Establishing Normative Values to Determine the Prevalence of Biochemical Hyperandrogenism in Premenopausal Women of Different Ethnicities from Eastern Siberia
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PCOS | polycystic ovary syndrome |
ESPEP | Eastern Siberia PCOS Epidemiology and Phenotype |
mF-G | modified Ferriman–Gallwey score for hirsutism |
AFC | antral follicle count |
U/S | ultrasound |
TSH | thyroid-stimulating hormone |
17-OHP | 17-hydroxyprogesterone |
BMI | body mass index |
TT | total testosterone |
DHEAS | dehydroepiandrosterone |
SHBG | sex hormone binding globulin |
FAI | free androgen index |
UNL | upper normal limits |
OCP | oral contraceptive pills |
HRT | hormone replacement therapy |
LNG-IUD | levonorgestrel intrauterine device |
IGT | impaired glucose tolerance |
IFG | impaired fasting glycaemia |
FSH | follicle-stimulating hormone |
NCAH | nonclassical congenital adrenal hyperplasia |
WC | waist circumference |
REDCap | Research Electronic Data Capture |
References
- Azziz, R.; Carmina, E.; Dewailly, D.; Diamanti-Kandarakis, E.; Escobar-Morreale, H.F.; Futterweit, W.; Janssen, O.E.; Legro, R.S.; Norman, R.J.; Taylor, A.E.; et al. Positions statement: Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: An Androgen Excess Society guideline. J. Clin. Endocrinol. Metab. 2006, 91, 4237–4245. [Google Scholar] [CrossRef] [Green Version]
- Legro, R.S.; Schlaff, W.D.; Diamond, M.P.; Coutifaris, C.; Casson, P.R.; Brzyski, R.G.; Christman, G.M.; Trussell, J.C.; Krawetz, S.A.; Snyder, P.J.; et al. Total testosterone assays in women with polycystic ovary syndrome: Precision and correlation with hirsutism. J. Clin. Endocrinol. Metab. 2010, 95, 5305–5313. [Google Scholar] [CrossRef]
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J. International PCOS Network. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil. Steril. 2018, 110, 364–379. [Google Scholar] [CrossRef] [Green Version]
- Belenkaia, L.V.; Lazareva, L.M.; Walker, W.; Lizneva, D.V.; Suturina, L.V. Criteria, phenotypes and prevalence of polycystic ovary syndrome. Minerva Ginecol. 2019, 71, 211–223. [Google Scholar] [CrossRef]
- Azziz, R. Defining what is normal: The key to the diagnosis of polycystic ovary syndrome (and any other disorder for that matter…). Fertil. Steril. 2019, 111, 681–682. [Google Scholar] [CrossRef] [Green Version]
- Azziz, R.; Kintziger, K.; Li, R.; Laven, J.; Morin-Papunen, L.; Merkin, S.S.; Teede, H.; Yildiz, B.O. Recommendations for epidemiologic and phenotypic research in polycystic ovary syndrome: An androgen excess and PCOS society resource. Hum. Reprod. 2019, 34, 2254–2265. [Google Scholar] [CrossRef]
- Suturina, L. The epidemiology of polycystic ovary syndrome. In Polycystic Ovary Syndrome, 3rd ed.; Kovacs, G.T., Fauser, B., Legro, R.S., Eds.; Cambridge University Press: Cambridge, UK, 2022; pp. 21–28. [Google Scholar]
- Welt, C.K.; Arason, G.; Gudmundsson, J.A.; Adams, J.; Palsdóttir, H.; Gudlaugsdóttir, G.; Ingadóttir, G.; Crowley, W.F. Defining constant versus variable phenotypic features of women with polycystic ovary syndrome using different ethnic groups and populations. J. Clin. Endocrinol. Metab. 2006, 91, 4361–4368. [Google Scholar] [CrossRef] [Green Version]
- Suturina, L.; Lizneva, D.; Danusevich, I.; Lazareva, L.; Belenkaya, L.; Nadeliaeva, I.; Kovalenko, I.; Bazarova, T.; Khomyakova, A.; Natyaganova, L.; et al. The design, methodology, and recruitment rate for the Eastern Siberia PCOS epidemiology&phenotype (ES-PEP) Study. In Proceedings of the 41st Annual Meeting of the Androgen Excess & PCOS Society, Lorne, VIC, Australia, 10–12 November 2016; p. 76. [Google Scholar]
- Yildiz, B.O.; Bolour, S.; Woods, K.; Moore, A.; Azziz, R. Visually scoring hirsutism. Hum. Reprod. Update 2010, 16, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Pochi, P.E.; Shalita, A.R.; Strauss, J.S.; Webster, S.B.; Cunliffe, W.J.; Katz, H.I.; Kligman, A.M.; Leyden, J.J.; Lookingbill, D.P.; Plewig, G.; et al. Report of the Consensus Conference on Acne Classification. J. Am. Acad. Dermatol. 1991, 24, 495–500. [Google Scholar] [CrossRef]
- Ludwig, E. Classification of the types of androgenetic alopecia (common baldness) occurring in the female sex. Br. J. Dermatol. 1977, 97, 247–254. [Google Scholar] [CrossRef]
- Naing, L.; Winn, T.; Rusli, B.N. Practical issues in calculating the sample size for prevalence studies. Med. Stat. 2006, 1, 9–14. [Google Scholar]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Atalyan, A.V.; Kolesnikova, L.I.; Kolesnikov, S.I.; Grjibovski, A.M.; Suturina, L.V. Research Electronic Data Capture (REDCap) for Building and Managing Databases for Population-based Biomedical Studies. Ekol. Cheloveka Hum. Ecol. 2019, 2, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Lehmann, R. 3sigma-Rule for Outlier Detection from the Viewpoint of Geodetic Adjustment. J. Surv. Eng. 2013, 139, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.; Seo, D.M.; Uh, Y. Clinical Application of Overlapping Confidence Intervals for Monitoring Changes in Serial Clinical Chemistry Test Results. Ann. Lab. Med. 2020, 40, 201–208. [Google Scholar] [CrossRef]
- Knochenhauer, E.S.; Key, T.J.; Kahsar-Miller, M.; Waggoner, W.; Boots, L.R.; Azziz, R. Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: A prospective study. J. Clin. Endocrinol. Metab. 1998, 83, 3078–3082. [Google Scholar] [CrossRef]
- Asunción, M.; Calvo, R.M.; San Millán, J.L.; Sancho, J.; Avila, S.; Escobar-Morreale, H.F. A prospective study of the prevalence of the polycystic ovary syndrome in unselected Caucasian women from Spain. J. Clin. Endocrinol. Metab. 2000, 85, 2434–2438. [Google Scholar] [CrossRef] [Green Version]
- Gabrielli, L.; Aquino, E.M. Polycystic ovary syndrome in Salvador, Brazil: A prevalence study in primary healthcare. Reprod. Biol. Endocrinol. 2012, 10, 96. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, B.O.; Bozdag, G.; Yapici, Z.; Esinler, I.; Yarali, H. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum. Reprod. 2012, 27, 3067–3073. [Google Scholar] [CrossRef]
- Tehrani, F.R.; Rashidi, H.; Azizi, F. The prevalence of idiopathic hirsutism and polycystic ovary syndrome in the Tehran Lipid and Glucose Study. Reprod. Biol. Endocrinol. 2011, 9, 144. [Google Scholar] [CrossRef]
- Hashemi, S.; Ramezani Tehrani, F.; Noroozzadeh, M.; Azizi, F. Normal cut-off values for hyperandrogenaemia in Iranian women of reproductive age. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 172, 51–55. [Google Scholar] [CrossRef]
- Zhao, X.; He, Z.; Mo, Y.; Chen, X.; Chen, Y.; Yang, D. Determining the normal cut-off levels for hyperandrogenemia in Chinese women of reproductive age. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 154, 187–191. [Google Scholar] [CrossRef]
- Zhou, Z.; Ni, R.; Hong, Y.; Li, Y.; Wang, Y.; Zhao, X.; Yang, D. Defining hyperandrogenaemia according to the free androgen index in Chinese women: A cross-sectional study. Clin. Endocrinol. 2012, 77, 446–452. [Google Scholar] [CrossRef]
- Li, R.; Zhang, Q.; Yang, D.; Li, S.; Lu, S.; Wu, X.; Wei, Z.; Song, X.; Wang, X.; Fu, S.; et al. Prevalence of polycystic ovary syndrome in women in China: A large community-based study. Hum. Reprod. 2013, 28, 2562–2569. [Google Scholar] [CrossRef] [Green Version]
- Rosner, W. Position statement: Utility, limitations, and pitfalls in measuring testosterone: An Endocrine Society position statement. J. Clin. Endocrinol. Metab. 2007, 92, 405–413. [Google Scholar] [CrossRef]
- Stanczyk, F.Z. Diagnosis of hyperandrogenism: Biochemical criteria. Best Pract. Res. Clin. Endocrinol. Metab. 2006, 20, 177–191. [Google Scholar] [CrossRef]
- CLSI. Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory Approved Guideline, 3rd ed.; CLSI EP28-A3c; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2010. [Google Scholar]
- Kiconco, S.; Mousa, A.; Azziz, R.; Enticott, J.; Suturina, L.V.; Zhao, X.; Gambineri, A.; Tehrani, F.R.; Yildiz, B.O.; Kim, J.J.; et al. PCOS Phenotype in Unselected Populations Study (P-PUP): Protocol for a Systematic Review and Defining PCOS Diagnostic Features with Pooled Individual Participant Data. Diagnostics 2021, 11, 1953. [Google Scholar] [CrossRef]
Parameters | Total n = 143 |
---|---|
Age, years | |
Mean ± SD | 34.7 ± 6.00 |
Median (LQ; UQ) | 36.0 (31.0; 39.0) |
Ethnicity, n/N (%) | |
Caucasians | 88/143 (61.5%) |
Asians | 42/143 (29.4%) |
Mixed (Caucasian/Asian) | 13/143 (9.10%) |
Marital status, n/N (%) | |
Single | 31/143 (21.7%) |
Married | 80/143 (55.9%) |
Living with another | 15/143 (10.5%) |
Separated | 0/143 (0.00%) |
Divorced | 13/143 (9.10%) |
Widowed | 2/143 (1.40%) |
Would rather not say | 2/143 (1.40%) |
Occupation, n/N (%) | |
Missing data on occupation | 2/143 (1.40%) |
Legislators, senior officials, and managers | 4/143 (2.80%) |
Professionals | 65/143 (45.5%) |
Technicians and associate professionals | 26/143 (18.2%) |
Office clerks | 17/143 (11.8%) |
Service workers and shop and market sales | 9/143(6.30%) |
Skilled agricultural and fishery workers | 2/143 (1.40%) |
Craft and related trade workers | 11/143 (7.70%) |
Plant and machine operators and assemblers | 2/143 (1.40%) |
Elementary occupations | 4/143 (2.80%) |
Armed forces | 1/143 (0.70%) |
Education n/N(%) | |
Doctoral degree | 16/143 (11.2%) |
Master’s degree | 94/143 (65.7%) |
Bachelor’s degree | 21/143 (14.7%) |
Some college | 1/143 (0.70%) |
High school or equivalent | 5/143 (3.50%) |
Incomplete high school | 3/143 (2.10%) |
Middle school only | 2/143 (1.40%) |
No degree | 1/143 (0.70%) |
Parameters | Mean ± SD Median (LQ; UQ) |
---|---|
Age at menarche, years | 13.2 ± 1.2 13.0 (12.0; 14.0) |
Min length of menstrual cycle, days | 26.5 ± 2.2 27.0 (25.0; 28.0) |
Max length of menstrual cycle, days | 29.2 ± 2.9 30.0 (28.0; 30.0) |
Number of pregnancies | 2.30 ± 2.00 2.00 (1.00; 3.00) |
Live births | 1.70 ± 0.80 2.00 (1.00; 2.00) |
Still birth | 0.05 ± 0.20 0.00 (0.00; 0.00) |
Spontaneous abortions | 0.20 ± 0.40 0.00 (0.00; 0.00) |
Extrauterine pregnancy | 0.10 ± 0.20 0.00 (0.00; 0.00) |
Missed abortion | 0.05 ± 0.30 0.00 (0.00; 0.00) |
Medical abortions | 0.70 ± 1.40 0.00 (0.00; 1.00) |
Anthropometric and Vital Sign Parameters | Mean ± SD Median (LQ; UQ) |
---|---|
Weight, kg | 64.0 ± 9.60 63.3 (56.9; 71.4) |
Height, cm | 162 ± 5.50 162 (158; 166) |
WC, cm | 75.3 ± 8,60 76.0 (68.0; 82.0) |
BMI, kg/m2 | 24.3 ± 3.28 24.4 (21.5; 27.2) |
Systolic blood pressure, mm Hg | 117 ± 10.0 117 (110; 125) |
Diastolic blood pressure, mm Hg | 74.9 ± 7.40 75.0 (70.0; 81.0) |
mFG score | 0.36 ± 0.65 0.00 (0.00; 1.00) |
Pelvic U/S | Mean ± SD Median (LQ; UQ) |
AFC, right ovary | 6.13 ± 2.10 6.00 (5.00; 8.00) |
AFC, left ovary | 6.12 ± 2.28 6.00 (5.00; 7.00) |
Volume, right ovary, cm3 | 6.82 ± 5.46 6.01 (5.01; 7.68) |
Volume, left ovary, cm3 | 5.96 ± 1.98 5.80 (4.57; 7.09) |
Parameters | All “Healthy Controls” n = 143 | Caucasians (1) n = 88 | Asians (2) n = 42 | Mixed (3) n = 13 | p-Value |
---|---|---|---|---|---|
Mean ± SD Median (LQ;UQ) | |||||
LH, mIU/ml | 8.36 ± 13.8 5.20 (3.60; 7.70) | 8.55 ± 14.1 5.70 (3.60; 7.75) | 8.69 ± 15.2 4.95 (3.50; 7.30) | 6.01 ± 3.26 4.90 (3.60; 8.10) | P * = 0.92 Pu1–2 = 0.71 Pu1–3 = 0.98 Pu2–3 = 0.80 |
FSH, mIU/ml | 6.09 ± 3.08 5.70 (4.20; 7.30) | 6.34 ± 3.33 5.75 (4.20; 7.70) | 5.78 ± 2.92 5.25 (3.90; 7.10) | 5.47 ± 1.45 5.80 (4.90; 6.30) | P * = 0.65 Pu1–2 = 0.38 Pu1–3 = 0.65 Pu2–3 = 0.86 |
Prolactin, mIU/ml | 321 ± 134 300 (220; 423) | 290 ± 125 251 (203; 338) | 403 ± 132 422 (329; 491) | 271 ± 74 288 (213; 324) | P * = 0.000 Pu1–2 = 0.000 Pu1–3 = 0.92 Pu2–3 = 0.001 |
TSH, mIU/ml | 1.65 ± 0.78 1.50 (1.10; 2.10) | 1.54 ± 0.75 1.40 (1.00; 2.00) | 1.77 ± 0.76 1.80 (1.20; 2.10) | 2.05 ± 0.88 1.80 (1.40; 2.60) | P * = 0.05 Pu1–2 = 0.98 Pu1–3 = 0.03 Pu2–3= 0.45 |
17-OHP, nmol/l | 4.77 ± 3.13 4.20 (2.10; 6.90) | 4.77 ± 2.92 4.30 (2.10; 6.90) | 4.88 ± 3.71 3.40 (1.70; 6.10) | 4.41 ± 2.72 4.60 (2.20; 6.90) | P * = 0.95 Pu1–2 = 0.84 Pu1–3 = 0.86 Pu2–3 = 0.73 |
SHBG, nmol/l | 76.1 ± 44.4 64.9 (43.7; 340) | 81.6 ± 48.5 68.9 (47.0; 103) | 66.3 ± 36.1 55.5 (42.6; 80.9) | 70.0 ± 34.9 59.9 (43.9; 79.3) | P * = 0.27 Pu1–2 = 0.11 Pu1–3 = 0.55 Pu2–3 = 0.64 |
TT, ng/dl | 25.1 ± 14.8 23.8 (13.8; 34.0) | 27.1 ± 16.2 24.7 (16.4; 36.5) | 19.5 ± 10.6 18.7 (10.4; 29.3) | 29.3 ± 12.2 28.9 (21.9; 38.4) | P * = 0.01 Pu1–2 = 0.01 Pu1–3 = 0.29 Pu2–3 = 0.01 |
FAI | 1.52 ± 1.57 1.20 (0.59; 1.92) | 1.68 ± 1.90 1.30 (0.58; 2.19) | 1.11 ± 0.61 0.98 (0.63; 1.45) | 1.72 ± 0.93 1.76 (1.07; 2.47) | P * = 0.14 PU1.2 = 0.27 Pu1–3 = 0.25 Pu2–3 = 0.02 |
DHEAS, μg/dl | 159 ± 71.6 155 (107; 193) | 168 ± 77.6 162 (117; 214) | 144 ± 62.0 141 (92.8; 182) | 143 ± 48.8 143 (115; 173) | P * = 0.23 Pu1–2 = 0.12 Pu1–3 = 0.32 Pu2–3 = 0.89 |
Glucose, mmol/l | 4.78 ± 0.67 4.75 (4.22; 5.32) | 4.87 ± 0.69 4.84 (4.40; 5.41) | 4.60 ± 0.61 4.46 (4.14; 5.05) | 4.73 ± 0.68 4.50 (4.23; 5.35) | P * = 0.05 Pu1–2 = 0.02 Pu1–3 = 0.36 Pu2–3 = 0.54 |
Parameter | Total n = 143 | Caucasians n = 88 | Asians n = 42 | Mixed n = 13 | Asians and Mixed n = 55 |
---|---|---|---|---|---|
98th percentile (95% CI) | |||||
TT, ng/dl | 67.3 (48.1, 76.5) | 73.9 *,**,# (51.6, 78.0) | 36.1 (33.6, 38.5) | 46.2 (38.4; 47.8) | 41.0 (37.9, 47.8) |
FAI | 5.40 (3.50,14.0) | 6.90 *,**,# (3.60, 14.0) | 2.62 (1.88, 2.93) | 3.02 (2.48; 3.05) | 2.91 (2.47, 3.05) |
DHEAS, μg/dl | 355 (289,371) | 359 ** (318, 374) | 282 (222, 341) | 217 (172; 221) | 267 (220, 341) |
Author, Year | Country, Setting | Study Design # | Total Population, Ethnicity | Controls | Hormonal Assays #, UNLs | Method for UNLs |
---|---|---|---|---|---|---|
Caucasians | ||||||
Asunción et al. (2000) [20] | Spain | Prospective study | 154 blood donors, Caucasian women from Madrid, Spain | 79 non-hirsute women without acne, menstrual disorders Age: 18–45 years | Immunochemiluminescence method TT: 2.5 nmol/l (=72.1 ng/dl) * FAI: 3,9 DHEAS: 11.9 µmol/l (=438 μg/dl) * | 95th percentile of the control values |
Gabrielli et al. (2012) [21] | Brasil | Cross-sectional study | 859 women attending primary healthcare units for cervical cancer screening, Salvador, Brazil | 725 women without PCOS criteria Age: 18–45 years | Immunochemiluminescence method TT: 58 ng/dl | 95th percentile of the control values |
Yildiz et al. (2012) [22] | Turkey | Cross-sectional study | 392 female employees of the General Directorate of Mineral Research and Exploration, Ankara, Turkey | 216 healthy, non-hirsute, eumenorrheic women without PCO Age: 18–45 years | Electrochemiluminescence immunoassay after serum extraction TT: 54.7 ng/dl (1.9 nmol/l) FAI: 4.94 DHEAS: 8840 nmol/l (=325 μg/dl) * | 95th percentile of the control values |
Tehrani et al. 2011 [23] | Iran | Sub study of TLGS | 102 women, randomly selected from among 4290 reproductive aged women who participated in the Tehran Lipid and Glucose Study (TLGS) | 40 women, who were not on any hormonal medication and had no clinical evidence of hyperandrogenism and menstrual dysfunction Age: 18–45 years | Enzyme immunoassay (EIA) TT: 89.0 ng/dl * FAI: 5.39 DHEAS:179 μg/dl | 95th percentile of the control values |
Hashemi et al. (2014) [24] | Iran | Population-based cross-sectional study | 1126 Caucasian women, selected at random from women of reproductive age from different geographic regions of Iran | 423 eumenorrheic non-hirsute women selected from the total population Age: 18–45 years | ELISA 95th percentile in the reference group: TT: 0.87 nmol/l (=25.1 ng/dl) * FAI: 5.4 DHEAS: 245 μg/dl? ** Cluster cut-off in the reference group: TT: 0.66 nmol/l (=19 ng/dl) * FAI: 3.94 DHEAS: 275 μg/dl? ** 95th perc in the total population: TT: 1.19 nmol/l (=34.2 ng/dl) * FAI: 8.8 DHEAS: 330 μg/dl? ** Cluster cut-off in the total population: TT: 1.33 nmol/l (=38.4 ng/dl) * FAI: 8.76 DHEAS: 345 μg/dl? ** | 95th percentile and k-means cluster analysis (k = 3) both in the total population and in the reference group |
Asians | ||||||
Zhao et al. (2011) [25] | China | Cross-section study | 904 women who lived in Guangzhou | 460 women without hirsutism irregular menses, PCOM, abnormal FSH, insulin, PRL, TSH levels, hypertension use of exogenous steroid therapy, bilateral ovariectomy, type 2 diabetes mellitus, FPG, dyslipidemia, or hepatic disorder Age: 20–45-years | ELISA 95th percentile TT: 3.28 nmol/l (=94.6 ng/dl) * DHEAS: 7.85 μmol/l (=289 μg/dl) * K-means cluster analysis TT: 2.39 nmol/l (=68.9 ng/dl) * DHEAS: 4.92 μmol/l (=181 μg/dl) * | 95th percentile of the control values and K-means cluster analysis |
Zhou et al. (2012) [26] | China | Cross-sectional, population-based study | 1526 women randomly selected from the general population of southern China | 444 women—the reference group, which excluded the subjects with factors known to affect androgen levels Age: 20–45 years | Chemiluminescent enzyme immunoassays 95th percentiles FAI: 6.4 K-means cluster analysis FAI: 6.1 | 95th percentiles and K-means cluster analysis (K = 2). |
Li et al. (2013) [27] | China | A community-based study | 15,924 women from the top 10 provinces and municipalities in China, Chinese Han population only | 2732 non-hirsute women without acne and menstrual disorders Age: 19–45 years | Chemiluminescent immunoassay TT: 2.81 nmol/l (=81.1 ng/dl) * | 95th percentiles in the population |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suturina, L.; Lizneva, D.; Atalyan, A.; Lazareva, L.; Belskikh, A.; Bairova, T.; Sholokhov, L.; Rashidova, M.; Danusevich, I.; Nadeliaeva, I.; et al. Establishing Normative Values to Determine the Prevalence of Biochemical Hyperandrogenism in Premenopausal Women of Different Ethnicities from Eastern Siberia. Diagnostics 2023, 13, 33. https://doi.org/10.3390/diagnostics13010033
Suturina L, Lizneva D, Atalyan A, Lazareva L, Belskikh A, Bairova T, Sholokhov L, Rashidova M, Danusevich I, Nadeliaeva I, et al. Establishing Normative Values to Determine the Prevalence of Biochemical Hyperandrogenism in Premenopausal Women of Different Ethnicities from Eastern Siberia. Diagnostics. 2023; 13(1):33. https://doi.org/10.3390/diagnostics13010033
Chicago/Turabian StyleSuturina, Larisa, Daria Lizneva, Alina Atalyan, Ludmila Lazareva, Aleksey Belskikh, Tatyana Bairova, Leonid Sholokhov, Maria Rashidova, Irina Danusevich, Iana Nadeliaeva, and et al. 2023. "Establishing Normative Values to Determine the Prevalence of Biochemical Hyperandrogenism in Premenopausal Women of Different Ethnicities from Eastern Siberia" Diagnostics 13, no. 1: 33. https://doi.org/10.3390/diagnostics13010033
APA StyleSuturina, L., Lizneva, D., Atalyan, A., Lazareva, L., Belskikh, A., Bairova, T., Sholokhov, L., Rashidova, M., Danusevich, I., Nadeliaeva, I., Belenkaya, L., Darzhaev, Z., Sharifulin, E., Belkova, N., Igumnov, I., Trofimova, T., Khomyakova, A., Ievleva, K., Babaeva, N., ... Azziz, R. (2023). Establishing Normative Values to Determine the Prevalence of Biochemical Hyperandrogenism in Premenopausal Women of Different Ethnicities from Eastern Siberia. Diagnostics, 13(1), 33. https://doi.org/10.3390/diagnostics13010033