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Abstract: Malocclusions are a type of cranio-maxillofacial growth and developmental deformity that
occur with high incidence in children. Therefore, a simple and rapid diagnosis of malocclusions
would be of great benefit to our future generation. However, the application of deep learning
algorithms to the automatic detection of malocclusions in children has not been reported. Therefore,
the aim of this study was to develop a deep learning-based method for automatic classification of the
sagittal skeletal pattern in children and to validate its performance. This would be the first step in
establishing a decision support system for early orthodontic treatment. In this study, four different
state-of-the-art (SOTA) models were trained and compared by using 1613 lateral cephalograms,
and the best performance model, Densenet-121, was selected was further subsequent validation.
Lateral cephalograms and profile photographs were used as the input for the Densenet-121 model,
respectively. The models were optimized using transfer learning and data augmentation techniques,
and label distribution learning was introduced during model training to address the inevitable label
ambiguity between adjacent classes. Five-fold cross-validation was conducted for a comprehensive
evaluation of our method. The sensitivity, specificity, and accuracy of the CNN model based on
lateral cephalometric radiographs were 83.99, 92.44, and 90.33%, respectively. The accuracy of the
model with profile photographs was 83.39%. The accuracy of both CNN models was improved to
91.28 and 83.98%, respectively, while the overfitting decreased after addition of label distribution
learning. Previous studies have been based on adult lateral cephalograms. Therefore, our study is
novel in using deep learning network architecture with lateral cephalograms and profile photographs
obtained from children in order to obtain a high-precision automatic classification of the sagittal
skeletal pattern in children.

Keywords: deep learning; orthodontics; pediatric; convolutional neural networks; diagnostic
systems introduction

1. Introduction

Orthopedic treatment can guide the normal craniofacial growth of patients who
manifest skeletal malocclusions during the growing stage [1]. Therefore, an accurate
diagnosis of skeletal malocclusion in children is of great clinical significance. In fact, sagittal
skeletal classification is the most important factor for orthodontists to consider when
diagnosing skeletal discrepancies and creating a treatment plan for patients [2].
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In clinical practice, orthodontists often use lateral cephalograms and profile pho-
tographs in order to evaluate the sagittal skeletal pattern of a particular individual. The
sagittal skeletal pattern can be classified into classes I, II, and III, according to the ANB
angles of the A, N, and B points [3,4]. Much of the literature has led to the supposition
that the soft-tissue facial form may be an accurate representation of the underlying skeletal
pattern to explore the possibility of ruling out the need for additional radiation exposure.
However, the concept of whether the sagittal skeletal pattern can be accurately assessed by
a soft tissue profile is controversial [5–8].

Traditionally, the diagnosis of sagittal skeletal patterns relies on manual detection mea-
surements. However, cephalometric analysis is a time-consuming and laborious process
that requires professional training and repeated practice [9]. In addition, errors and bias
are inevitable due to the subjective nature of defining the landmarks manually. Therefore,
at present, the rapid early diagnosis and treatment of malocclusions in children has become
a research hotspot.

In recent years, artificial intelligence (AI) technology based on convolutional neural
network (CNN) has been widely applied in various fields [10,11]. Moreover, CNN-based
artificial intelligence technology has recently been acknowledged as an effective and trust-
worthy tool for the diagnosis of medical images [12–14]. In orthodontics, several studies have
investigated automated lateral cephalometric radiograph landmark identification [15–19].
Arik et al. [15] used a CNN model to automatically detect landmarks on lateral cephalo-
grams, while Yoon et al. used a cascaded CNN for landmark detection for the cephalometric
analysis [16]. The application of deep learning algorithms to cephalometric analysis has
shown better performance, although many of these studies have focused on detecting land-
marks, which then need to be measured and diagnosed in a similar way to conventional
cephalometric approaches.

However, many areas of medical research, including breast cancer, lung disease, sagit-
tal ossification of the skull (CSO), and the use of bone segmentation in CT scans [20–24],
have successfully used a direct diagnostic system based on convolutional neural networks
that uses only X-ray images without providing additional information. Considering the
high potential for errors and bias associated with these conventional diagnostic methods,
Yu et al. used a landmark detection to create an automatic, one-step, end-to-end deep learn-
ing system for skeleton classification in 2020. His method had an accuracy of over 90% [25].
Furthermore, the model performance of four distinct CNN algorithms for automatic sagittal
classification on lateral cephalograms was compared [26]. Other researchers subsequently
demonstrated that for classification of the sagittal skeleton, the Deep CNN-based AI model
performed better than the automatic tracking AI program [27].

From the related work on classification of sagittal skeletal patterns, it can be seen
that the existing automatic classification methods were based on the lateral cephalogram
data of adult patients. Due to the difficulties associated with sample collection [25], there
has not been an automatic sagittal skeletal classification model specifically for child pa-
tients, nor was there a classification model of sagittal skeletal patterns based solely on
profile photographs.

In order to realize early diagnosis of malocclusions in children, a reduction of unneces-
sary X-ray radiation, relief of medical resources, and a reduction in the subjective diagnosis
of skeletal deformity, in this study, we proposed the establishment of a deep learning
method. This was based on using two different datasets in order to automatically classify
and diagnose the sagittal bone surfaces in children. Firstly, 4 SOTA models were pre-trained
on ImageNet-1k, and these were used to perform fine-tuning of the constructed dataset,
and then the optimal performance model was selected for subsequent studies. Although
migration learning can partially alleviate the problems associated with data scarcity, some
data enhancement was still necessary. To counteract labeling ambiguity, the concept of
label distribution learning was included in the model during the training process [28,29].
The label distribution lessens the impact of uncertainties as well as incorrect labeling while
also naturally describing the link between all the variables.
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Our experiments showed that our deep learning-based model achieved a classification
accuracy of more than 90% on the lateral cephalograms. However, due to the compensation
needed for soft tissue profiling of bone deformities, the classification accuracy of the profile
photographs was approximately 80%. However, the diagnostic accuracy of skeletal Class
III malocclusions was greater than 90%.

2. Materials and Methods

This study was exempt from IRB approval, and it was reviewed and confirmed by the
Ethics Committee of Guangxi Medical University College of Stomatology (No. 2022091).
All the procedures were carried out in conformity with the rules and regulations that
applied. The complete methodology used is presented as a schematic diagram in Figure 1a.
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Figure 1. An overview of the model building process and the deep learning model architecture.
(a) A flow chart of the deep learning model building process. (b) A schematic diagram of data
preprocessing. (c) A schematic diagram of 5-fold cross-validation. (d) A schematic diagram of data
augmentation. (e) A diagnostic model architecture based on the DenseNet-121 model.

2.1. Data Collection

A total of 1613 pediatric patients’ datasets (mean age 11.28± 1.97 years, range 4–14 years,
797 males, 816 females) were obtained from the Orthodontics Department of Guangxi Med-
ical University College of Stomatology between January 2019 and December 2021 for the
present study. Lateral cephalograms and 90◦ profile photographs, which were taken before
orthodontic treatment, were used. Non-standardized and low-resolution images were
excluded. The lateral cephalograms were captured with a Myriad Hyperion X9 (Safelite
Group, Cormano, Italy), with original images of either 2460 × 1950 or 1752 × 2108 pixels at
0.1 mm/pixel resolution. The 90◦ profile photographs were captured with a Nikon D7200,
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with original images of 2510 × 2000 pixels at 0.1 mm/pixel resolution. All images used
were in JPG format.

2.2. Data Annotation
2.2.1. Diagnostic Criteria

Point A–nasion–point B (ANB) and WITS appraisal are 2 common methods for diagnos-
ing the sagittal skeletal relationship. ANB refers to the anterior-posterior (AP) relationship
between the maxilla and mandible, as measured by the angle formed by point A, the
nasal root point, and point B [3,4]. The WITS assessment is an analytical method used to
categorize sagittal skeletal relationships that indicate the severity of anterior-posterior jaw dis-
sonance. For this technique, the maximal cusp interposition must be used to vertically project
points A and B into the occlusal plane [30]. WITS describes a basal connection independent of
the anterior cranial base angle, which distinguishes it from ANB measurement [31]. According
to the typical mean values of ANB and WITS in the Chinese population, all radiographs in
this study were divided into three categories [32,33], i.e., skeletal class I (5◦ ≥ ANB ≥ 0◦

and 2 ≥ WITS ≥ −3), skeletal class II (ANB > 5◦ and WITS > 2), and skeletal class III
(ANB < 0◦ and WITS < −3). Following manual measurements, the classification of which
was carried out independently by three orthodontists with a total of 20 years of working
experience. If two experts had different judgments on a particular image, then the image
would be re-assessed by all experts after a discussion. Classification and labeling of profile
photographs were performed in accordance with the corresponding radiographs.

2.2.2. Data Preprocessing and Data Augmentation

To lessen interference from other anatomical structures, the image regions involving
points A, N, and B (1500 × 800 pixels) were automatically cropped from the original image
by using YOLO v 5. The cropped images were then scaled down to 224 × 224 pixels in size.
Label ambiguity was inevitable for samples close to the boundary of two stages, even with
meticulous annotation. Therefore, the following data augmentation techniques [34] were
also randomly used in this study in order to prevent overfitting of the model on a small
dataset: Random rotation, random scaling, random translation, and random changes of
contrast and brightness. Figure 1d depicts a schematic diagram of the data augmentation
procedure. In each training epoch, the training set data had a 50% probability of data
augmentation, generating a maximum of 85,425 (1139 × 150 × 0.5) new data after 150
training epochs. From the entire dataset (AP-all), we extracted a subset named the AP-
subset, which only contained 1423 samples of clear sagittal classification (Table 1). The
details of all the datasets used are shown in Table 1.

Table 1. The Numbers of Patient Data Distributed in Each Skeletal Class together with the Descriptive
statistics of the samples in this study.

AP-All AP-Sub Borderline Cases

Numbers (n) 1613 1423 190
Class I 501 427 74
Class II 601 507 94
Class III 511 479 22

Parameters
Age (y, mean ± SD) 11.28 ± 1.97 11.31 ± 2.36 10.81 ± 2.61

ANB angle (◦) 2.30 ± 3.86 1.93 ± 1.75 2.94 ± 1.93
WITS (mm) (−1.49) ± 3.02 (−1.39) ± 2.45 (−1.24) ± 4.17

3. CNN Model Training Details and Comparisons

Four representative +15]SOTA models were selected as candidate models for our
study: ConvNeXt-T, DenseNet-121, Swin-T, and ResNet-101 [35]. We retrieved the pre-
trained models of the four candidate CNN models from the PyTorch torchvision model zoo
(https://pytorch.org/vision/stable/, accessed on 27 October 2022). When compressing

https://pytorch.org/vision/stable/
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medical data, the four SOTA models typically employed a transfer learning strategy [36],
which leveraged the model parameters that have already been trained on non-medical data.
The initial weighting of the model were pre-trained weight parameters matching those on
the large-scale ImageNet dataset. That is, we used the model structure and pre-training
weights in the torchvision models sub-package to modify the classification layer to fit the
number of classes of the datasets we were building.

All layers of the CNN models were trained and upgraded using fine-tuning ap-
proaches [37]. Each CNN model in this study was trained with 200/150 epochs using
the stochastic gradient descent (SGD) optimizer and cross-entropy loss-of-function after
the pre-trained model’s parameters were initialized. Next, the hyper-parameters of the
neural network were adjusted several times according to their model’s performance on the
validation set. Finally, a personalized set of hyper-parameters, including the learning rate,
batch size, momentum, and weight decay, were determined to maximize the capability of
the particular CNN. All training procedures in this study were performed on a computer
equipped with an NVIDIA GeForce RTX 3080 GPU.

The four CNN models were evaluated by 5-fold cross-validation, in which the AP-
all dataset was randomly divided into 5 groups. According to the proportion of label
categories, each experimental validation and training set contained 323 and 1290 samples,
respectively. Fold 1 was used as the validation set, and the rest were the training sets. The
next set of experiments used Fold 2 as the validation set and the rest as the training sets,
and thus the five cross-validations were performed in this order.

To evaluate the performance of the four SOTA models, the following indicators were
calculated, and these included Params, Floating Point operations (FLOPs), Sensitivity (SN),
Specificity (SP), Classification Accuracy (ACC), and the AUC values [38–41]. One of the
most prevalent evaluation measures for classification was accuracy, which was calculated
by dividing the number of correctly classified samples by the number of images used. The
means and standard deviations of the evaluation metrics are reported. The optimal SOTA
model was selected for our subsequent studies by employing lateral cephalograms and
profile photographs of patients.

4. DenseNet-121 Model Modification

As shown in Table 1, there are actual borderline cases between the three groups, as
opposed to decision boundaries produced by the model classification. Currently, there are
no widely acknowledged clinical criteria for the classification of borderline cases. Therefore,
it is acceptable to determine whether these belong to any classification for a borderline
case in skeletal Classes I and II. Hence, label confusion is an inevitable occurrence with a
borderline case. Instead of using one-hot labels for borderline circumstances, we applied a
label distribution learning technique to address this issue.

Label Distribution Learning

Instead of using one-hot labels for borderline circumstances, we applied label distribu-
tion learning to address this issue. First, we created the set l = {1, 2, 3}, which represented
the three classification labels for the skeletal classification. Given an input image, x, the
one-hot label of x was defined as y(y ∈ l), and the label distribution then converts y to
p = {p1, p2, p3} by a function, where pi represents the probability value of x belonging to
li. Herein, we used a Gaussian to transform y:

pi =


1

2πσ exp
(
− (li−y+d1)

2

2σ2

)
, y ∗ i = 6

1
2πσ exp

(
− (li−y+d2)

2

2σ2

)
, others

σ, d1, and d2 are the hyper-parameters that need to be set. σ determines the width
of the Gaussian function curve, d1 and d2 represent the distance of different classes, y
represents the true label value of the input image x, and li represents the true label value of
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the i category. Given that the skeletal Class I in this instance serves as a transitional stage
between the skeletal classification II and III and that these two classes are separated by a
greater distance, the constraint is made as stated above (Figure 2).
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5. DenseNet-121 Modified Model Assessment

The performance of this method was then assessed using the metrics listed below:
Sensitivity (SN), Specificity (SP), Classification Accuracy (ACC), and Receiver Operating
Characteristic (ROC) curve.

Due to label ambiguity, some researchers have argued that adopting an accuracy with
one-stage deviation is reasonable. In the present task, considering that label confusion
mainly exists between borderline cases, we defined one-stage deviation as follows: It is
acceptable to misclassify borderline cases into their adjacent categories. In this study, we
reported both normal accuracy and accuracy with a one-stage deviation [39]. The model
was also evaluated using 5-fold cross-validation, where the dataset used was randomly
divided into 5 parts based on the proportion of label categories. The means and standard
deviations of the evaluation metrics are reported.

We created a class activation map (CAM) to better comprehend the learning styles
of the model [42]. The CAM visually highlighted the regions of the lateral cephalograms
and profile photographs that were most informative in terms of distinguishing between
skeletal classifications.

6. Results
6.1. Sample Statistics

The details of the datasets are given in Table 1. There was no significant difference in
age between skeletal Classes I, II, and III (Table S1). For skeletal Classes I, II and III, the
mean ANB angles were 2.48◦, 5.58◦, and −1.85◦, while the mean WITS values were −1.27,
2.61, and −6.70, respectively (Table S1), and the observed differences were statistically
significant (p < 0.001). We discovered 190 cases that did not fit the classification criteria
used, and these were borderline cases between the two skeletal classes. The similarities
among the cases were particularly challenging for the orthodontists to precisely diagnose
the classification label to use (Table S2).

6.2. Model Classification Performance

The screening performances of the four models tested in this study are shown in
Table 2. Compared with ConvNeXt-T, ResNet-101, and Swin-T, the DenseNet-121 model
performed best, with a maximum AUC of 96.80± 0.40, although the accuracy of ConvNeXt-
T’s was 1% higher than DenseNet-121. However, Params (M) of ConvNeXt-T were more
than three times larger than DenseNet-121. In comparison with the model performance of
Convnext-T, DenseNet-121 had smaller parameters, the highest AUC value, and an ideal
accuracy, so DenseNet-121 was chosen for further experiments.
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Table 2. Params (M), Flops (G), Accuracy, Sensitivity, Specificity, and AUC values obtained for the 4
CNN models with lateral cephalograms.

Model Params (M) FLOPS (G) Accuracy (%) Sensitivity (%) Specificity (%) AUC Value

Swin-T 28.3 4.49 62.30 ± 2.67 58.11 ± 2.74 80.04 ± 1.43 78.81 ± 1.54
ResNet-101 44.5 7.8 85.49 ± 1.36 84.86 ± 1.62 92.96 ± 0.76 95.57 ± 0.51

DenseNet-121 8.0 2.83 85.49 ± 0.89 83.99 ± 0.81 92.44 ± 0.40 96.80 ± 0.39
ConvNeXt-T 28.6 4.46 86.30 ± 1.31 85.86 ± 1.23 93.14 ± 0.64 96.00 ± 0.39

The sensitivity, specificity, and accuracy of the CNN model for sagittal skeletal classi-
fication based on the lateral cephalometric radiographs of our study patients were 83.99,
92.44, and 90.33%, respectively (Table 3). After the borderline cases were eliminated, the
ACC of the CNN model increased from 90.33 to 94.05%, while accuracy with a one-stage de-
viation improved only by 2.05% (Table 3), indicating that a large proportion of misclassified
samples in the AP-all dataset were borderline cases.

Table 3. Performance of skeletal classifications for Classes I, II, and III with (1) lateral cephalograms
and (2) profile photographs on DenseNet-121.

(1) Performance of skeletal classifications for Classes I, II, and III with lateral cephalograms on DenseNet-121.

Sensitivity
(%) Specificity (%) Accuracy (%)

Sensitivity
with LDL

(%)

Accuracy
with LDL

(%)

Accuracy
Without LDL

with
One-Stage

Deviation (%)

Accuracy
with LDL

with One-Stage
Deviation (%)

AP-all
Class I 61.40 ± 4.52 95.14 ± 1.78 85.49 ± 0.89 73.75 ± 3.23 86.92 ± 0.91 88.10 ± 1.37 89.52 ± 1.32
Class II 94.24 ± 4.05 87.09 ± 1.65 90.02 ± 0.87 89.09 ± 3.41 91.07 ± 1.29 92.06 ± 1.20 93.11 ± 1.75
Class III 96.34 ± 2.92 95.10 ± 1.73 95.47 ± 0.54 96.35 ± 1.75 95.85 ± 0.57 95.85 ± 0.69 96.21 ± 0.36

Mean 83.99 ± 0.81 92.44 ± 0.40 90.33 ± 0.59 86.40 ± 0.92 91.28 ± 0.61 92.00 ± 1.21 92.95 ± 0.61
Overall 85.49 ± 0.89 86.92 ± 0.91 90.51 ± 2.09 91.94 ± 0.94
AP-sub
Class I 83.08 ± 1.85 94.16 ± 1.02 91.08 ± 0.72
Class II 91.02 ± 1.61 94.23 ± 0.97 92.97 ± 0.89
Class III 97.87 ± 0.95 98.22 ± 0.53 98.10 ± 0.57

Mean 90.66 ± 0.73 95.54 ± 0.36 94.05 ± 0.48
Overall 91.08 ± 0.72

(2) Performance of skeletal classifications for Classes I, II, and III with profile photographs on DenseNet-121.

Sensitivity
(%) Specificity (%) Accuracy (%)

Sensitivity
with LDL

(%)

Accuracy
with LDL

(%)

Accuracy
Without LDL

with
One-Stage

Deviation (%)

Accuracy
with LDL

with One-Stage
Deviation (%)

AP-all
Class I 48.09 ± 6.61 87.23 ± 2.22 76.10 ± 1.57 55.06 ± 2.35 77.13 ± 1.19 78.78 ± 1.64 79.81 ± 1.56
Class II 84.09 ± 2.91 83.21 ± 3.93 83.58 ± 1.67 79.09 ± 4.22 83.77 ± 1.31 85.69 ± 1.69 85.87 ± 1.91
Class III 88.26 ± 1.60 91.40 ± 2.45 90.48 ± 1.63 91.74 ± 1.48 91.05 ± 0.53 90.86 ± 1.87 91.43 ± 0.71

Mean 73.48 ± 2.18 87.28 ± 1.05 83.39 ± 1.34 75.29 ± 0.85 83.98 ± 1.29 85.11 ± 0.15 85.70 ± 0.13
Overall 75.08 ± 2.00 75.98 ± 0.85 80.25 ± 2.70 81.15 ± 2.50
AP-sub
Class I 49.07 ± 7.69 91.21 ± 1.68 79.47 ± 1.45
Class II 86.46 ± 3.35 84.76 ± 3.09 85.45 ± 1.33
Class III 93.41 ± 2.43 90.71 ± 3.50 91.57 ± 1.83

Mean 76.31 ± 2.02 88.89 ± 0.85 85.49 ± 1.12
Overall 78.24 ± 1.68

In order to reduce the impact of borderline cases on the overall accuracy, we introduced
the technique of label distribution learning. Figure 3 displays the outcomes of the model-
based ablation studies. When the drop rate was 0.2, there was a significant overfitting issue.
When a label smoothing value of 0.2 was added, the overfitting decreased, but there was a
concomitant decrease in the accuracy of the validation set. After adding label distribution
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learning, the accuracy of the CNN model increased by 1.0%, and the overfitting was also
reduced.
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Figure 3. Confusion matrix on AP-all, AP-sub, and AP-all with LDL of lateral cephalograms (a–c) and
profile photographs (d–f). The training and validation accuracies on AP-all with and without LDL
for the lateral cephalograms (g) and profile photographs (h), respectively.

The diagnostic model based on profile photographs also demonstrated close to 80%
average clinical performance (Figure 3). The AP-sub of sagittal classification also showed
a higher performance with mean values of SN = 76.31 ± 2.02, SP = 88.89 ± 0.85, and
ACC = 85.49 ± 1.12 (Table 2). Similarly, the overall accuracy was improved by 0.6% after
label distribution learning for the borderline cases, and the overfitting decreased.

Figure 4 shows the ROC (receiver operating characteristic) curves, which integrated
the sensitivity and specificity of the classification model, and these can accurately describe
the model performance even when the ratios of positive to negative samples were not
proportional. An AUC (area under curve) refers to the area under the ROC curve, which
quantifies the model’s performance based upon the ROC curve. With most AUC values far
exceeding 0.9, from a clinical epidemiologic perspective, we concluded that the proposed
medical diagnostic system is able to accurately diagnose a patient’s skeletal class.

The class activation map is shown in Figure 5. Based on direct visual analysis, we
suggest that the main activation regions of the two CNNs were located in the anterior
jaw and lip areas, indicating that there is no overfitting in the trained CNNs. However,
the activation areas of the three sagittal skeletal patterns were slightly different. The
AUC values for each subgroup suggest that all the CNNs showed the highest accuracy in
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identifying the skeletal Class III pattern, followed by the skeletal Class II and I patterns, as
reflected in their confusion matrices and ROC curves (Figures 3 and 4).
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7. Discussion

In recent years, early orthodontic treatment has emerged as a popular topic, as demand
for orthodontic treatment in children has risen. The diagnosis of sagittal skeletal patterns in
children is of crucial importance in order to pursue optimal therapeutic strategies. In this
study, we trained 2 CNN models for the classification of the sagittal skeletons in children.
The models could automatically classify images based only on the lateral cephalograms and
profile photographs of patients. This does not only help to guide the junior orthodontists to
make a more accurate assessment of the sagittal skeletal pattern of a child but also relieves
the more experienced orthodontist from this laborious classification task. In addition, this
protocol can enable the parents to make a preliminary assessment of whether their child
has a deformity, and they can plan for the possibility of correction therapy.

Automated diagnosis based on deep learning has gained widespread attention as
a practical clinical aid for diagnosis of patients with many different diseases. Previous
studies have not reported any automatic skeletal classifications for children whose facial
morphology and trends differ significantly from adults. For the automatic categorization
application of the sagittal skeletal relationships in children, we trained a representative
CNN model, DenseNet-121, by using 1613 lateral cephalograms. Under the conditions used
for transfer learning, it was found that this CNN model could be trained without difficulty
in under 90 min. It was clear that this CNN model could accurately classify sagittal
skeletons of children, with >90% accuracy and >0.96 AUC after the data were subjected
to a 5-fold cross-validation test. The accuracy obtained was lower than that observed
for adults [25,26], which may be because pediatric patients are likely to be undergoing
rapid growth changes. In addition, the shape of the skeletons dramatically varies with age,
which can further complicate the diagnosis of younger patients. For instance, individuals
with anterior crossbites who are too young to be properly classified may not have visible
skeletal deformities yet. Furthermore, despite careful annotation, there would still be many
labeling ambiguities in the close proximity of the two classification boundaries, and this
can compromise overall accuracy. According to our results, the majority of the misclassified
instances were boundary cases that even well-experienced experts had trouble correctly
classifying. These cases fell into one of two categories and were mainly found in patients
with skeletal Classes II and III (Figure 6). Additionally, we produced a subset of data
(AP-sub) that was free of borderline cases and found that the accuracy increased from 90.3
to 94.05%, thus providing additional evidence that the borderline cases affected the overall
accuracy of our results.

We introduced a technique of label distribution learning in order to address the
problem associated with borderline cases because, in clinical practice, these could not be
avoided. By comparing the different graphs obtained in Figure 2, it was evident that in the
absence of label distribution learning, the values of the matrix began to spread further from
the diagonal ideal situation. The images of stage I can be divided into either stage I or II.
Table 2 shows the effects of label distribution learning on the model’s ultimate performance.
The accuracy rate rose from 90.33 to 91.28% in the presence of LDL. Label distribution
learning naturally describes the uncertainty between genuine images by giving higher
confidence to labels obtained, and these were closer to the data. Since the diagnosis in these
circumstances can be made between adjacent stages, we performed a one-stage deviation
calculation and obtained an accuracy of up to 92.95%.

Several reports in the literature have supported the view that the soft-tissue facial
form may be an accurate representation of the underlying skeletal pattern [5,6]. Therefore,
we attempted, for the first time, to train a CNN model based on profile photographs for
automatic skeletal classification and found that this model had an accuracy of 83.39%,
while the highest accuracy of 90.48% was achieved for patients with skeletal Class III.
Although the accuracy was lower than in the CNN model based on lateral cephalograms,
this was understandable because the soft tissue covering the skeletal surface had a variable
thickness, and this may have partially compensated for the existing skeletal incongruity.
This was especially so in some borderline cases where soft tissue compensation was very
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obvious. However, for severe skeletal deformities, the initial evaluation of the skeletal
patterns could only be determined by facial profiles. However, this allowed the parents to
make a preliminary assessment as to whether their child had the possibility of a craniofa-
cial deformity.
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In a medical diagnostic scenario, interpretability is critical for making trustworthy
decisions from a human perspective. The visualization of the CAM shows that the neural
network model is able to learn a skeleton assessment strategy that is highly consistent
with orthodontic clinical criteria. This indicates that the decisions of our model were well
interpreted. In addition, the visualization of prediction findings can guide orthodontists to
undertake selected re-evaluations in situations where forecasts are dubious.
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The datasets created and/or analyzed for the current study are not publicly accessible
due to the possibility of violations of patients’ privacy and the presence of confidential
information. However, these data can be obtained from the corresponding authors upon
justifiable request, although data usage agreements will be required.

8. Conclusions

In this study, we propose a novel method based on deep learning for automatic sagittal
skeletal classification in children. Firstly, 4 different SOTA models were trained with lateral
cephalogram images, and the best-performing model, Densenet-121, was selected for
subsequent studies. Lateral cephalograms and profile photographic data were used as the
input for the model, respectively. Data augmentation and transfer learning were used to
optimize the network parameters, and label distribution learning was introduced during
the model’s training process to solve the inevitable labeling ambiguity between adjacent
classifications. The performance of the proposed method was then verified. From the results
obtained, we can see that the deep CNN not only successfully learns the discriminative
representation of the lateral cephalograms but also reduces the problem of overfitting by
using label distribution learning. Therefore, the deep learning model based on lateral
cephalograms can be a useful tool to assist orthodontists in the diagnosis of sagittal skeletal
patterns in children. In addition, the deep learning model based on profile photographs
had outstanding advantages in the diagnosis of skeletal Class III malocclusions.

Although the proposed method has achieved good classification performance, the
proposed algorithms used can still be affected by label confusion, and the overall accuracy
of the model still needs to be improved. Firstly, the small datasets remain a key issue.
Therefore, future work requires building larger datasets and using multicenter data wher-
ever possible. Furthermore, although the CNN structure can effectively extract the local
features of an image, it is difficult to efficiently extract its global features. In the future,
we will try to use the CNN-Transformer-based model to learn advanced representations
in order to achieve better classification. Secondly, this study is the first step in the study
of a clinical decision system for early orthodontic treatment. However, it does have the
potential to narrow the gap between orthodontic diagnosis and treatment level, realize the
hierarchical diagnosis and treatment of patients, as well as promote precision orthodontics
in young children.
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