Automated Opportunistic Trabecular Volumetric Bone Mineral Density Extraction Outperforms Manual Measurements for the Prediction of Vertebral Fractures in Routine CT
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. CT Image Acquisition
2.3. Opportunistic CT-Based Measurements of Volumetric BMD
2.3.1. Asynchronous Calibration and Correction for Contrast Medium
2.3.2. Automatic and Manual Extraction of Trabecular Volumetric BMD
2.3.3. Image Reconstructions for Quality Assurance
2.4. Clinical Thresholds for Volumetric BMD Measures
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis Prevention, Diagnosis, and Therapy. JAMA 2001, 285, 785–795. [Google Scholar] [CrossRef]
- Johnell, O.; Kanis, J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 2006, 17, 1726–1733. [Google Scholar] [CrossRef] [PubMed]
- Ballane, G.; Cauley, J.A.; Luckey, M.M.; El-Hajj Fuleihan, G. Worldwide prevalence and incidence of osteoporotic vertebral fractures. Osteoporos. Int. 2017, 28, 1531–1542. [Google Scholar] [CrossRef]
- Hallberg, I.; Bachrach-Lindstrom, M.; Hammerby, S.; Toss, G.; Ek, A.C. Health-related quality of life after vertebral or hip fracture: A seven-year follow-up study. BMC Musculoskelet. Disord. 2009, 10, 135. [Google Scholar] [CrossRef] [Green Version]
- Bliuc, D.; Nguyen, N.D.; Milch, V.E.; Nguyen, T.V.; Eisman, J.A.; Center, J.R. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 2009, 301, 513–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melton, L.J., 3rd; Atkinson, E.J.; Cooper, C.; O’Fallon, W.M.; Riggs, B.L. Vertebral fractures predict subsequent fractures. Osteoporos. Int. 1999, 10, 214–221. [Google Scholar] [CrossRef]
- Center, J.R. Fracture Burden: What Two and a Half Decades of Dubbo Osteoporosis Epidemiology Study Data Reveal About Clinical Outcomes of Osteoporosis. Curr. Osteoporos. Rep. 2017, 15, 88–95. [Google Scholar] [CrossRef]
- Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet 2019, 393, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Chesnut, C.H. Osteoporosis, an underdiagnosed disease. JAMA 2001, 286, 2865–2866. [Google Scholar] [CrossRef]
- Fink, H.A.; Milavetz, D.L.; Palermo, L.; Nevitt, M.C.; Cauley, J.A.; Genant, H.K.; Black, D.M.; Ensrud, K.E.; Fracture Intervention Trial Research, G. What proportion of incident radiographic vertebral deformities is clinically diagnosed and vice versa? J. Bone Miner. Res. 2005, 20, 1216–1222. [Google Scholar] [CrossRef] [PubMed]
- Consensus development conference: Diagnosis, prophylaxis, and treatment of osteoporosis. Am. J. Med. 1993, 94, 646–650. [CrossRef] [PubMed]
- Schuit, S.C.; van der Klift, M.; Weel, A.E.; de Laet, C.E.; Burger, H.; Seeman, E.; Hofman, A.; Uitterlinden, A.G.; van Leeuwen, J.P.; Pols, H.A. Fracture incidence and association with bone mineral density in elderly men and women: The Rotterdam Study. Bone 2004, 34, 195–202. [Google Scholar] [CrossRef]
- Bolotin, H.H. DXA in vivo BMD methodology: An erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone 2007, 41, 138–154. [Google Scholar] [CrossRef]
- Löffler, M.T.; Sollmann, N.; Mei, K.; Valentinitsch, A.; Noël, P.B.; Kirschke, J.S.; Baum, T. X-ray-based quantitative osteoporosis imaging at the spine. Osteoporos. Int. 2020, 31, 233–250. [Google Scholar] [CrossRef] [PubMed]
- Engelke, K.; Chaudry, O.; Bartenschlager, S. Opportunistic Screening Techniques for Analysis of CT Scans. Curr. Osteoporos. Rep. 2023, 21, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Sollmann, N.; Loffler, M.T.; El Husseini, M.; Sekuboyina, A.; Dieckmeyer, M.; Ruhling, S.; Zimmer, C.; Menze, B.; Joseph, G.B.; Baum, T.; et al. Automated Opportunistic Osteoporosis Screening in Routine Computed Tomography of the Spine: Comparison With Dedicated Quantitative CT. J. Bone Miner. Res. 2022, 37, 1287–1296. [Google Scholar] [CrossRef]
- Pickhardt, P.J.; Lee, L.J.; del Rio, A.M.; Lauder, T.; Bruce, R.J.; Summers, R.M.; Pooler, B.D.; Binkley, N. Simultaneous Screening for Osteoporosis at CT Colonography: Bone Mineral Density Assessment Using MDCT Attenuation Techniques Compared With the DXA Reference Standard. J. Bone Miner. Res. 2011, 26, 2194–2203. [Google Scholar] [CrossRef] [Green Version]
- Pickhardt, P.J.; Pooler, B.D.; Lauder, T.; del Rio, A.M.; Bruce, R.J.; Binkley, N. Opportunistic Screening for Osteoporosis Using Abdominal Computed Tomography Scans Obtained for Other Indications. Ann. Intern. Med. 2013, 158, 588–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasaka, K.; Akai, H.; Kunimatsu, A.; Kiryu, S.; Abe, O. Prediction of bone mineral density from computed tomography: Application of deep learning with a convolutional neural network. Eur. Radiol. 2020, 30, 3549–3557. [Google Scholar] [CrossRef] [PubMed]
- Loffler, M.T.; Jacob, A.; Scharr, A.; Sollmann, N.; Burian, E.; El Husseini, M.; Sekuboyina, A.; Tetteh, G.; Zimmer, C.; Gempt, J.; et al. Automatic opportunistic osteoporosis screening in routine CT: Improved prediction of patients with prevalent vertebral fractures compared to DXA. Eur. Radiol. 2021, 31, 6069–6077. [Google Scholar] [CrossRef] [PubMed]
- Loffler, M.T.; Sollmann, N.; Burian, E.; Bayat, A.; Aftahy, K.; Baum, T.; Meyer, B.; Ryang, Y.M.; Kirschke, J.S. Opportunistic Osteoporosis Screening Reveals Low Bone Density in Patients With Screw Loosening After Lumbar Semi-Rigid Instrumentation: A Case-Control Study. Front. Endocrinol. 2020, 11, 552719. [Google Scholar] [CrossRef]
- Ruhling, S.; Scharr, A.; Sollmann, N.; Wostrack, M.; Loffler, M.T.; Menze, B.; Sekuboyina, A.; El Husseini, M.; Braren, R.; Zimmer, C.; et al. Proposed diagnostic volumetric bone mineral density thresholds for osteoporosis and osteopenia at the cervicothoracic spine in correlation to the lumbar spine. Eur. Radiol. 2022, 32, 6207–6214. [Google Scholar] [CrossRef]
- Sekuboyina, A.; Husseini, M.E.; Bayat, A.; Loffler, M.; Liebl, H.; Li, H.; Tetteh, G.; Kukacka, J.; Payer, C.; Stern, D.; et al. VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images. Med. Image Anal. 2021, 73, 102166. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Cai, N.; Zhou, Y.; Xiao, D. A Prediction Model for the Risk of Osteoporosis Fracture in the Elderly Based on a Neural Network; Springer International Publishing: Cham, Switzerland, 2018; pp. 815–823. [Google Scholar]
- de Vries, B.C.S.; Hegeman, J.H.; Nijmeijer, W.; Geerdink, J.; Seifert, C.; Groothuis-Oudshoorn, C.G.M. Comparing three machine learning approaches to design a risk assessment tool for future fractures: Predicting a subsequent major osteoporotic fracture in fracture patients with osteopenia and osteoporosis. Osteoporos. Int. 2021, 32, 437–449. [Google Scholar] [CrossRef]
- Kong, S.H.; Ahn, D.; Kim, B.R.; Srinivasan, K.; Ram, S.; Kim, H.; Hong, A.R.; Kim, J.H.; Cho, N.H.; Shin, C.S. A Novel Fracture Prediction Model Using Machine Learning in a Community-Based Cohort. JBMR Plus 2020, 4, e10337. [Google Scholar] [CrossRef]
- Muehlematter, U.J.; Mannil, M.; Becker, A.S.; Vokinger, K.N.; Finkenstaedt, T.; Osterhoff, G.; Fischer, M.A.; Guggenberger, R. Vertebral body insufficiency fractures: Detection of vertebrae at risk on standard CT images using texture analysis and machine learning. Eur. Radiol. 2019, 29, 2207–2217. [Google Scholar] [CrossRef]
- Kong, S.H.; Lee, J.W.; Bae, B.U.; Sung, J.K.; Jung, K.H.; Kim, J.H.; Shin, C.S. Development of a Spine X-Ray-Based Fracture Prediction Model Using a Deep Learning Algorithm. Endocrinol. Metab. 2022, 37, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Genant, H.K.; Wu, C.Y.; van Kuijk, C.; Nevitt, M.C. Vertebral fracture assessment using a semiquantitative technique. J. Bone Miner. Res. 1993, 8, 1137–1148. [Google Scholar] [CrossRef]
- Dieckmeyer, M.; Loffler, M.T.; El Husseini, M.; Sekuboyina, A.; Menze, B.; Sollmann, N.; Wostrack, M.; Zimmer, C.; Baum, T.; Kirschke, J.S. Level-Specific Volumetric BMD Threshold Values for the Prediction of Incident Vertebral Fractures Using Opportunistic QCT: A Case-Control Study. Front. Endocrinol. 2022, 13, 882163. [Google Scholar] [CrossRef] [PubMed]
- Loffler, M.T.; Jacob, A.; Valentinitsch, A.; Rienmuller, A.; Zimmer, C.; Ryang, Y.M.; Baum, T.; Kirschke, J.S. Improved prediction of incident vertebral fractures using opportunistic QCT compared to DXA. Eur. Radiol. 2019, 29, 4980–4989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaesmacher, J.; Liebl, H.; Baum, T.; Kirschke, J.S. Bone Mineral Density Estimations From Routine Multidetector Computed Tomography: A Comparative Study of Contrast and Calibration Effects. J. Comput. Assist. Tomogr. 2017, 41, 217–223. [Google Scholar] [CrossRef]
- Loffler, M.T.; Sekuboyina, A.; Jacob, A.; Grau, A.L.; Scharr, A.; El Husseini, M.; Kallweit, M.; Zimmer, C.; Baum, T.; Kirschke, J.S. A Vertebral Segmentation Dataset with Fracture Grading. Radiol. Artif. Intell. 2020, 2, e190138. [Google Scholar] [CrossRef] [PubMed]
- American College of Radiology ACR-SPR-SSR Practice Parameter for the Performance of Muskuloskeletal Quantitative Computed Tomography (QCT). Available online: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/QCT.pdf?la (accessed on 5 December 2022).
- Dieckmeyer, M.; Sollmann, N.; El Husseini, M.; Sekuboyina, A.; Loffler, M.T.; Zimmer, C.; Kirschke, J.S.; Subburaj, K.; Baum, T. Gender-, Age- and Region-Specific Characterization of Vertebral Bone Microstructure Through Automated Segmentation and 3D Texture Analysis of Routine Abdominal CT. Front. Endocrinol. 2021, 12, 792760. [Google Scholar] [CrossRef] [PubMed]
- Havill, L.M.; Mahaney, M.C.; T, L.B.; Specker, B.L. Effects of genes, sex, age, and activity on BMC, bone size, and areal and volumetric BMD. J. Bone Miner. Res. 2007, 22, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Lupsa, B.C.; Insogna, K. Bone Health and Osteoporosis. Endocrinol. Metab. Clin. N. Am. 2015, 44, 517–530. [Google Scholar] [CrossRef]
- Johnell, O. The socioeconomic burden of fractures: Today and in the 21st century. Am. J. Med. 1997, 103, 20S–25S; discussion 25S–26S. [Google Scholar] [CrossRef]
- Lochmuller, E.M.; Burklein, D.; Kuhn, V.; Glaser, C.; Muller, R.; Gluer, C.C.; Eckstein, F. Mechanical strength of the thoracolumbar spine in the elderly: Prediction from in situ dual-energy X-ray absorptiometry, quantitative computed tomography (QCT), upper and lower limb peripheral QCT, and quantitative ultrasound. Bone 2002, 31, 77–84. [Google Scholar] [CrossRef]
- Oftadeh, R.; Perez-Viloria, M.; Villa-Camacho, J.C.; Vaziri, A.; Nazarian, A. Biomechanics and mechanobiology of trabecular bone: A review. J. Biomech. Eng. 2015, 137, 0108021–01080215. [Google Scholar] [CrossRef] [Green Version]
- Link, T.M.; Kazakia, G. Update on Imaging-Based Measurement of Bone Mineral Density and Quality. Curr. Rheumatol. Rep. 2020, 22, 13. [Google Scholar] [CrossRef]
- Pfeilschifter, J.; Diel, I.J. Osteoporosis due to cancer treatment: Pathogenesis and management. J. Clin. Oncol. 2000, 18, 1570–1593. [Google Scholar] [CrossRef]
- Bauer, J.S.; Henning, T.D.; Mueller, D.; Lu, Y.; Majumdar, S.; Link, T.M. Volumetric quantitative CT of the spine and hip derived from contrast-enhanced MDCT: Conversion factors. Am. J. Roentgenol. 2007, 188, 1294–1301. [Google Scholar] [CrossRef]
- Baum, T.; Muller, D.; Dobritz, M.; Rummeny, E.J.; Link, T.M.; Bauer, J.S. BMD measurements of the spine derived from sagittal reformations of contrast-enhanced MDCT without dedicated software. Eur. J. Radiol. 2011, 80, e140–e145. [Google Scholar] [CrossRef]
- Baum, T.; Muller, D.; Dobritz, M.; Wolf, P.; Rummeny, E.J.; Link, T.M.; Bauer, J.S. Converted lumbar BMD values derived from sagittal reformations of contrast-enhanced MDCT predict incidental osteoporotic vertebral fractures. Calcif. Tissue Int. 2012, 90, 481–487. [Google Scholar] [CrossRef]
- Hopper, K.D.; Wang, M.P.; Kunselman, A.R. The use of clinical CT for baseline bone density assessment. J. Comput. Assist. Tomogr. 2000, 24, 896–899. [Google Scholar] [CrossRef] [PubMed]
- Link, T.M.; Koppers, B.B.; Licht, T.; Bauer, J.; Lu, Y.; Rummeny, E.J. In vitro and in vivo spiral CT to determine bone mineral density: Initial experience in patients at risk for osteoporosis. Radiology 2004, 231, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Burian, E.; Grundl, L.; Greve, T.; Junker, D.; Sollmann, N.; Loffler, M.; Makowski, M.R.; Zimmer, C.; Kirschke, J.S.; Baum, T. Local Bone Mineral Density, Subcutaneous and Visceral Adipose Tissue Measurements in Routine Multi Detector Computed Tomography-Which Parameter Predicts Incident Vertebral Fractures Best? Diagnostics 2021, 11, 240. [Google Scholar] [CrossRef]
- Yeung, L.Y.; Rayudu, N.M.; Loffler, M.; Sekuboyina, A.; Burian, E.; Sollmann, N.; Dieckmeyer, M.; Greve, T.; Kirschke, J.S.; Subburaj, K.; et al. Prediction of Incidental Osteoporotic Fractures at Vertebral-Specific Level Using 3D Non-Linear Finite Element Parameters Derived from Routine Abdominal MDCT. Diagnostics 2021, 11, 208. [Google Scholar] [CrossRef] [PubMed]
- Roski, F.; Hammel, J.; Mei, K.; Haller, B.; Baum, T.; Kirschke, J.S.; Pfeiffer, D.; Woertler, K.; Pfeiffer, F.; Noel, P.B.; et al. Opportunistic osteoporosis screening: Contrast-enhanced dual-layer spectral CT provides accurate measurements of vertebral bone mineral density. Eur. Radiol. 2021, 31, 3147–3155. [Google Scholar] [CrossRef]
- Schwaiger, B.J.; Gersing, A.S.; Baum, T.; Noel, P.B.; Zimmer, C.; Bauer, J.S. Bone mineral density values derived from routine lumbar spine multidetector row CT predict osteoporotic vertebral fractures and screw loosening. Am. J. Neuroradiol. 2014, 35, 1628–1633. [Google Scholar] [CrossRef] [Green Version]
- Allaire, B.T.; Lu, D.; Johannesdottir, F.; Kopperdahl, D.; Keaveny, T.M.; Jarraya, M.; Guermazi, A.; Bredella, M.A.; Samelson, E.J.; Kiel, D.P.; et al. Prediction of incident vertebral fracture using CT-based finite element analysis. Osteoporos. Int. 2019, 30, 323–331. [Google Scholar] [CrossRef]
- Chalhoub, D.; Orwoll, E.S.; Cawthon, P.M.; Ensrud, K.E.; Boudreau, R.; Greenspan, S.; Newman, A.B.; Zmuda, J.; Bauer, D.; Cummings, S.; et al. Areal and volumetric bone mineral density and risk of multiple types of fracture in older men. Bone 2016, 92, 100–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herdea, A.; Dragomirescu, M.C.; Ulici, A.; Lungu, C.N.; Charkaoui, A. Controlling the Progression of Curvature in Children and Adolescent Idiopathic Scoliosis Following the Administration of Melatonin, Calcium, and Vitamin D. Children 2022, 9, 758. [Google Scholar] [CrossRef] [PubMed]
- Herdea, A.; Ionescu, A.; Dragomirescu, M.C.; Ulici, A. Vitamin D-A Risk Factor for Bone Fractures in Children: A Population-Based Prospective Case-Control Randomized Cross-Sectional Study. Int. J. Environ. Res. Public Health 2023, 20, 3300. [Google Scholar] [CrossRef] [PubMed]
Variable | VF (n = 53) | No VF (n = 104) | VF vs. No VF p-Value | Total (n = 157) |
---|---|---|---|---|
Females, n (%) | 28 (53%) | 56 (54%) | 0.63 | 84 (54%) |
Age, years, mean (SD) | 64.7 (12.0) | 66.3 (11.7) | 0.77 | 65.7 (11.8) |
Automatic vBMD *, mg/cm3, mean (SD) | 83.6 (29.4) | 102.1 (27.7) | <0.001 | 95.9 (29.5) |
Manual vBMD *, mg/cm3, mean (SD) | 99.2 (37.6) | 107.9 (33.9) | 0.30 | 105.0 (35.3) |
Level | Automatic vBMD | p-Value | Manual vBMD | p-Value |
---|---|---|---|---|
L1 | −0.33 (−0.34–−0.32) | <0.001 | −0.22 (−0.23–−0.21) | 0.006 |
L2 | −0.30 (−0.31–−0.29) | <0.001 | −0.18 (−0.19–−0.17) | 0.029 |
L3 | −0.25 (−0.26–−0.24) | 0.001 | −0.13 (−0.14–−0.12) | 0.11 |
L4 | −0.24 (−0.25–−0.23) | 0.002 | −0.07 (−0.08–−0.06) | 0.38 |
Level | Automatic vBMD | p-Value | Manual vBMD | p-Value |
---|---|---|---|---|
L1–L2 | −0.32 (−0.33–−0.31) | <0.001 | −0.20 (−0.21–−0.19) | <0.001 |
L2–L3 | −0.28 (−0.29–−0.27) | <0.001 | −0.15 (−0.16–−0.14) | 0.007 |
L3–L4 | −0.25 (−0.26–−0.24) | <0.001 | −0.10 (−0.11–−0.09) | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goller, S.S.; Rischewski, J.F.; Liebig, T.; Ricke, J.; Siller, S.; Schmidt, V.F.; Stahl, R.; Kulozik, J.; Baum, T.; Kirschke, J.S.; et al. Automated Opportunistic Trabecular Volumetric Bone Mineral Density Extraction Outperforms Manual Measurements for the Prediction of Vertebral Fractures in Routine CT. Diagnostics 2023, 13, 2119. https://doi.org/10.3390/diagnostics13122119
Goller SS, Rischewski JF, Liebig T, Ricke J, Siller S, Schmidt VF, Stahl R, Kulozik J, Baum T, Kirschke JS, et al. Automated Opportunistic Trabecular Volumetric Bone Mineral Density Extraction Outperforms Manual Measurements for the Prediction of Vertebral Fractures in Routine CT. Diagnostics. 2023; 13(12):2119. https://doi.org/10.3390/diagnostics13122119
Chicago/Turabian StyleGoller, Sophia S., Jon F. Rischewski, Thomas Liebig, Jens Ricke, Sebastian Siller, Vanessa F. Schmidt, Robert Stahl, Julian Kulozik, Thomas Baum, Jan S. Kirschke, and et al. 2023. "Automated Opportunistic Trabecular Volumetric Bone Mineral Density Extraction Outperforms Manual Measurements for the Prediction of Vertebral Fractures in Routine CT" Diagnostics 13, no. 12: 2119. https://doi.org/10.3390/diagnostics13122119
APA StyleGoller, S. S., Rischewski, J. F., Liebig, T., Ricke, J., Siller, S., Schmidt, V. F., Stahl, R., Kulozik, J., Baum, T., Kirschke, J. S., Foreman, S. C., & Gersing, A. S. (2023). Automated Opportunistic Trabecular Volumetric Bone Mineral Density Extraction Outperforms Manual Measurements for the Prediction of Vertebral Fractures in Routine CT. Diagnostics, 13(12), 2119. https://doi.org/10.3390/diagnostics13122119