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Abstract: Adverse ventricular remodeling is an inflexion point of disease progression in aortic
stenosis (AS) and a major determinant of prognosis. Intervention before irreversible myocardial
damage is of paramount importance to sustain favorable post-operative outcomes. Current guidelines
recommend a left ventricular ejection fraction (LVEF)-based strategy to determine the threshold for
intervention in AS. However, LVEF has several pitfalls: it denotes the left ventricular cavity volumetric
changes and it is not suited to detecting subtle signs of myocardial damage. Strain has emerged
as a contemporary imaging biomarker that describes intramyocardial contractile force, providing
information on subclinical myocardial dysfunction due to fibrosis. A large body of evidence advocates
its use to determine the switch from adaptive to maladaptive myocardial changes in AS, and to refine
thresholds for intervention. Although mainly studied in echocardiography, studies exploring the role
of strain in multi-detector row computed tomography and cardiac magnetic resonance are emerging.
This review, therefore, summarizes contemporary evidence on the role of LVEF and strain imaging in
AS prognosis, aiming to move from an LVEF-based to a strain-based approach for risk stratification
and therapeutic decision-making in AS.

Keywords: aortic stenosis; ventricular damage; left ventricular ejection fraction; strain imaging;
echocardiography; cardiac computed tomography; cardiac magnetic resonance

1. Introduction

Aortic stenosis (AS) poses pressure overload to the myocardium, causing ventricular
damage that depends, among other things, on the afterload excess, and the period of exposure.
In order to restore wall stress and maintain cardiac output under those circumstances, the
myocardium will initially respond with compensatory hypertrophy of the left ventricle (LV),
defined as excess mass, increase in relative wall thickness, and concentric hypertrophy [1].
LV hypertrophy leads to impaired compliance and elevated end-diastolic pressures [2]. If
AS is left untreated, LV interstitial space expands and diffuse myocardial fibrosis develops,
followed by replacement fibrosis and cardiomyocyte death at a later stage [3]. This marks
an inflexion point of irreversible myocardial damage and the transition to a decompensating
phase, which translates to macroscopic impairment of the LV systolic properties [4]. From this
point, the development of heart failure symptoms and malignant arrhythmias is common,
dramatically increasing the risk of mortal events (Figure 1).

Diagnostics 2023, 13, 1756. https://doi.org/10.3390/diagnostics13101756 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13101756
https://doi.org/10.3390/diagnostics13101756
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-4658-5273
https://orcid.org/0000-0001-8424-6718
https://doi.org/10.3390/diagnostics13101756
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13101756?type=check_update&version=2


Diagnostics 2023, 13, 1756 2 of 13
Diagnostics 2023, 13, 1756 2 of 15 
 

 

 

Figure 1.Symptom occurrence is an inflexion point in the progression of disease in aortic stenosis. 

Figure 1 illustrates, step by step, the evolution of symptoms, the respective progression of ventric-

ular remodeling, and its expression by the main contemporary imaging biomarkers. 

It is therefore imperative that intervention on the valve is implemented at an ap-

propriate stage of the disease, in order to avoid irreversible myocardial damage and its 

consequences. While the guidelines recommend left ventricular ejection fraction (LVEF) 

as the gold standard to describe myocardial damage and proceed to therapeutic maneu-

vers [5,6], a large body of evidence has demonstrated the superior prognostic role of de-

formation strain imaging. This review aims to aggregate and comprehensively appraise 

the current literature addressing the role of LVEF and strain imaging, by echocardiog-

raphy, cardiac computed tomography, and cardiac magnetic resonance, in AS, and seeks 

to explain the rationale behind a possible LV strain imaging-based strategy to determine 

treatment decisions. 

2. Echocardiography for Left Ventricular Function 

2.1.Prognostic Value of Left Ventricular Ejection Fraction 

Symptoms serve as a sign of established disease and dismal prognosis, and should 

prompt intervention, irrespective of LV function, in high-gradient severe AS, as long as 

the patient is not critically ill or overly fragile, for them to benefit from intervention [6]. 

However, cautious assessment of LV systolic function is of paramount importance in case 

the patient is free of symptoms, and both ESC and ACC/AHA guidelines recommend 

intervention in asymptomatic severe AS, with evidence of systolic LV dysfunction at-

tributable to the valve disease [5,6]. Guidelines suggest the use of LVEF to define systolic 

dysfunction. More specifically, intervention is advocated with Class I indication when the 

LVEF is <50%, and with IIa when the LVEF is <55% by ESC [6]. Going even further, the 

AHA/ACC suggest considering the threshold of 60% when a progressive decline in at 

least three serial imaging studies has been documented [5]. 

In a retrospective analysis of 2017 symptomatic and asymptomatic AS patients un-

dergoing surgical aortic valve replacement (AVR), Dahl et al. demonstrated a stepwise 

increase in all-cause mortality with lower preoperative LVEF values [7]. The group with 

preoperative LVEF < 50% suffered the worst outcome, whereas asymptomatic patients 

Figure 1. Symptom occurrence is an inflexion point in the progression of disease in aortic stenosis.
Figure 1 illustrates, step by step, the evolution of symptoms, the respective progression of ventricular
remodeling, and its expression by the main contemporary imaging biomarkers.

It is therefore imperative that intervention on the valve is implemented at an ap-
propriate stage of the disease, in order to avoid irreversible myocardial damage and its
consequences. While the guidelines recommend left ventricular ejection fraction (LVEF)
as the gold standard to describe myocardial damage and proceed to therapeutic maneu-
vers [5,6], a large body of evidence has demonstrated the superior prognostic role of
deformation strain imaging. This review aims to aggregate and comprehensively appraise
the current literature addressing the role of LVEF and strain imaging, by echocardiogra-
phy, cardiac computed tomography, and cardiac magnetic resonance, in AS, and seeks
to explain the rationale behind a possible LV strain imaging-based strategy to determine
treatment decisions.

2. Echocardiography for Left Ventricular Function
2.1. Prognostic Value of Left Ventricular Ejection Fraction

Symptoms serve as a sign of established disease and dismal prognosis, and should
prompt intervention, irrespective of LV function, in high-gradient severe AS, as long as
the patient is not critically ill or overly fragile, for them to benefit from intervention [6].
However, cautious assessment of LV systolic function is of paramount importance in case
the patient is free of symptoms, and both ESC and ACC/AHA guidelines recommend inter-
vention in asymptomatic severe AS, with evidence of systolic LV dysfunction attributable
to the valve disease [5,6]. Guidelines suggest the use of LVEF to define systolic dysfunction.
More specifically, intervention is advocated with Class I indication when the LVEF is <50%,
and with IIa when the LVEF is <55% by ESC [6]. Going even further, the AHA/ACC
suggest considering the threshold of 60% when a progressive decline in at least three serial
imaging studies has been documented [5].

In a retrospective analysis of 2017 symptomatic and asymptomatic AS patients un-
dergoing surgical aortic valve replacement (AVR), Dahl et al. demonstrated a stepwise
increase in all-cause mortality with lower preoperative LVEF values [7]. The group with
preoperative LVEF < 50% suffered the worst outcome, whereas asymptomatic patients with
LVEF ≥ 60% had the lowest mortality rate [7]. In keeping with those findings, another
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study demonstrated that patients with severe symptomatic and asymptomatic AS and
LVEF < 50% had the worst cumulative five-year incidence of death and heart failure hos-
pitalization, irrespective of treatment strategy (conservative or initial AVR) [8]. Similarly,
severe LV dysfunction, expressed as LVEF < 30%, was associated with higher mortality
rates among patients undergoing transcatheter aortic valve replacement (TAVR) [9].

A few studies have endeavored to identify an association between higher LVEF
thresholds and outcomes. Capoulade et al. studied a large symptomatic and asymptomatic
AS population, with at least mild AS, and concluded that patients with LVEF < 55% and
stroke volume index < 35 mL/m2 had the worst survival rates [10]. Although LVEF was
an independent predictor of all-cause mortality for the entire population (p < 0.001), it
lost this association (p = 0.56) when subgroup analysis was performed for asymptomatic
patients [10]. On the contrary, Bohbot et al. demonstrated that LVEF < 55% was a strong,
independent predictor of excess mortality in a large cohort of asymptomatic or minimally
symptomatic patients with severe AS and LVEF > 50% [11]. Patients treated both medically
and surgically with LVEF < 55% had the worst prognosis, as compared with subjects with
LVEF > 55% [11]. Going even higher in the range of LVEF, values < 60% were identified as
an independent predictor of all-cause mortality in asymptomatic severe AS subjects [12].
Ito et al. demonstrated that an LVEF < 60%, at the time of moderate AS, could predict
further deterioration of LVEF, so that many patients will already have LVEF < 50% by the
time of initial severe AS diagnosis [13]. In this regard, the authors raised the question
of early intervention of moderate AS, when LVEF is less than 60%, to prevent future
decline in myocardial function [13]. Those studies exemplified that clinically relevant LV
systolic dysfunction may already be established when LVEF is 50% to 59%, questioning the
guideline-recommended thresholds for intervention [6].

It should be highlighted that a drop in LVEF < 50%, due to severe AS, is almost
invariably accompanied by symptoms, and the prevalence of asymptomatic severe AS with
LVEF < 50% is only 0.4% [14]. Hence, a strategy of waiting for LVEF to fall to <50% to
decide on intervention, in the absence of symptoms, seems suboptimal to sustain good
post-operative results, and the most recently established threshold of 55% holds promise
to optimize outcomes [6]. Moreover, LVEF has several recognized limitations and masks
disease progression in cases of pronounced LV remodeling and small LV cavity. In this
setting, LVEF will tend to increase in parallel with the extent of concentric remodeling,
rather reflecting the relationship of wall thickness to cavity size [15]. Thus, in paradoxical
low-flow, low-gradient AS, a decrease in cardiac output, SV, and myocardial contractility
may occur, despite a preserved LVEF [16].

Nonetheless, LVEF remains the most widely available assessor of LV systolic function
that still plays an important role in assessment of AS. Details of the large scale studies ad-
dressing the prognostic role of preoperative LVEF in different AS populations are presented
in Table 1.

Table 1. Large-scale studies addressing the prognostic role of preoperative left ventricular ejection
fraction in aortic stenosis.

1st Author Year Patients n AS Population Intervention Cut-Off LVEF
(%) Outcomes

Mihaljevic et al. [17] 2008 3049 Severe AS SAVR 40% Worst long-term survival (5.1 ± 3.2 years follow up)
Halkos et al. [18] 2008 779 Undergoing SAVR SAVR 40% Worst unadjusted 1-, 3-, and 5-year survival rates

Goldberg et al. [19] 2013 5277 Severe AS SAVR 50% Worst survival at 6 months and 8 years

Dahl et al. [7] 2015 2017
Symptomatic and

asymptomatic
severe AS

SAVR 50% Worst 5-year all-cause mortality (HR, 0.41; 95% CI,
0.35–0.47)

Baron et al. [9] 2016 11,292 Undergoing TAVR TAVR 30% Higher 1-year mortality rates compared to 50–50% and
>50%

Capoulade et al.
[10] 2016 1065 At least mild AS SAVR 55% Best cut-off value to predict all-cause mortality

Ito et al. [13] 2018 928
Severe AS with
available echo

before diagnosis

Not
specified 50% Worse survival compared to LVEF 50–60% and >60%
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Table 1. Cont.

1st Author Year Patients n AS Population Intervention Cut-Off LVEF
(%) Outcomes

Taniguchi et al. [8] 2018 3794 Severe AS SAVR or
TAVR 50% Highest 5-year incidence of composite death or HF

hospitalization

Lancellotti et al. [12] 2018 1375 At least moderate
asymptomatic AS

SAVR or
TAVR 60% Independent predictor of all-cause mortality [HR: 5.01,

(95% CI):(2.93–8.57)]

Bohbot et al. [11] 2019 1678
Asymptomatic or

mildly symptomatic
severe AS

SAVR 55% 2-fold increase in all-cause mortality

Abbreviations: AS = aortic stenosis; CI = confidence interval; HF = heart failure; HR = hazard ratio; LVEF = left
ventricular ejection fraction; SAVR = surgical aortic valve replacement; TAVR = transcatheter aortic valve replacement.

2.2. Prognostic Value of Left Ventricular Global Longitudinal Strain

In spite of its widespread use, LVEF remains an oversimplified measure of assessing
myocardial function, as it only describes the volumetric alterations of the LV cavity. Be-
yond LVEF, more contemporary measures of subclinical LV dysfunction have entered the
clinical arena, allowing for earlier recognition of ventricular damage. Speckle-tracking
echocardiography represents a method of quantifying myocardial deformation and aims to
capture early decline of intrinsic myocardial contractile function, before LVEF impairment
is manifested (Figure 2) [20]. Global longitudinal strain (GLS) is the most established
application of speckle-tracking echocardiography. This technique is based on detecting and
following the movement of myocardial speckles in the longitudinal axis. It is considered
less angle- and geometry-dependent, less preload- and afterload-dependent [21,22], and
more reproducible than LVEF [23,24].

Longitudinal subendocardial fibers are the most susceptible to increased wall stress
and reduced perfusion, and will be the first to be impaired by the afterload excess. GLS is
capable of highlighting such subtle myocardial changes at the subendocardial level before a
drop in LVEF occurs [24,25]. Yingchoncharoen et al. studied 79 asymptomatic patients with
severe AS and preserved LVEF, and concluded that GLS retained its independent association
with cardiovascular outcomes, even after correction for clinical and echocardiographic
parameters in different models [26]. Those findings were confirmed in a larger cohort of
395 asymptomatic AS patients with preserved LVEF, where the subset with the lowest LV
GLS (<−12.1%) displayed the worst survival [27]. Another study focused on the role of
basal longitudinal function in asymptomatic AS subjects and proved that it could predict
future AVR [28]. A pathophysiological explanation is that myocardial diffuse interstitial
fibrosis and focal mid-wall fibrosis starts from the basal parts of the ventricle in AS, which
can be indirectly detected by GLS [29]. A recent meta-analysis of asymptomatic AS patients
with preserved LVEF demonstrated that a GLS of −14.7% was the best cut-off for death
prediction and it was associated with a >2.5 increment of mortality [30]. This body of
evidence begins to establish the role of GLS as a guide for AVR in asymptomatic AS
patients at an earlier phase than indicated by LVEF. The results of the Danish National
Randomized Study on Early Aortic Valve Replacement in Patients With Asymptomatic
Severe Aortic Stenosis (DANAVR) trial (NCT03972644) are currently awaited to determine
if asymptomatic patients with abnormal LVGL Sby echocardiography will benefit from
early AVR.

GLS is an invaluable marker of LV dysfunction in paradoxical low flow, low gradi-
ent (LFLG) AS with prominent concentric remodeling and small cavity size, where LVEF
will be supranormal and not representative of LV function. This was indicated by Kam-
peridis et al. in a group of 134 paradoxical LFLGAS patients, who had worse all-cause
mortality with GLS > −15% [31], and was confirmed by other investigators [32]. In the
case of classical LFLG AS, reduced LVEF is the sequela of long-standing disease and is
invariably accompanied by impaired GLS. Even in this subset of patients, GLS can elicit
significant incremental prognostic information beyond that obtained with LVEF [33]. Rest
GLS and stress GLS, obtained during low-dose dobutamine stress echocardiography, were
independent predictors of mortality in a large cohort of classical LFLG AS patients [34].
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Figure 2. Shifting from left ventricular ejection fraction (LVEF) to strain imaging for severe aortic
stenosis prognosis. This figure depicts the progression of three different echocardiographic modalities
for assessing myocardial function in aortic stenosis, starting from LVEF and moving to the more
contemporary imaging biomarkers of global longitudinal strain (GLS), and myocardial work. An
example of applying these modalities is illustrated in three different subgroups of aortic stenosis
patients including (i) normal flow, high gradient, (ii) paradoxical low flow, low gradient, and (iii) clas-
sical low flow, low gradient. GWE—global work efficiency; MPG—mean gradient; Svi—stroke
volume indexed.

After the intervention, if the valve-related pressure overload has been retracted from
the ventricle on time, regression of diffuse fibrosis and myocardial cellular hypertrophy
may occur. In this instance, GLS is a sensitive marker of myocardial systolic recovery,
while LVEF might fail to detect such subtle functional improvement [35,36]. It has been
proposed that GLS > −13.3% predicts a lack of myocardial recovery after TAVR [36], while
the magnitude of improvement in GLS has been shown to have a prognostic impact on
survival after TAVR [37]. In LFLG AS, GLS improved one year after TAVR, in both classical
and paradoxical type groups, whereas LVEF failed to identify the LV functional recovery in
the paradoxical type group [38]. For the patients with classical LFLG AS, although TAVR is
considered the preferred treatment choice a baseline, GLS may be able to determine the
TAVR-responders; GLS > −12% has been suggested for identifying patients with a lack of
flow reserve during dobutamine stress echocardiography and lack of reverse remodeling
after TAVR [39]. The main features of studies addressing the prognostic role of GLS by
echocardiography are presented in Table 2.
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Table 2. Studies addressing the prognostic role of left ventricular global longitudinal strain, derived
by speckle tracking echocardiography in aortic stenosis.

1st Author Year n AS Population Cut-Off LV
GLS (-%) Association with Outcomes

Lancellottiet et al. [40] 2010 163 Moderate and severe AS 15.9 Significant predictive power for MACE
Zito et al. [41] 2011 52 Asymptomatic severe AS 18 Significant predictive power for MACE

Dahl et al. [42] 2012 125 Symptomatic severe AS with
LVEF > 40% 10.3 Increased overall mortality, cardiac mortality, and MACEs

Kearney et al. [43] 2012 146 Mild, moderate, and severe AS 15 One-year MACE-free survival was only 25%
Yingchoncharoen

et al. [26] 2012 79 Asymptomatic severe AS with
LVEF > 50% 15 16% survival rate at 40 months follow up

Kempny et al. [36] 2013 101 Severe AS undergoing TAVR 13.3 Predictor of lack of longitudinal strain recovery post TAVR

Logstrup et al. [37] 2013 100 Severe AS undergoing TAVR 11.95 Pre-TAVR cut-off did not impact on prognosis. LV GLS
improvement post TAVR predicted outcomes.

Kamperidis et al. [31] 2014 134
Symptomatic paradoxical
low-flow, low-gradient AS
with AVAi ≤ 0.6 cm2/m2

15 Mortality rate of 22.4% 3 years after AVR

Kusunose et al. [27] 2014 395 Moderate and severe AS with
LVEF > 50% 12.1 43% death during 4.4 ± 1.4 years of follow up

Sato et al. [32] 2014 98
Paradoxical low-flow,

low-gradient AS with AVAi ≤
0.6 cm2/m2

17 MACE-free survival rate at 2-year follow-up was 57.5%

Nagata et al. [44] 2015 104 Asymptomatic severe AS with
LVEF > 50% 17 Significant predictive power for MACE

Dahou et al. [34] 2015 126
Low-flow, low-gradient AS

with LVEF ≤ 40% and AVAi ≤
0.6 cm2/m2

9 49% 3-year survival

Suzuki Eguchi et al. [45] 2018 128 Severe AS undergoing TAVR 10.6 Freedom from events for patients with GLS ≤ −10.6%
occurred more often compared to GLS > −10.6

Vollema et al. [25] 2018 220 Asymptomatic severe AS 18.2 Higher risk for symptoms development or requiring aortic
valve intervention

D’Andrea A et al. [39] 2019 75
Classical low-flow,

low-gradient severe AS
undergoing TAVR

12 Identified patients with lack of reverse remodeling after TAVR

Povlsen et al. [46] 2020 411 Severe AS undergoing TAVR 14 Independent predictor of all-cause mortality

Fukui et al. [47] 2020 510 Symtomatic severe AS 16 Patients with normal LVEFs but reduced GLS had worst
survival that those with normal LVEFs and reduced GLS

Lee et al. [48] 2022 412 Severe AS undergoing TAVR 16 Independent predictor of all-cause death and the
composite outcome

Abbreviations: AS—aortic stenosis; AVAi—aortic valve area index; AVR—aortic valve replacement; HR—hazard
ratio; LVEF—left ventricular ejection fraction; LV GLS—left ventricular global longitudinal strain; MACE—major
adverse cardiovascular event; TAVR—transcatheter aortic valve replacement.

2.3. Prognostic Role of Non-Invasively Assessed Left Ventricular Myocardial Work

Despite being a sensitive surrogate of occult longitudinal systolic dysfunction, GLS
still does not account for the global afterload which differs with AS severity and peripheral
vascular resistance. Global afterload is the cause of increased metabolic demand and oxygen
consumption of cardiomyocytes in order to maintain cardiac output. Russel et al. described
a novel non-invasive method that reflects those metabolic demands by assessing different
parameters of the energy efficiency of the LV [49,50]. This method estimates LV myocardial
work, via dedicated software, by integrating LV longitudinal strain measurements by
speckle-tracking echocardiography, LV afterload estimates, and cardiac event timing to
derive a pressure strain loop. Noninvasive LV pressure curves are formulated according to
the duration of ejection and isovolumic phases, as determined by left-sided valve timing
events. Four different indices of myocardial work are calculated including:

(i) LV global work index, representing the total work within the LV pressure-strain loops;
(ii) LV global constructive work, defined as the work performed during myocardial

shortening in systole and the work during myocardial lengthening in isovolumic
relaxation;

(iii) LV global wasted work, representing the work contributing to the lengthening of the
cardiac myocytes during systole and the shortening during isovolumicrelaxation; and

(iv) LV global work efficiency, defined as the percentage of effectively spent work by the
LV myocytes, and obtained by the following formula:

LV global work efficiency =

(
global constructive work

[global constructive work + global wasted work]

)
× 100%
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Whereas normally non-invasive brachial blood pressure is entered in the module as
the equivalent of the LV afterload, this is not the case for severe AS. In severe AS, global
afterload is the composite of the peripheral vascular component (brachial blood pressure)
and the valvular component (transvalvular mean gradient) posed to the ventricle. Taking
this into account, Fortuni et al. developed a method to evaluate LV myocardial work in
patients with severe AS, by adding the echocardiography-derived transvalvular mean
gradient to the systolic blood pressure [51]. Their formula showed excellent agreement
with invasively-derived LV pressure recordings, confirming the accuracy of the proposed
method to evaluate myocardial work by echocardiography in severe AS [51]. Global
constructive work (odds ratio, 0.941 [95% CI, 0.887–0.998], p = 0.042, per 100 mmHg/%
increase) and global work index (odds ratio, 0.912 [95% CI, 0.849–0.980], p = 0.012, per
100 mmHg/% increase), in a cohort of symptomatic severe AS patients, were the only
echocardiography indices independently associated with heart failure symptoms, after
adjustment for right ventricular free wall strain [51]. Accordingly, myocardial work is
significantly reduced after TAVR, reflecting the valve-related pressure overload withdrawal
from the ventricle [52]. The myocardial work parameters seem to be early markers of
afterload-related LV maladaptation and functional impairment. Their prognostic validity
warrants further exploration in order to assess whether they can add prognostic information
beyond that obtained by GLS (Figure 2).

3. Multi-Detector Row Computed Tomography for Left Ventricular Function

Computed tomography plays a prominent role in AS assessment, mainly by obtaining
information regarding the extent of aortic calcification, aortic valve–aortic root anatomic
relationship, and aortic valve area. It is the guideline-recommended modality for establish-
ing severity in paradoxical LFLG AS, and in classical LFLG when there is no flow reserve
by dobutamine stress echocardiography [6]. Additionally, it is part of the standard of care
in pre-TAVR evaluation to plan the intervention. Recent advances in technology have
allowed multi-detector row computed tomography (MDCT) to expand its role by providing
information on the myocardial function.

MDCT is the cardiac imaging modality that provides three-dimensional data of the
heart with the best spatial resolution, and allows the volumetric quantification of each
cardiac chamber and computation of the LVEF and right ventricular EF. Thus, a MDCT-
derived staging system of extra-aortic cardiac damage has recently been validated in a
population of 405 patients undergoing TAVR [53]. The population was classified into five
different stages of disease progression, based on volumetric chamber quantification, LV
hypertrophy, and grading of mitral annular calcification acquired entirely from the pre-
TAVR MDCT scans [53]. The staging system classified patients as: no myocardial damage
(Stage 0), LV damage; LVEF < 50% or LV mass index > 79.2 gr/m2 for male and >63.8 gr/m2

for female (Stage 1), left atrial or mitral damage; left atrial volume index > 56 mL/m2,
atrial fibrillation or severe mitral annular calcification (Stage 2), right atrial damage; right
atrial volume index > 70 mL/m2 (Stage 3) and right ventricular damage; right ventricular
EF < 35% (Stage 4) [53]. This system enabled refined risk stratification of severe AS, with
Stage 3 and 4 being independently associated with higher all-cause mortality [53], and the
results were similar to those obtained by an echocardiography-based staging system [54].

Apart from the volumetric assessment of cardiac function with LVEF and right ven-
tricular EF evaluation, a novel dynamic feature-tracking software has arisen, permitting
GLS analysis from MDCT data. Hence, the emerging technology allows shifting from LVEF
to LV GLS in MDCT, in parallel with the echocardiography shift from LVEF to LV GLS.
MDCT-derived GLS showed excellent correlation with speckle-tracking-echocardiography-
derived GLS (r = 0.791, p < 0.001) in a cohort of 214 TAVR recipients [55]. Moreover,
MDCT-derived GLS, at the pre-TAVR assessment, has emerged as an independent associate
of all-cause mortality [56,57], with a cut-off of −14% being proposed to determine the worst
outcomes [57]. In a large cohort of 432 symptomatic severe AS patients undergoing TAVR,
not only was pre-operative MDCT-derived GLS an independent predictor of the outcome,
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but also, subjects who exhibited improvement of GLS one month post-TAVR demonstrated
favorable clinical outcomes [58]. This finding outlines the capacity of MDCT-derived LV
GLS to detect subtle myocardial improvement post-TAVR (Table 3) [58]. Accordingly, it
could be beneficial to measure GLS at part of the pre-TAVR MDCT protocol assessment, as
it provides valuable information on post-TAVR prognosis [56,57].

Table 3. Studies addressing the prognostic role of left ventricular global longitudinal strain derived
by multi-detector row computed tomography and cardiac magnetic resonance in aortic stenosis.

1st Author Year n AS Population Cut-Off LV GLS
(-%) Association with Outcomes

Multi-detector row computed tomography

Fukui et al. [56] 2020 223 Severe AS undergoing TAVR 20.5 Independent association with all-cause
mortality and composite outcome

Gegenava et al. [57] 2020 214 Severe AS undergoing TAVR 14
After 48 months of follow-up, rate of

all-cause mortality for GLS ≤ −14% was
15%, versus 28% for GLS > −14%

Fukui et al. [58] 2022 431 Severe AS undergoing TAVR 18.2
GLS > −18.2% had a higher risk of the

composite outcome than GLS ≤ −18.2%
(HR, 1.77; 95% CI, 1.18–2.66; p = 0.006)

Cardiac magnetic resonance

Kim et al. [59] 2020 123
Asymptomatic moderate to
severe AS with preserved

LVEF
17.9 GLS > −17.9% had worse event-free

survival than GLS < −17.9%

Fukui et el. [60] 2022 147 Low-gradient moderate to
severe AS 12.4

GLS < −12.4% was associated with a
higher risk for all-cause mortality and

composite outcome

Abbreviations: AS—aortic stenosis; AVAi—aortic valve area index; CI—confidence interval; HR—hazard ratio;
LVEF—left ventricular ejection fraction; LV GLS—left ventricular global longitudinal strain; TAVR—transcatheter
aortic valve replacement.

4. Cardiac Magnetic Resonance for Left Ventricular Function

Cardiac magnetic resonance (CMR) can extend beyond volumetric quantification and
has the unique strength of myocardial tissue characterization. The extent of myocardial
damage can be effectively quantified in the form of local fibrosis by late gadolinium
enhancement and in the form of diffuse fibrosis by T1 mapping.

The distribution of gadolinium corresponds to areas of focal replacement fibrosis, which,
histologically, represents irreversible myocardial damage and cardiomyocyte death [61].
Dweck et al. demonstrated that mid-wall late gadolinium enhancement was an inde-
pendent mortality predictor among symptomatic and asymptomatic patients with at least
moderate AS, and provided incremental prognostic information on top of LVEF [62].
Barone-Rockette et al. studied 154 patients with severe symptomatic AS, undergoing surgi-
cal AVR, and concluded that the presence of late gadolinium enhancement conveyed poor
post-operative survival outcomes [63]. In a multicenter registry of 674 patients with severe
AS, who had undergone CMR and were treated with surgical or transcatheter AVR, Musa
et al. confirmed the aforementioned results by demonstrating an independent association of
late gadolinium presence with post-intervention mortality, irrespective of scar pattern [64].

Myocardial T1 mapping expresses the degree of extracellular volume expansion and
diffuse myocardial fibrosis, which presents earlier than focal replacement fibrosis and is
reversible if a well-timed AVR is pursued [65]. Higher native T1 values were associated
with a higher risk of pre- and post-operative events in a group of 127 symptomatic and
asymptomatic patients with at least moderate AS [66]. Extracellular volume fraction
represents another T1 mapping-derived method to quantify diffuse myocardial fibrosis.
When assessed in 440 patients with severe symptomatic AS awaiting AVR, extracellular
volume fraction retained an independent association with mortality, even after correction
for late gadolinium enhancement [67]. Both late gadolinium enhancement and T1-mapping
provide complementary information regarding myocardial fibrosis and can be used in
conjunction to risk stratify AS patients before intervention [68].
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Nonetheless, further software development has arisen which enables LV deformation
assessment by feature-tracking CMR strain analysis in AS, which can be derived from
steady-state free precession cine images [69]. Feature-tracking CMR strain parameters in
the longitudinal, radial, and circumferential orientation are significantly reduced in patients
with AS, compared to normal subjects [70], even when measured post-TAVR [71]. In a
group of 63 severe AS patients treated with surgical AVR, both radial, circumferential and
longitudinal tissue-tracking stain parameters showed correlation with LV mass regression
and extracellular volume, post-intervention [72]. CMR-derived GLS was an independent
predictor of reverse remodeling [72]. With respect to the different AS subgroups, feature
tracking GLS showed a mild reduction in high-flow high-gradient AS and a severe reduction
in classical LFLG AS, but was preserved in paradoxical LFLG subtype, compared to healthy
controls in a small series [73]. In this study, paradoxical LFLG was the only subgroup
that did not exhibit an increase of CMR-GLS after TAVR, but the small study cohort was a
major limitation [73]. Prognostic information was delivered by a larger cohort of at least
moderate AS patients, where a feature tracking CMR-derived GLS values of >−17.9%
identified patients with the worst event-free survival [59]. Similarly, a circumferential
strain of >−18.7% was associated with reduced survival in a cohort undergoing surgical or
transcatheter AVR [74]. In the study by Fukui et al., CMR-derived LV GLS emerged as an
independent predictor of all-cause mortality in a group of 123 patients with low-gradient
severe AS [60]. In the same study, CMR LV GLS <−11% was used, together with the
presence of late gadolinium enhancement and extracellular volume >28%, as part of a
three-component CMR risk marker tool, where each component had a cumulative effect
on the prognosis [60]. Details of those studies are summarized in Table 3. Ultimately,
feature-tracing-based CMR strain analysis may be a useful alternative to echocardiography
when local expertise is available, but further proof of its prognostic relevance is necessary
to establish its role in AS management.

5. Conclusions

LVEF assessed by echocardiography is the main parameter for LV function evaluation
in severe AS, endorsed by the current guidelines. However, LVEF is limited to a mere
description of the LV volumetric changes during a cardiac cycle. GLS by speckle-tracking
echocardiography has emerged as a more sensitive index of LV function, detecting even
subtle LV intramyocardial changes that the volumetric LVEF may miss. Considering that
LV dysfunction is used as a criterion for AVR, the evaluation of GLS may define the precise
time-point for intervention, which is of paramount importance for prognosis, post-AVR.
Evidence that GLS may be evaluated with feature-tracking MDCT and CMR has emerged,
but the available data are still scarce and further research is warranted to determine its
value in clinical practice.
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Abbreviations

AS aortic stenosis
AVR aortic valve replacement
CMR cardiac magnetic resonance
GLS global longitudinal strain
LFLG low flow, low gradient
LV left ventricle
LVEF left ventricular ejection fraction
MDCT multi-detector row computed tomography
TAVR transcatheter aortic valve replacement
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