Imaging Function and Relative Light Transmission of Explanted Opacified Hydrophilic Acrylic Intraocular Lenses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Intraocular Lenses
2.2. Light Microscopy
2.3. Optical Quality Assessment
2.4. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Auffarth, G.U.; Apple, D.J. History of the development of intraocular lenses. Ophthalmologe 2001, 98, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
- Tandogan, T.; Khoramnia, R.; Choi, C.Y.; Scheuerle, A.; Wenzel, M.; Hugger, P.; Auffarth, G.U. Optical and material analysis of opacified hydrophilic intraocular lenses after explantation: A laboratory study. BMC Ophthalmol. 2015, 15, 170. [Google Scholar] [CrossRef] [PubMed]
- Neuhann, I.M.; Kleinmann, G.; Apple, D.J. A New Classification of Calcification of Intraocular Lenses. Ophthalmology 2008, 115, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Britz, L.; Schickhardt, S.K.; Yildirim, T.M.; Auffarth, G.U.; Lieberwirth, I.; Khoramnia, R. Development of a standardized in vitro model to reproduce hydrophilic acrylic intraocular lens calcification. Sci. Rep. 2022, 12, 7685. [Google Scholar] [CrossRef]
- Belin, P.J.; Kim, J.H.; Sheikh, A.; Winokur, J.; Rhee, D.; Deramo, V. Incidence and risk of scleral-fixated Akreos (AO60) lens opacifi-cation: A case series. J. VitreoRetinal Dis. 2021, 5, 157–162. [Google Scholar] [CrossRef]
- Neuhann, T.; Yildirim, T.M.; Son, H.-S.; Merz, P.R.; Khoramnia, R.; Auffarth, G.U. Reasons for explantation, demographics, and material analysis of 200 intraocular lens explants. J. Cataract Refract. Surg. 2020, 46, 20–26. [Google Scholar]
- Gurabardhi, M.; Häberle, H.; Aurich, H.; Werner, L.; Pham, D.-T. Serial intraocular lens opacifications of different designs from the same manufacturer: Clinical and light microscopic results of 71 explant cases. J. Cataract Refract. Surg. 2018, 44, 1326–1332. [Google Scholar] [CrossRef]
- Oculentis, B.V. Urgent Field Safety Notice for Lentis L or LS or LU by Oculentis BV. Available online: https://www.bfarm.de/SharedDocs/Kundeninfos/EN/11/2017/09163-17_kundeninfo_en.pdf;jsessionid=92D992D14BE58D1D3D761D87295A903D.intranet262?__blob=publicationFile (accessed on 23 March 2023).
- Scherer, N.C.D.; Müller, K.M.; Prahs, P.M.; Radeck, V.; Helbig, H.; Märker, D.A. Serial opacification of a hydrophilic–hydrophobic acrylic intraocular lens: Analysis of potential risk factors. J. Cataract Refract. Surg. 2020, 46, 1624–1629. [Google Scholar] [CrossRef]
- Łabuz, G.; Yildirim, T.M.; Khoramnia, R.; Son, H.-S.; Auffarth, G.U. Optical function of intraocular lenses in different opacification patterns: Metrology analysis of 67 explants. J. Cataract Refract. Surg. 2020, 47, 1210–1217. [Google Scholar] [CrossRef]
- Łabuz, G.; Yildirim, T.M.; van den Berg, T.J.T.P.; Khoramnia, R.; Auffarth, G.U. Assessment of straylight and the modulation transfer function of intraocular lenses with centrally localized opacification associated with the intraocular injection of gas. J. Cataract Refract. Surg. 2018, 44, 615–622. [Google Scholar] [CrossRef]
- Werner, L.; Stover, J.C.; Schwiegerling, J.; Das, K.K. Effects of Intraocular Lens Opacification on Light Scatter, Stray Light, and Overall Optical Quality/Performance. Investig. Opthalmol. Vis. Sci. 2016, 57, 3239–3247. [Google Scholar] [CrossRef] [PubMed]
- Goemaere, J.; Trigaux, C.; Denissen, L.; Dragnea, D.; Hua, M.-T.; Tassignon, M.-J.; Dhubhghaill, S.N. Fifteen years of IOL exchange: Indications, outcomes, and complications. J. Cataract Refract. Surg. 2020, 46, 1596–1603. [Google Scholar] [CrossRef]
- Khoramnia, R.; Yildirim, T.M.; Łabuz, G.; Mayer, C.S.; Auffarth, G.U. Opacification of intraocular lenses: Laboratory and clinical findings. Ophthalmologe 2021, 118, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Łabuz, G.; Yildirim, T.M.; Auffarth, G.U.; Son, H.-S.; Khoramnia, R. Laboratory evaluation of higher-order aberrations and light scattering in explanted opacified intraocular lenses. Eye Vis. 2021, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Tandogan, T.; Auffarth, G.U.; Choi, C.Y.; Liebing, S.; Mayer, C.; Khoramnia, R. In vitro comparative optical bench analysis of a spherical and aspheric optic design of the same IOL model. BMC Ophthalmol. 2017, 17, 9. [Google Scholar] [CrossRef]
- Holladay, J.T.; van Dijk, H.; Lang, A.; Portney, V.; Willis, T.R.; Sun, R.; Oksman, H.C. Optical performance of multifocal intraocular lenses. J. Cataract Refract. Surg. 1990, 16, 413–422. [Google Scholar] [CrossRef]
- Rawer, R.; Stork, W.; Spraul, C.W.; Lingenfelder, C. Imaging quality of intraocular lenses. J. Cataract Refract. Surg. 2005, 31, 1618–1631. [Google Scholar] [CrossRef]
- Khoramnia, R.; Salgado, J.; Auffarth, G.; Schmidt, S.; Wegner, A.; Kobuch, K.; Von Mohrenfels, C.W. Eintrübung einer hydrophilen Intraokularlinse 4 Jahre nach Kataraktoperation. Der. Ophthalmol. 2012, 109, 483–486. [Google Scholar] [CrossRef]
- Balasubramaniam, C.; Goodfellow, J.; Price, N.; Kirkpatrick, N. Opacification of the Hydroview H60M intraocular lens: Total patient recall. J. Cataract Refract. Surg. 2006, 32, 944–948. [Google Scholar] [CrossRef]
- Sher, J.H.; Gooi, P.; Dubinski, W.; Brownstein, S.; El-Defrawy, S.; Nash, W.A. Comparison of the incidence of opacification of Hy-droview hydrogel intraocular lenses with the ophthalmic viscosurgical device used during surgery. J. Cataract Refract. Surg. 2008, 34, 459–464. [Google Scholar] [CrossRef]
- Costa, J.F.; Bompastor-Ramos, P.; Marques, M.; Henriques, J.; Póvoa, J.; Lobo, C.; Alió, J.L.; Werner, L.; Murta, J. Large-scale opacification of a hydro-philic/hydrophobic intraocular lens. Eur. J. Ophthalmol. 2020, 30, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Gashau, A.G.; Anand, A.; Chawdhary, S. Hydrophilic acrylic intraocular lens exchange: Five-year experience. J. Cataract Refract. Surg. 2006, 32, 1340–1344. [Google Scholar] [CrossRef] [PubMed]
- Dagres, E.; Khan, M.A.; Kyle, G.M.; Clark, D. Perioperative complications of intraocular lens exchange in patients with opacified Aqua-Sense lenses. J. Cataract Refract. Surg. 2004, 30, 2569–2573. [Google Scholar] [CrossRef] [PubMed]
- Grzybowski, A.; Markeviciute, A.; Zemaitiene, R. A narrative review of intraocular lens opacifications: Update Ann. Transl. Med. 2020, 8, 1547. [Google Scholar] [CrossRef] [PubMed]
- Leysen, I.; Bartholomeeusen, E.; Coeckelbergh, T.; Tassignon, M.J. Surgical outcomes of intraocular lens exchange: Five-year study. J. Cataract Refract. Surg. 2009, 35, 1013–1018. [Google Scholar] [CrossRef]
- Barra, D.; Werner, L.; Costa, J.L.P.; Morris, C.; Ribeiro, T.; Ventura, B.V.; Dornelles, F. Light scattering and light transmittance in a series of calcified single-piece hydrophilic acrylic intraocular lenses of the same design. J. Cataract Refract. Surg. 2014, 40, 121–128. [Google Scholar] [CrossRef]
- Gartaganis, S.P.; Kanellopoulou, D.G.; Mela, E.K.; Panteli, V.S.; Koutsoukos, P.G. Opacification of Hydrophilic Acrylic Intraocular Lens Attributable to Calcification: Investigation on Mechanism. Am. J. Ophthalmol. 2008, 146, 395–403.e2. [Google Scholar] [CrossRef]
- Drimtzias, E.G.; Rokidi, S.G.; Gartaganis, S.P.; Koutsoukos, P.G. Experimental Investigation on Mechanism of Hydrophilic Acrylic Intraocular Lens Calcification. Am. J. Ophthalmol. 2011, 152, 824–833.e1. [Google Scholar] [CrossRef]
- Lai, J.-Y.; Chen, K.-H.; Hsu, W.-M.; Lee, T.-H.; Lin, S.-Y. Multiple Elements in the Deposits of Opacified Hydroview Intraocular Lens. Am. J. Ophthalmol. 2005, 139, 1123–1125. [Google Scholar] [CrossRef]
- Cavallini, G.M.; Volante, V.; Campi, L.; De Maria, M.; Fornasari, E.; Urso, G. Postoperative diffuse opacification of a hydrophilic acrylic intraocular lens: Analysis of an explant. Int. Ophthalmol. 2017, 38, 1733–1739. [Google Scholar] [CrossRef]
- Yildirim, T.M.; Auffarth, G.U.; Łabuz, G.; Bopp, S.; Son, H.-S.; Khoramnia, R. Material Analysis and Optical Quality Assessment of Opacified Hydrophilic Acrylic Intraocular Lenses After Pars Plana Vitrectomy. Am. J. Ophthalmol. 2018, 193, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Gartaganis, S.P.; Prahs, P.; Lazari, E.D.; Gartaganis, P.S.; Helbig, H.; Koutsoukos, P.G. Calcification of Hydrophilic Acrylic Intraocular Lenses with a Hydrophobic Surface: Laboratory Analysis of 6 Cases. Am. J. Ophthalmol. 2016, 168, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.P.; Moon, K.; Lee, J.H.; Jun, J.H.; Joo, C.K. Subsurface calcification of hydrophilic refractive multifocal intraocular lenses with a hydrophobic surface: A case series. Medicine 2019, 98, e18379. [Google Scholar] [CrossRef] [PubMed]
- Bompastor-Ramos, P.; Póvoa, J.; Lobo, C.; Rodriguez, A.E.; Alió, J.L.; Werner, L.; Murta, J.N. Late postoperative opacification of a hydrophilic-hydrophobic acrylic intraocular lens. J. Cataract Refract. Surg. 2016, 42, 1324–1331. [Google Scholar] [CrossRef]
- Yamashita, K.; Hayashi, K.; Hata, S. Toric Lentis Mplus intraocular lens opacification: A case report. Am. J. Ophthalmol. Case Rep. 2020, 18, 100672. [Google Scholar] [CrossRef]
- Yildirim, T.M.; Łabuz, G.; Khoramnia, R.; Son, H.S.; Schickhardt, S.K.; Lieberwirth, I.; Knorz, M.C.; Auffarth, G.U. Impact of Primary Calcification in Segmented Refractive Bifocal Intraocular Lenses on Optical Performance Including Straylight. J. Refract. Surg. 2020, 36, 20–27. [Google Scholar] [CrossRef]
- Izak, A.M.; Werner, L.; Pandey, S.K.; Apple, D.J. Calcification of modern foldable hydrogel intraocular lens designs. Eye 2003, 17, 393–406. [Google Scholar] [CrossRef]
- Michelson, J.; Werner, L.; Ollerton, A.; Leishman, L.; Bodnar, Z. Light scattering and light transmittance in intraocular lenses explanted because of optic opacification. J. Cataract Refract. Surg. 2012, 38, 1476–1485. [Google Scholar] [CrossRef]
- Hecht, S. The Relation between Visual Acuity and Illumination. J. Gen. Physiol. 1928, 11, 255–281. [Google Scholar] [CrossRef]
- Van den Berg, T.J.T.P. The (lack of) relation between straylight and visual acuity. Two domains of the point-spread-function. Ophthalmic Physiol. Opt. 2017, 37, 333–341. [Google Scholar] [CrossRef]
- Son, H.-S.; Łabuz, G.; Khoramnia, R.; Yildirim, T.M.; Choi, C.Y.; Knorz, M.C.; Auffarth, G.U. Visualization of Forward Light Scatter in Opacified Intraocular Lenses and Straylight Assessment. Diagnostics 2021, 11, 1512. [Google Scholar] [CrossRef] [PubMed]
- Van der Mooren, M.; Rosén, R.; Franssen, L.; Lundström, L.; Piers, P. Degradation of Visual Performance with Increasing Levels of Retinal Stray Light. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5443–5448. [Google Scholar] [CrossRef] [PubMed]
- Abuz, G.; Reus, N.J.; van den Berg, T.J. Ocular straylight in the normal pseudophakic eye. J. Cataract Refract. Surg. 2015, 41, 1406–1415. [Google Scholar]
- Van Bree, M.C.; Zijlmans, B.L.; Van den Berg, T.J. Effect of neodymium:YAG laser capsulotomy on retinal straylight values in patients with posterior capsule opacification. J. Cataract Refract. Surg. 2008, 34, 1681–1686. [Google Scholar] [CrossRef]
- Blundell, M.S.; Mayer, E.J.; Knox Cartwright, N.E.; Hunt, L.P.; Tole, D.M.; Dick, A.D. The effect on visual function of Hydroview intraocular lens opacification: A cross-sectional study. Eye 2010, 24, 1590–1598. [Google Scholar] [CrossRef] [PubMed]
IOL Refractive Power (D) | IOL Clarity | Number of Samples | 3-mm Aperture | 3.75-mm Aperture | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MTF @ 25 lp/mm, Median Value (IQR) | MTF @ 50 lp/mm, Median Value (IQR) | MTF @ 100 lp/mm, Median Value (IQR) | Strehl Ratio, Median Value (IQR) | Relative Light Transmission (Percentage), Median Value (IQR) | MTF @ 25 lp/mm, Median Value (IQR) | MTF @ 50 lp/mm, Median Value (IQR) | MTF @ 100 lp/mm, Median Value (IQR) | Strehl Ratio, Median Value (IQR) | Relative Light Transmission (Percentage), Median Value (IQR) | |||
19.5 | clear | 1 | 0.89 | 0.77 | 0.59 | 0.91 | 100 | 0.86 | 0.70 | 0.48 | 0.69 | 100 |
opacified | 4 | 0.88 (0.07) | 0.76 (0.08) | 0.55 (0.07) | 0.82 (0.05) | 48.0 (10.9) | 0.85 (0.02) | 0.68 (0.01) | 0.47 (0.01) | 0.59 (0.05) | 39.30 (12.44) | |
20.0 | clear | 1 | 0.87 | 0.74 | 0.55 | 0.89 | 100 | 0.81 | 0.62 | 0.41 | 0.64 | 100 |
opacified | 4 | 0.90 (0.03) | 0.79 (0.04) | 0.60 (0.03) | 0.83 (0.10) | 46.7 (5.0) | 0.88 (0.05) | 0.75 (0.09) | 0.54 (0.10) | 0.69 (0.04) | 37.70 (2.41) | |
21.5 | clear | 1 | 0.87 | 0.74 | 0.54 | 0.83 | 100 | 0.82 | 0.63 | 0.44 | 0.62 | 100 |
opacified | 8 | 0.88 (0.02) | 0.76 (0.02) | 0.57 (0.03) | 0.87 (0.13) | 55.7 (17.3) | 0.84 (0.03) | 0.68 (0.06) | 0.47 (0.05) | 0.65 (0.08) | 46.13 (24.50) | |
22.5 | clear | 1 | 0.87 | 0.74 | 0.55 | 0.84 | 100 | 0.80 | 0.60 | 0.42 | 0.59 | 100 |
opacified | 5 | 0.88 (0.01) | 0.76 (0.03) | 0.59 (0.06) | 0.87 (0.04) | 62.1 (16.1) | 0.84 (0.02) | 0.68 (0.04) | 0.45 (0.06) | 0.66 (0.08) | 56.68 (22.12) | |
23.0 | clear | 1 | 0.87 | 0.75 | 0.56 | 0.87 | 100 | 0.77 | 0.56 | 0.39 | 0.54 | 100 |
opacified | 6 | 0.88 (0.02) | 0.76 (0.02) | 0.56 (0.01) | 0.86 (0.03) | 61.7 (23.5) | 0.83 (0.03) | 0.65 (0.05) | 0.44 (0.07) | 0.63 (0.03) | 64.19 (33.35) | |
24.5 | clear | 1 | 0.88 | 0.76 | 0.57 | 0.86 | 100 | 0.83 | 0.64 | 0.43 | 0.62 | 100 |
opacified | 5 | 0.87 (0.03) | 0.75 (0.06) | 0.56 (0.06) | 0.82 (0.08) | 63.5 (14.2) | 0.80 (0.01) | 0.59 (0.01) | 0.39 (0.01) | 0.56 (0.04) | 61.40 (18.19) | |
all refractive powers | clear | 6 | 0.87 (0.01) | 0.74 (0.01) | 0.56 (0.02) | 0.86 (0.04) | 100 (0) | 0.81 (0.02) | 0.62 (0.03) | 0.42 (0.02) | 0.62 (0.04) | 100 (0) |
opacified | 32 | 0.88 (0.02) | 0.76 (0.03) | 0.57 (0.05) | 0.85 (0.05) | 55.6 (20.8) | 0.84 (0.04) | 0.68 (0.06) | 0.47 (0.07) | 0.63 (0.11) | 47.07 (29.25) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naujokaitis, T.; Khoramnia, R.; Łabuz, G.; Choi, C.Y.; Auffarth, G.U.; Tandogan, T. Imaging Function and Relative Light Transmission of Explanted Opacified Hydrophilic Acrylic Intraocular Lenses. Diagnostics 2023, 13, 1804. https://doi.org/10.3390/diagnostics13101804
Naujokaitis T, Khoramnia R, Łabuz G, Choi CY, Auffarth GU, Tandogan T. Imaging Function and Relative Light Transmission of Explanted Opacified Hydrophilic Acrylic Intraocular Lenses. Diagnostics. 2023; 13(10):1804. https://doi.org/10.3390/diagnostics13101804
Chicago/Turabian StyleNaujokaitis, Tadas, Ramin Khoramnia, Grzegorz Łabuz, Chul Young Choi, Gerd U. Auffarth, and Tamer Tandogan. 2023. "Imaging Function and Relative Light Transmission of Explanted Opacified Hydrophilic Acrylic Intraocular Lenses" Diagnostics 13, no. 10: 1804. https://doi.org/10.3390/diagnostics13101804
APA StyleNaujokaitis, T., Khoramnia, R., Łabuz, G., Choi, C. Y., Auffarth, G. U., & Tandogan, T. (2023). Imaging Function and Relative Light Transmission of Explanted Opacified Hydrophilic Acrylic Intraocular Lenses. Diagnostics, 13(10), 1804. https://doi.org/10.3390/diagnostics13101804