, R.J.; Kim, H.W.; Heitner, J.F.; Shah, D.J.; Devereux, R.B.; Salazar, P.; Trybula, M.; Chia, R.C.; et al. Prognostic Implications of Mitral Annular Plane Systolic Excursion in Patients with Hypertension and a Clinical Indication for Cardiac Magnetic Resonance Imaging: A Multicenter Study. JACC Cardiovasc. Imaging 2019, 12, 1769–1779. [Google Scholar] [CrossRef] [PubMed]
- Ikejder, Y.; Sebbani, M.; Hendy, I.; Khramz, M.; Khatouri, A.; Bendriss, L. Impact of Arterial Hypertension on Left Atrial Size and Function. Biomed. Res. Int. 2020, 2020, 2587530. [Google Scholar] [CrossRef] [PubMed]
- Flachskampf, F.A.; Biering-Sørensen, T.; Solomon, S.D.; Duvernoy, O.; Bjerner, T.; Smiseth, O.A. Cardiac Imaging to Evaluate Left Ventricular Diastolic Function. JACC Cardiovasc. Imaging 2015, 8, 1071–1093. [Google Scholar] [CrossRef] [Green Version]
- Messerli, F.H.; Rimoldi, S.F.; Bangalore, S. The Transition from Hypertension to Heart Failure: Contemporary Update. JACC Heart Fail. 2017, 5, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Paulus, W.J.; Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mentias, A.; Raeisi-Giglou, P.; Smedira, N.G.; Feng, K.; Sato, K.; Wazni, O.; Kanj, M.; Flamm, S.D.; Thamilarasan, M.; Popovic, Z.B.; et al. Late Gadolinium Enhancement in Patients with Hypertrophic Cardiomyopathy and Preserved Systolic Function. J. Am. Coll. Cardiol. 2018, 72, 857–870. [Google Scholar] [CrossRef]
- Becker, M.A.J.; Cornel, J.H.; van de Ven, P.M.; van Rossum, A.C.; Allaart, C.P.; Germans, T. The Prognostic Value of Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging in Nonischemic Dilated Cardiomyopathy: A Review and Meta-Analysis. JACC Cardiovasc. Imaging 2018, 11, 1274–1284. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, J.; Qin, S. Prognostic value of cardiac magnetic resonance in patients with aortic stenosis: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0263378. [Google Scholar] [CrossRef]
- Iyer, N.R.; Le, T.-T.; Kui, M.S.; Tang, H.-C.; Chin, C.-T.; Phua, S.-K.; Bryant, J.A.; Pua, C.-J.; Ang, B.; Toh, D.-F.; et al. Markers of Focal and Diffuse Nonischemic Myocardial Fibrosis Are Associated with Adverse Cardiac Remodeling and Prognosis in Patients With Hypertension: The REMODEL Study. Hypertension 2022, 79, 1804–1813. [Google Scholar] [CrossRef]
- Yokota, H.; Imai, Y.; Tsuboko, Y.; Tokumaru, A.M.; Fujimoto, H.; Harada, K. Nocturnal Blood Pressure Pattern Affects Left Ventricular Remodeling and Late Gadolinium Enhancement in Patients with Hypertension and Left Ventricular Hypertrophy. PLoS ONE 2013, 8, e67825. [Google Scholar] [CrossRef]
- Aherne, E.; Chow, K.; Carr, J. Cardiac T1 mapping: Techniques and applications. J. Magn. Reson. Imaging 2020, 51, 1336–1356. [Google Scholar] [CrossRef] [PubMed]
- Tadic, M.; Cuspidi, C.; Plein, S.; Milivojevic, I.G.; Wang, D.W.; Grassi, G.; Mancia, G. Comprehensive assessment of hypertensive heart disease: Cardiac magnetic resonance in focus. Heart Fail Rev. 2020, 26, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Messroghli, D.R.; Moon, J.C.; Ferreira, V.M.; Grosse-Wortmann, L.; He, T.; Kellman, P.; Mascherbauer, J.; Nezafat, R.; Salerno, M.; Schelbert, E.B.; et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J. Cardiovasc. Magn. Reson. 2017, 19, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendez, C.; Soler, R.; Rodriguez, E.; Barriales, R.; Ochoa, J.P.; Monserrat, L. Differential diagnosis of thickened myocardium: An illustrative MRI review. Insights Imaging 2018, 9, 695–707. [Google Scholar] [CrossRef] [Green Version]
- Niu, J.; Zeng, M.; Wang, Y.; Liu, J.; Li, H.; Wang, S.; Zhou, X.; Wang, J.; Li, Y.; Hou, F.; et al. Sensitive marker for evaluation of hypertensive heart disease: Extracellular volume and myocardial strain. BMC Cardiovasc. Disord. 2020, 20, 292. [Google Scholar] [CrossRef]
- Burrage, M.K.; Ferreira, V.M. Cardiovascular Magnetic Resonance for the Differentiation of Left Ventricular Hypertrophy. Curr. Heart Fail. Rep. 2020, 17, 192–204. [Google Scholar] [CrossRef]
- Hinojar, R.; Varma, N.; Child, N.; Goodman, B.; Jabbour, A.; Yu, C.-Y.; Gebker, R.; Doltra, A.; Kelle, S.; Khan, S.; et al. T1 Mapping in Discrimination of Hypertrophic Phenotypes: Hypertensive Heart Disease and Hypertrophic Cardiomyopathy: Findings from the International T1 Multicenter Cardiovascular Magnetic Resonance Study. Circ. Cardiovasc. Imaging 2015, 8, e003285. [Google Scholar] [CrossRef] [Green Version]
- Haaf, P.; Garg, P.; Messroghli, D.; Broadbent, D.A.; Greenwood, J.P.; Plein, S. Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: A comprehensive review. J. Cardiovasc. Magn. Reson. 2016, 18, 89. [Google Scholar] [CrossRef] [Green Version]
- Kuruvilla, S.; Janardhanan, R.; Antkowiak, P.; Keeley, E.C.; Adenaw, N.; Brooks, J.; Epstein, F.H.; Kramer, C.M.; Salerno, M. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone. JACC Cardiovasc. Imaging 2015, 8, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Bugiardini, R.; Yoon, J.; Kedev, S.; Stankovic, G.; Vasiljevic, Z.; Miličić, D.; Manfrini, O.; Van Der Schaar, M.; Gale, C.P.; Badimon, L.; et al. Prior Beta-Blocker Therapy for Hypertension and Sex-Based Differences in Heart Failure Among Patients with Incident Coronary Heart Disease. Hypertension 2020, 76, 819–826. [Google Scholar] [CrossRef]
- Vancheri, F.; Longo, G.; Vancheri, S.; Henein, M. Coronary Microvascular Dysfunction. J. Clin. Med. 2020, 9, 2880. [Google Scholar] [CrossRef] [PubMed]
- Pelliccia, F.; Cecchi, F.; Olivotto, I.; Camici, P.G. Microvascular Dysfunction in Hypertrophic Cardiomyopathy. J. Clin. Med. 2022, 11, 6560. [Google Scholar] [CrossRef]
- Joodi, G.; Maradey, J.A.; Bogle, B.; Mirzaei, M.; Sadaf, M.I.; Pursell, I.; Henderson, C.; Mounsey, J.P.; Simpson, R.J. Coronary Artery Disease and Atherosclerotic Risk Factors in a Population-Based Study of Sudden Death. J. Gen. Intern. Med. 2020, 35, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; Scannell, C.M.; Demir, O.M.; Ryan, M.; McConkey, H.; Ellis, H. High-Resolution Cardiac Magnetic Resonance Imaging Techniques for the Identification of Coronary Microvascular Dysfunction. JACC Cardiovasc. Imaging. 2021, 14, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Hsu, L.-Y.; Jacobs, M.; Benovoy, M.; Ta, A.D.; Conn, H.M.; Winkler, S.; Greve, A.M.; Chen, M.Y.; Shanbhag, S.M.; Bandettini, W.P.; et al. Diagnostic Performance of Fully Automated Pixel-Wise Quantitative Myocardial Perfusion Imaging by Cardiovascular Magnetic Resonance. JACC Cardiovasc. Imaging 2018, 11, 697–707. [Google Scholar] [CrossRef]
- Rocco, E.; Grimaldi, M.C.; Maino, A.; Cappannoli, L.; Pedicino, D.; Liuzzo, G.; Biasucci, L.M. Advances and Challenges in Biomarkers Use for Coronary Microvascular Dysfunction: From Bench to Clinical Practice. J. Clin. Med. 2022, 11, 2055. [Google Scholar] [CrossRef]
- Zhou, W.; Brown, J.M.; Bajaj, N.S.; Chandra, A.; Divakaran, S.; Weber, B.; Bibbo, C.F.; Hainer, J.; Taqueti, V.R.; Dorbala, S.; et al. Hypertensive coronary microvascular dysfunction: A subclinical marker of end organ damage and heart failure. Eur. Heart J. 2020, 41, 2366–2375. [Google Scholar] [CrossRef] [Green Version]
- Cowan, B.R.; Young, A.A.; Anderson, C.; Doughty, R.N.; Krittayaphong, R.; Lonn, E.; Marwick, T.H.; Reid, C.M.; Sanderson, J.E.; Schmieder, R.E.; et al. The cardiac MRI substudy to ongoing telmisartan alone and in combination with ramipril global endpoint trial/telmisartan randomized assessment study in ACE-intolerant subjects with cardiovascular disease: Analysis protocol and baseline characteristics. Clin. Res. Cardiol. 2009, 98, 421–433. [Google Scholar] [CrossRef]
- Ripley, D.P.; Negrou, K.; Oliver, J.J.; Worthy, G.; Struthers, A.D.; Plein, S.; Greenwood, J.P. Aortic remodelling following the treatment and regression of hypertensive left ventricular hypertrophy: A cardiovascular magnetic resonance study. Clin. Exp. Hypertens. 2015, 37, 308–316. [Google Scholar] [CrossRef]
- Schmidt, M.; Roessner, F.; Berger, M.; Tesche, C.; Rieber, J.; Bauner, K.; Huber, A.; Rummeny, E.; Hoffmann, E.; Ebersberger, U. Renal Sympathetic Denervation: Does Reduction of Left Ventricular Mass Improve Functional Myocardial Parameters? A Cardiovascular Magnetic Resonance Imaging Pilot Study. J. Thorac. Imaging 2019, 34, 338–344. [Google Scholar] [CrossRef]
- Tahir, E.; Koops, A.; Warncke, M.L.; Starekova, J.; Neumann, J.T.; Waldeyer, C.; Avanesov, M.; Lund, G.K.; Fischer, R.; Adam, G.; et al. Effect of renal denervation procedure on left ventricular mass, myocardial strain and diastolic function by CMR on a 12-month follow-up. Jpn. J. Radiol. 2019, 37, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Mahfoud, F.; Urban, D.; Teller, D.; Linz, D.; Stawowy, P.; Hassel, J.-H.; Fries, P.; Dreysse, S.; Wellnhofer, E.; Schneider, G.; et al. Effect of renal denervation on left ventricular mass and function in patients with resistant hypertension: Data from a multi-centre cardiovascular magnetic resonance imaging trial. Eur. Heart J. 2014, 35, 2224–2231b. [Google Scholar] [CrossRef] [PubMed]
- Doltra, A.; Messroghli, D.; Stawowy, P.; Hassel, J.; Gebker, R.; Leppänen, O.; Gräfe, M.; Schneeweis, C.; Schnackenburg, B.; Fleck, E.; et al. Potential reduction of interstitial myocardial fibrosis with renal denervation. J. Am. Heart Assoc. 2014, 3, e001353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, M.; Khan, F.; Stoklosa, T.; Iannaccone, A.; Negishi, K.; Marwick, T.H. Prognostic Implications of LV Strain Risk Score in Asymptomatic Patients with Hypertensive Heart Disease. JACC Cardiovasc. Imaging 2016, 9, 911–921. [Google Scholar] [CrossRef]
- Rodrigues, J.; Amadu, A.M.; Dastidar, A.G.; Szantho, G.V.; Lyen, S.M.; Godsave, C.; Ratcliffe, L.E.K.; E Burchell, A.; Hart, E.; Hamilton, M.C.K.; et al. Comprehensive characterisation of hypertensive heart disease left ventricular phenotypes. Heart 2016, 102, 1671–1679. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.-M.; Wu, R.; Ou, Y.-R.; Chen, B.-H.; Yao, Q.-Y.; Lu, Q.; Hu, J.; Jiang, M.; An, D.-A.; Xu, J.-R. Fibrosis quantification in Hypertensive Heart Disease with LVH and Non-LVH: Findings from T1 mapping and Contrast-free Cardiac Diffusion-weighted imaging. Sci. Rep. 2017, 7, 559. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.-H.; Wu, R.; An, D.-A.; Shi, R.-Y.; Yao, Q.-Y.; Lu, Q.; Hu, J.; Jiang, M.; Deen, J.; Chandra, A.; et al. Oxygenation-sensitive cardiovascular magnetic resonance in hypertensive heart disease with left ventricular myocardial hypertrophy and non-left ventricular myocardial hypertrophy: Insight from altered mechanics and cardiac BOLD imaging. J. Magn. Reason. Imaging. 2018, 48, 1297–1306. [Google Scholar] [CrossRef]
- Assadi, H.; Jones, R.; Swift, A.J.; Al-Mohammad, A.; Garg, P. Cardiac MRI for the prognostication of heart failure with preserved ejection fraction: A systematic review and meta-analysis. Magn. Reason. Imaging. 2021, 76, 116–122. [Google Scholar] [CrossRef]
- Treibel, T.; Zemrak, F.; Sado, D.M.; Banypersad, S.M.; White, S.K.; Maestrini, V.; Barison, A.; Patel, V.; Herrey, A.S.; Davies, C.; et al. Extracellular volume quantification in isolated hypertension-changes at the detectable limits? J. Cardiovasc. Magn. Reson. 2015, 17, 74. [Google Scholar] [CrossRef] [PubMed]
- Mordi, I.; Singh, S.; Rudd, A.; Srinivasan, J.; Frenneaux, M.; Tzemos, N.; Dawson, D.K. Comprehensive Echocardiographic and Cardiac Magnetic Resonance Evaluation Differentiates Among Heart Failure with Preserved Ejection Fraction Patients, Hypertensive Patients, and Healthy Control Subjects. JACC Cardiovasc. Imaging 2018, 11, 577–585. [Google Scholar] [CrossRef]
Characteristics | M-Mode Echo | 2D Echo | 3D Echo | CMR |
---|---|---|---|---|
Spatial resolution | ++++ | ++++ | ++ | +++ |
Temporal resolution | ++++ | ++++ | +++ | +++ |
Cardiac chambers geometry | ++ | ++ | +++ | ++++ |
Tissue characterization | - | - | - | +++ |
Radiation | - | - | - | - |
Repeatability | +++ | +++ | +++ | ++ |
Renal failure | - | - | - | + |
Mechanical implants | - | - | - | + |
Claustrophobia | - | - | - | + |
Operator dependent | ++ | ++ | ++ | + |
Low availability | - | - | + | ++ |
Cost and resources | + | + | + | +++ |
CMR Characteristics | Hypertensive Heart Disease | Hypertrophic Cardiomyopathy | Amyloidosis | Fabry Disease |
---|---|---|---|---|
LVH | Moderate (<15 mm), concentric or slightly asymmetric IVS/PW <13 mm | Severe, concentric or asymmetric >13 mm (15 mm) | Moderate, concentric LV hypertrophy, RV hypertrophy, IAS hypertrophy, papillary muscle hypertrophy | Moderate, concentric LV hypertrophy, RV hypertrophy, papillary muscle hypertrophy |
LVOTO | Rare | Frequent | Rare, possible in severe LV hypertrophy | Rare, possible in severe LV hypertrophy |
Severe longitudinal systolic dysfunction | Rare | Frequent | Frequent | Rare |
LGE | Less frequent, non-subendocardial, non-specific pattern | Frequent, RV insertion points, intramural “patchy” changes | Diffuse, subendocardial (global or segmental) | Frequent in basal inferolateral segment |
Myocardial tissue mapping | Usually normal native T1 and T2 time (or focally increased native T1 time) | Slightly increased native T1 time (especially in septum), usually normal (or slightly increased T2 time) | Diffusely increased native T1 time, normal or slightly increased T2 time | Diffusely decreased global native T1 time, pseudonormalization of native T1 time in basal inferolateral segment |
ECV | Normal or slightly increased | Slightly increased | High | Low |
Pericardial effusion | Rare | Rare | Frequent | Rare |
Authors | Study Sample Size (Patients with HHD) | Gender (Male/Female) (n) | Age (Median) | Control Group (n) | Cardiac Geometry and Volume Assessment | Left Ventricle Function Assessment | Tissue Characterization |
---|---|---|---|---|---|---|---|
Pichler et al. (2020) [30] | 36 subjects | 30/6 | 51 | No | Increased LV mass and LV mass index | Reduced mean longitudinal and circumferential strain | Increased ECV and ADC (apparent diffusion coefficient) |
Kuruvilla et al. (2015) [49] | 43 subjects | 16/27 | 59 | Yes (22 subjects) | Increased LV mass, increased mass/volume ratio | Reduced peak systolic circumferential strain, reduced early diastolic strain rate | Higher native T1 values, increased ECV |
Treibel et al. (2015) [69] | 40 subjects | 21/19 | 58.5 | Yes (50 subjects) | Left ventricle hypertrophy, increased mass/volume ratio, increased left atrial area index (LAAI), higher LV mass, increased end-systolic and end-diastolic volume | Diastolic dysfunction | Longer native T1 myocardial times, increased ECV in patients with left ventricle hypertrophy |
Rodrigues et al. (2016) [65] | 88 subjects | 50/38 | 49 | Yes (29 subjects) | Increased myocardial cell volume, increased indexed LV mass especially in patients with eccentric LVH | Systolic and diastolic strain impairment, reduced peak systolic circumferential strain values especially in patients with eccentric LVH | Increased native T1 and ECV, most prominent in patients with eccentric LVH |
Wu et al. (2017) [66] | 30 subjects | 10/20 | 56 | Yes (12 subjects) | Increased LV mass and indexed LV mass | Reduced peak circumferential strains at basal and mid-ventricular levels in patients with LVH, reduced early diastolic circumferential strain rate | Higher T1 values, increased ECV, higher ADC (apparent diffusion coefficient) in patients with LVH |
Chen et al. (2018) [67] | 41 subject | 30/11 | 51 | Yes (23 subjects) | Increased indexed LV mass | Reduced peak circumferential, longitudinal and radial strain especially in patients with LVH | Normal T2values, higher T1 values, increased ECV |
Neisius et al. (2019) [27] | 53 subjects | 44/9 | 60 | Yes (64 subjects) | Increased LV mass index | Reduced global longitudinal strain in LGE positive patients, diastolic dysfunction | Increased global native T1 and LGE volume |
Mordi et al. (2019) [70] | 22 subjects | 17/5 | 67 | Yes (28 subjects) | Higher indexed LV mass | Reduced global circumferential strain rate | Higher native T1 and ECV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdravkovic, M.; Klasnja, S.; Popovic, M.; Djuran, P.; Mrda, D.; Ivankovic, T.; Manojlovic, A.; Koracevic, G.; Lovic, D.; Popadic, V. Cardiac Magnetic Resonance in Hypertensive Heart Disease: Time for a New Chapter. Diagnostics 2023, 13, 137. https://doi.org/10.3390/diagnostics13010137
Zdravkovic M, Klasnja S, Popovic M, Djuran P, Mrda D, Ivankovic T, Manojlovic A, Koracevic G, Lovic D, Popadic V. Cardiac Magnetic Resonance in Hypertensive Heart Disease: Time for a New Chapter. Diagnostics. 2023; 13(1):137. https://doi.org/10.3390/diagnostics13010137
Chicago/Turabian StyleZdravkovic, Marija, Slobodan Klasnja, Maja Popovic, Predrag Djuran, Davor Mrda, Tatjana Ivankovic, Andrea Manojlovic, Goran Koracevic, Dragan Lovic, and Viseslav Popadic. 2023. "Cardiac Magnetic Resonance in Hypertensive Heart Disease: Time for a New Chapter" Diagnostics 13, no. 1: 137. https://doi.org/10.3390/diagnostics13010137
APA StyleZdravkovic, M., Klasnja, S., Popovic, M., Djuran, P., Mrda, D., Ivankovic, T., Manojlovic, A., Koracevic, G., Lovic, D., & Popadic, V. (2023). Cardiac Magnetic Resonance in Hypertensive Heart Disease: Time for a New Chapter. Diagnostics, 13(1), 137. https://doi.org/10.3390/diagnostics13010137