Acute Kidney Injury in Liver Cirrhosis
Abstract
:1. Introduction
2. Definitions
3. Differential Diagnoses for AKI in Cirrhosis
4. Epidemiology and Prognostic Implications
5. Differentiating Different Causes of AKI in Cirrhosis
5.1. Clinical Assessment
5.2. Conventional Diagnostic Tools
5.3. Novel Biomarkers
5.4. Invasive Hemodynamic Measurement
5.5. Noninvasive Hemodynamic Measurement
6. HRS-AKI (Previously HRS-1)
6.1. Pathophysiology
6.2. Risk Factors
6.3. Histopathological Changes in HRS-AKI
6.4. Prevention
7. Management of AKI in Cirrhosis
7.1. Supportive Care
7.2. Pharmacological Management of HRS-AKI
7.2.1. Albumin
7.2.2. Octreotide and Midodrine
7.2.3. Norepinephrine
7.2.4. Terlipressin
7.3. Non-Pharmacological Management
7.3.1. Tips
7.3.2. Artificial Liver Support
7.3.3. Renal Replacement Therapy
7.3.4. Liver Transplantation
8. Conclusions
Funding
Conflicts of Interest
References
- Khatua, C.R.; Sahu, S.K.; Meher, D.; Nath, G.; Singh, S.P. Acute kidney injury in hospitalized cirrhotic patients: Risk factors, type of kidney injury, and survival. JGH Open 2021, 5, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Huelin, P.; Piano, S.; Sola, E.; Stanco, M.; Sole, C.; Moreira, R.; Pose, E.; Fasolato, S.; Fabrellas, N.; de Prada, G.; et al. Validation of a Staging System for Acute Kidney Injury in Patients With Cirrhosis and Association With Acute-on-Chronic Liver Failure. Clin. Gastroenterol. Hepatol. 2017, 15, 438–445.e435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, A.P.; Knapp, S.M.; Orman, E.S.; Ghabril, M.S.; Nephew, L.D.; Anderson, M.; Gines, P.; Chalasani, N.P.; Patidar, K.R. Changing epidemiology and outcomes of acute kidney injury in hospitalized patients with cirrhosis—A US population-based study. J. Hepatol. 2020, 73, 1092–1099. [Google Scholar] [CrossRef] [PubMed]
- Patidar, K.R.; Naved, M.A.; Grama, A.; Adibuzzaman, M.; Aziz Ali, A.; Slaven, J.E.; Desai, A.P.; Ghabril, M.S.; Nephew, L.; Chalasani, N.; et al. Acute kidney disease is common and associated with poor outcomes in patients with cirrhosis and acute kidney injury. J. Hepatol. 2022, 77, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Belcher, J.M.; Garcia-Tsao, G.; Sanyal, A.J.; Bhogal, H.; Lim, J.K.; Ansari, N.; Coca, S.G.; Parikh, C.R.; Consortium, T.-A. Association of AKI with mortality and complications in hospitalized patients with cirrhosis. Hepatology 2013, 57, 753–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cullaro, G.; Verna, E.C.; Lai, J.C. Association between Renal Function Pattern and Mortality in Patients with Cirrhosis. Clin. Gastroenterol. Hepatol. 2019, 17, 2364–2370. [Google Scholar] [CrossRef] [Green Version]
- Altamirano, J.; Fagundes, C.; Dominguez, M.; Garcia, E.; Michelena, J.; Cardenas, A.; Guevara, M.; Pereira, G.; Torres-Vigil, K.; Arroyo, V.; et al. Acute Kidney Injury Is an Early Predictor of Mortality for Patients With Alcoholic Hepatitis. Clin. Gastroenterol. Hepatol. 2012, 10, 65–71.e3. [Google Scholar] [CrossRef]
- Rosi, S.; Piano, S.; Frigo, A.C.; Morando, F.; Fasolato, S.; Cavallin, M.; Gola, E.; Romano, A.; Montagnese, S.; Sticca, A.; et al. New ICA criteria for the diagnosis of acute kidney injury in cirrhotic patients: Can we use an imputed value of serum creatinine? Liver Int. 2015, 35, 2108–2114. [Google Scholar] [CrossRef]
- Sherman, D.S.; Fish, D.N.; Teitelbaum, I. Assessing renal function in cirrhotic patients: Problems and pitfalls. Am. J. Kidney Dis. 2003, 41, 269–278. [Google Scholar] [CrossRef]
- Wong, F. Acute kidney injury in liver cirrhosis: New definition and application. Clin. Mol. Hepatol. 2016, 22, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Angeli, P.; Gines, P.; Wong, F.; Bernardi, M.; Boyer, T.D.; Gerbes, A.; Moreau, R.; Jalan, R.; Sarin, S.K.; Piano, S.; et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: Revised consensus recommendations of the International Club of Ascites. J. Hepatol. 2015, 62, 968–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biggins, S.W.; Angeli, P.; Garcia-Tsao, G.; Gines, P.; Ling, S.C.; Nadim, M.K.; Wong, F.; Kim, W.R. Diagnosis, Evaluation, and Management of Ascites, Spontaneous Bacterial Peritonitis and Hepatorenal Syndrome: 2021 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2021, 74, 1014–1048. [Google Scholar] [CrossRef] [PubMed]
- Amathieu, R.; Al-Khafaji, A.; Sileanu, F.E.; Foldes, E.; DeSensi, R.; Hilmi, I.; Kellum, J.A. Significance of Oliguria in Critically Ill Patients With Chronic Liver Disease. Hepatology 2017, 66, 1592–1600. [Google Scholar] [CrossRef] [Green Version]
- Caregaro, L.; Menon, F.; Angeli, P.; Amodio, P.; Merkel, C.; Bortoluzzi, A.; Alberino, F.; Gatta, A. Limitations of Serum Creatinine Level and Creatinine Clearance as Filtration Markers in Cirrhosis. Arch. Intern. Med. 1994, 154, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Macedo, E.; Bouchard, J.; Soroko, S.H.; Chertow, G.M.; Himmelfarb, J.; Ikizler, T.A.; Paganini, E.P.; Mehta, R.L.; Program to Improve Care in Acute Renal Disease, S. Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients. Crit. Care 2010, 14, R82. [Google Scholar] [CrossRef] [Green Version]
- Piano, S.; Brocca, A.; Angeli, P. Renal Function in Cirrhosis: A Critical Review of Available Tools. Semin. Liver Dis. 2018, 38, 230–241. [Google Scholar] [CrossRef]
- Campion, D.; Rizzi, F.; Bonetto, S.; Giovo, I.; Roma, M.; Saracco, G.M.; Alessandria, C. Assessment of glomerular filtration rate in patients with cirrhosis: Available tools and perspectives. Liver Int. 2022, 42, 2360–2376. [Google Scholar] [CrossRef]
- Waikar, S.S.; Bonventre, J.V. Creatinine kinetics and the definition of acute kidney injury. J. Am. Soc. Nephrol. 2009, 20, 672–679. [Google Scholar] [CrossRef] [Green Version]
- Francoz, C.; Prie, D.; AbdelRazek, W.; Moreau, R.; Mandot, A.; Belghiti, J.; Valla, D.; Durand, F. Inaccuracies of Creatinine and Creatinine-Based Equations in Candidates for Liver Transplantation with Low Creatinine: Impact on the Model for End-Stage Liver Disease Score. Liver Transplant. 2010, 16, 1169–1177. [Google Scholar] [CrossRef]
- Velez, J.C.Q.; Therapondos, G.; Juncos, L.A. Reappraising the spectrum of AKI and hepatorenal syndrome in patients with cirrhosis. Nat. Rev. Nephrol. 2020, 16, 137–155. [Google Scholar] [CrossRef]
- Martin-Llahi, M.; Guevara, M.; Torre, A.; Fagundes, C.; Restuccia, T.; Gilabert, R.; Sola, E.; Pereira, G.; Marinelli, M.; Pavesi, M.; et al. Prognostic importance of the cause of renal failure in patients with cirrhosis. Gastroenterology 2011, 140, 488–496.e4. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, C.; Barreto, R.; Guevara, M.; Garcia, E.; Sola, E.; Rodriguez, E.; Graupera, I.; Ariza, X.; Pereira, G.; Alfaro, I.; et al. A modified acute kidney injury classification for diagnosis and risk stratification of impairment of kidney function in cirrhosis. J. Hepatol. 2013, 59, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Alsaad, A.A.; Wadei, H.M. Fractional Excretion of Sodium Does Not Differentiate Hepatorenal Syndrome From Other Renal Pathology in Liver Transplant Candidates: A Clinical and Pathological Correlation. Gastroenterology 2016, 150, S1079. [Google Scholar] [CrossRef]
- Patidar, K.R.; Kang, L.; Bajaj, J.S.; Carl, D.; Sanyal, A.J. Fractional excretion of urea: A simple tool for the differential diagnosis of acute kidney injury in cirrhosis. Hepatology 2018, 68, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Juanola, A.; Ma, A.T.; Pose, E.; Gines, P. Novel Biomarkers of AKI in Cirrhosis. Semin. Liver Dis. 2022, 42, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Francoz, C.; Glotz, D.; Moreau, R.; Durand, F. The evaluation of renal function and disease in patients with cirrhosis. J. Hepatol. 2010, 52, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Jo, S.K.; Yang, J.; Hwang, S.M.; Lee, M.S.; Park, S.H. Role of biomarkers as predictors of acute kidney injury and mortality in decompensated cirrhosis. Sci. Rep. 2019, 9, 14508. [Google Scholar] [CrossRef] [Green Version]
- Singapura, P.; Ma, T.W.; Sarmast, N.; Gonzalez, S.A.; Durand, F.; Maiwall, R.; Nadim, M.K.; Fullinwider, J.; Saracino, G.; Francoz, C.; et al. Estimating Glomerular Filtration Rate in Cirrhosis Using Creatinine-Based and Cystatin C-Based Equations: Systematic Review and Meta-Analysis. Liver Transplant. 2021, 27, 1538–1552. [Google Scholar] [CrossRef]
- Knight, E.L.; Verhave, J.C.; Spiegelman, D.; Hillege, H.L.; De Zeeuw, D.; Curhan, G.C.; De Jong, P.E. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004, 65, 1416–1421. [Google Scholar] [CrossRef] [Green Version]
- Kottgen, A.; Selvin, E.; Stevens, L.A.; Levey, A.S.; Van Lente, F.; Coresh, J. Serum cystatin C in the United States: The Third National Health and Nutrition Examination Survey (NHANES III). Am. J. Kidney Dis. 2008, 51, 385–394. [Google Scholar] [CrossRef]
- Huelin, P.; Sola, E.; Elia, C.; Sole, C.; Risso, A.; Moreira, R.; Carol, M.; Fabrellas, N.; Bassegoda, O.; Juanola, A.; et al. Neutrophil Gelatinase-Associated Lipocalin for Assessment of Acute Kidney Injury in Cirrhosis: A Prospective Study. Hepatology 2019, 70, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Allegretti, A.S.; Parada, X.V.; Endres, P.; Zhao, S.; Krinsky, S.; St Hillien, S.A.; Kalim, S.; Nigwekar, S.U.; Flood, J.G.; Nixon, A.; et al. Urinary NGAL as a Diagnostic and Prognostic Marker for Acute Kidney Injury in Cirrhosis: A Prospective Study. Clin. Transl. Gastroenterol. 2021, 12, e00359. [Google Scholar] [CrossRef] [PubMed]
- Belcher, J.M.; Sanyal, A.J.; Peixoto, A.J.; Perazella, M.A.; Lim, J.; Thiessen-Philbrook, H.; Ansari, N.; Coca, S.G.; Garcia-Tsao, G.; Parikh, C.R.; et al. Kidney biomarkers and differential diagnosis of patients with cirrhosis and acute kidney injury. Hepatology 2014, 60, 622–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ariza, X.; Graupera, I.; Coll, M.; Sola, E.; Barreto, R.; Garcia, E.; Moreira, R.; Elia, C.; Morales-Ruiz, M.; Llopis, M.; et al. Neutrophil gelatinase-associated lipocalin is a biomarker of acute-on-chronic liver failure and prognosis in cirrhosis. J. Hepatol. 2016, 65, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Mishra, J.; Ma, Q.; Prada, A.; Mitsnefes, M.; Zahedi, K.; Yang, J.; Barasch, J.; Devarajan, P. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J. Am. Soc. Nephrol. 2003, 14, 2534–2543. [Google Scholar] [CrossRef] [Green Version]
- Geng, J.; Qiu, Y.; Qin, Z.; Su, B. The value of kidney injury molecule 1 in predicting acute kidney injury in adult patients: A systematic review and Bayesian meta-analysis. J. Transl. Med. 2021, 19, 105. [Google Scholar] [CrossRef]
- Juanola, A.; Graupera, I.; Elia, C.; Piano, S.; Sole, C.; Carol, M.; Perez-Guasch, M.; Bassegoda, O.; Escude, L.; Rubio, A.B.; et al. Urinary L-FABP is a promising prognostic biomarker of ACLF and mortality in patients with decompensated cirrhosis. J. Hepatol. 2022, 76, 107–114. [Google Scholar] [CrossRef]
- Pelayo, J.; Lo, K.B.; Sultan, S.; Quintero, E.; Peterson, E.; Salacupa, G.; Zanoria, M.A.; Guarin, G.; Helfman, B.; Sanon, J.; et al. Invasive hemodynamic parameters in patients with hepatorenal syndrome. Int. J. Cardiol. Heart Vasc. 2022, 42, 101094. [Google Scholar] [CrossRef]
- Premkumar, M.; Rangegowda, D.; Kajal, K.; Khumuckham, J.S. Noninvasive estimation of intravascular volume status in cirrhosis by dynamic size and collapsibility indices of the inferior vena cava using bedside echocardiography. JGH Open 2019, 3, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Velez, J.C.Q.; Petkovich, B.; Karakala, N.; Huggins, J.T. Point-of-Care Echocardiography Unveils Misclassification of Acute Kidney Injury as Hepatorenal Syndrome. Am. J. Nephrol. 2019, 50, 204–211. [Google Scholar] [CrossRef]
- Koratala, A.; Reisinger, N. Venous Excess Doppler Ultrasound for the Nephrologist: Pearls and Pitfalls. Kidney Med. 2022, 4, 100482. [Google Scholar] [CrossRef] [PubMed]
- Koratala, A.; Reisinger, N. Point of Care Ultrasound in Cirrhosis-Associated Acute Kidney Injury: Beyond Inferior Vena Cava. Kidney360 2022, 3, 1965–1968. [Google Scholar] [CrossRef] [PubMed]
- Wadei, H.M.; Mai, M.L.; Ahsan, N.; Gonwa, T.A. Hepatorenal syndrome: Pathophysiology and management. Clin. J. Am. Soc. Nephrol. 2006, 1, 1066–1079. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Seara, J.; Prieto, J.; Quiroga, J.; Zozaya, J.M.; Cobos, M.A.; Rodriguez-Eire, J.L.; Garcia-Plaza, A.; Leal, J. Systemic and regional hemodynamics in patients with liver cirrhosis and ascites with and without functional renal failure. Gastroenterology 1989, 97, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
- Nadim, M.K.; Garcia-Tsao, G. Acute Kidney Injury in Patients with Cirrhosis. N. Engl. J. Med. 2023, 388, 733–745. [Google Scholar] [CrossRef]
- Angeli, P.; Garcia-Tsao, G.; Nadim, M.K.; Parikh, C.R. News in pathophysiology, definition and classification of hepatorenal syndrome: A step beyond the International Club of Ascites (ICA) consensus document. J. Hepatol. 2019, 71, 811–822. [Google Scholar] [CrossRef] [Green Version]
- Iwakiri, Y.; Groszmann, R.J. The hyperdynamic circulation of chronic liver diseases: From the patient to the molecule. Hepatology 2006, 43, S121–S131. [Google Scholar] [CrossRef]
- Iwatsuki, S.; Corman, J.; Popovtzer, M.; Ishikawa, M.; Starzl, T.E. Recovery from hepatorenal syndrome after successful orthotopic liver transplantation. Surg. Forum 1973, 24, 348–350. [Google Scholar]
- Epstein, M.; Berk, D.P.; Hollenberg, N.K.; Adams, D.F.; Chalmers, T.C.; Abrams, H.L.; Merrill, J.P. Renal failure in the patient with cirrhosis. The role of active vasoconstriction. Am. J. Med. 1970, 49, 175–185. [Google Scholar] [CrossRef]
- Koppel, M.H.; Coburn, J.W.; Mims, M.M.; Goldstein, H.; Boyle, J.D.; Rubini, M.E. Transplantation of cadaveric kidneys from patients with hepatorenal syndrome. Evidence for the functionalnature of renal failure in advanced liver disease. N. Engl. J. Med. 1969, 280, 1367–1371. [Google Scholar] [CrossRef]
- Trawale, J.M.; Paradis, V.; Rautou, P.E.; Francoz, C.; Escolano, S.; Sallee, M.; Durand, F.; Valla, D.; Lebrec, D.; Moreau, R. The spectrum of renal lesions in patients with cirrhosis: A clinicopathological study. Liver Int. 2010, 30, 725–732. [Google Scholar] [CrossRef]
- Hussain, S.M.; Sureshkumar, K.K. Refining the Role of Simultaneous Liver Kidney Transplantation. J. Clin. Transl. Hepatol. 2018, 6, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Nazar, A.; Pereira, G.H.; Guevara, M.; Martin-Llahi, M.; Pepin, M.N.; Marinelli, M.; Sola, E.; Baccaro, M.E.; Terra, C.; Arroyo, V.; et al. Predictors of response to therapy with terlipressin and albumin in patients with cirrhosis and type 1 hepatorenal syndrome. Hepatology 2010, 51, 219–226. [Google Scholar] [CrossRef]
- Fernandez, J.; Navasa, M.; Planas, R.; Montoliu, S.; Monfort, D.; Soriano, G.; Vila, C.; Pardo, A.; Quintero, E.; Vargas, V.; et al. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis. Gastroenterology 2007, 133, 818–824. [Google Scholar] [CrossRef] [Green Version]
- Salerno, F.; Navickis, R.J.; Wilkes, M.M. Albumin infusion improves outcomes of patients with spontaneous bacterial peritonitis: A meta-analysis of randomized trials. Clin. Gastroenterol. Hepatol. 2013, 11, 123–130.E1. [Google Scholar] [CrossRef] [PubMed]
- Wadei, H.M.; Pungpapong, S.; Cortese, C.; Alexander, M.P.; Keaveny, A.P.; Yang, L.; Taner, C.B.; Croome, K.P. Transplantation of HCV-infected organs into uninfected recipients: Advance with caution. Am. J. Transplant. 2019, 19, 960–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadei, H.M.; Gonwa, T.A. Hepatorenal syndrome in the intensive care unit. J. Intensive Care Med. 2013, 28, 79–92. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J. Hepatol. 2018, 69, 406–460. [Google Scholar] [CrossRef] [Green Version]
- Cullaro, G.; Kanduri, S.R.; Velez, J.C.Q. Acute Kidney Injury in Patients with Liver Disease. Clin. J. Am. Soc. Nephrol. 2022, 17, 1674–1684. [Google Scholar] [CrossRef]
- Velez, J.C.; Nietert, P.J. Therapeutic response to vasoconstrictors in hepatorenal syndrome parallels increase in mean arterial pressure: A pooled analysis of clinical trials. Am. J. Kidney Dis. 2011, 58, 928–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velez, J.C.Q.; Karakala, N.; Tayebi, K.; Wickman, T.J.; Mohamed, M.; Kovacic, R.A.; Therapondos, G.; Kanduri, S.R.; Allegretti, A.S.; Belcher, J.M.; et al. Responsiveness to Vasoconstrictor Therapy in Hepatorenal Syndrome Type 1. Kidney360 2023, 4, e448–e456. [Google Scholar] [CrossRef] [PubMed]
- Zaccherini, G.; Bernardi, M. The role and indications of albumin in advanced liver disease. Acta Gastroenterol. Belg. 2019, 82, 301–308. [Google Scholar] [PubMed]
- Bernardi, M.; Angeli, P.; Claria, J.; Moreau, R.; Gines, P.; Jalan, R.; Caraceni, P.; Fernandez, J.; Gerbes, A.L.; O’Brien, A.J.; et al. Albumin in decompensated cirrhosis: New concepts and perspectives. Gut 2020, 69, 1127–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Martinez, R.; Caraceni, P.; Bernardi, M.; Gines, P.; Arroyo, V.; Jalan, R. Albumin: Pathophysiologic basis of its role in the treatment of cirrhosis and its complications. Hepatology 2013, 58, 1836–1846. [Google Scholar] [CrossRef]
- Boyer, T.D.; Sanyal, A.J.; Wong, F.; Frederick, R.T.; Lake, J.R.; O’Leary, J.G.; Ganger, D.; Jamil, K.; Pappas, S.C.; Investigators, R.S. Terlipressin Plus Albumin Is More Effective Than Albumin Alone in Improving Renal Function in Patients With Cirrhosis and Hepatorenal Syndrome Type 1. Gastroenterology 2016, 150, 1579–1589.E2. [Google Scholar] [CrossRef] [Green Version]
- Sort, P.; Navasa, M.; Arroyo, V.; Aldeguer, X.; Planas, R.; Ruiz-del-Arbol, L.; Castells, L.; Vargas, V.; Soriano, G.; Guevara, M.; et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N. Engl. J. Med. 1999, 341, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Salerno, F.; Navickis, R.J.; Wilkes, M.M. Albumin treatment regimen for type 1 hepatorenal syndrome: A dose-response meta-analysis. BMC Gastroenterol. 2015, 15, 167. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Bai, Z.; Wang, T.; Romeiro, F.G.; Mancuso, A.; Philips, C.A.; Wong, Y.J.; Nery, F.G.; Qi, X. Human Albumin Infusion for the Management of Liver Cirrhosis and Its Complications: An Overview of Major Findings from Meta-analyses. Adv. Ther. 2023, 40, 1494–1529. [Google Scholar] [CrossRef]
- Esrailian, E.; Pantangco, E.R.; Kyulo, N.L.; Hu, K.Q.; Runyon, B.A. Octreotide/Midodrine therapy significantly improves renal function and 30-day survival in patients with type 1 hepatorenal syndrome. Dig. Dis. Sci. 2007, 52, 742–748. [Google Scholar] [CrossRef] [Green Version]
- Hiruy, A.; Nelson, J.; Zori, A.; Morelli, G.; Cabrera, R.; Kamel, A. Standardized approach of albumin, midodrine and octreotide on hepatorenal syndrome treatment response rate. Eur. J. Gastroenterol. Hepatol. 2021, 33, 102–106. [Google Scholar] [CrossRef]
- Skagen, C.; Einstein, M.; Lucey, M.R.; Said, A. Combination treatment with octreotide, midodrine, and albumin improves survival in patients with type 1 and type 2 hepatorenal syndrome. J. Clin. Gastroenterol. 2009, 43, 680–685. [Google Scholar] [CrossRef] [Green Version]
- El-Desoki Mahmoud, E.I.; Abdelaziz, D.H.; Abd-Elsalam, S.; Mansour, N.O. Norepinephrine is More Effective Than Midodrine/Octreotide in Patients With Hepatorenal Syndrome-Acute Kidney Injury: A Randomized Controlled Trial. Front. Pharmacol. 2021, 12, 675948. [Google Scholar] [CrossRef] [PubMed]
- Cavallin, M.; Kamath, P.S.; Merli, M.; Fasolato, S.; Toniutto, P.; Salerno, F.; Bernardi, M.; Romanelli, R.G.; Colletta, C.; Salinas, F.; et al. Terlipressin plus albumin versus midodrine and octreotide plus albumin in the treatment of hepatorenal syndrome: A randomized trial. Hepatology 2015, 62, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Nassar Junior, A.P.; Farias, A.Q.; LA, D.A.; Carrilho, F.J.; Malbouisson, L.M. Terlipressin versus norepinephrine in the treatment of hepatorenal syndrome: A systematic review and meta-analysis. PLoS ONE 2014, 9, e107466. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Rani, P.; Rohatgi, A.; Verma, M.; Handa, S.; Dalal, K.; Jain, A. Noradrenaline for reverting hepatorenal syndrome: A prospective, observational, single-center study. Clin. Exp. Gastroenterol. 2018, 11, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Kwong, A.; Kim, W.R.; Kwo, P.Y.; Wang, U.; Cheng, X. Feasibility and Effectiveness of Norepinephrine Outside the Intensive Care Setting for Treatment of Hepatorenal Syndrome. Liver Transpl. 2021, 27, 1095–1105. [Google Scholar] [CrossRef]
- Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/022231s000lbl.pdf (accessed on 4 January 2023).
- Qi, X.; Bai, Z.; Zhu, Q.; Cheng, G.; Chen, Y.; Dang, X.; Ding, H.; Han, J.; Han, L.; He, Y.; et al. Practice guidance for the use of terlipressin for liver cirrhosis-related complications. Ther. Adv. Gastroenterol. 2022, 15, 17562848221098253. [Google Scholar] [CrossRef]
- Colson, P.H.; Virsolvy, A.; Gaudard, P.; Charrabi, A.; Corbani, M.; Maniere, M.J.; Richard, S.; Guillon, G. Terlipressin, a vasoactive prodrug recommended in hepatorenal syndrome, is an agonist of human V1, V2 and V1B receptors: Implications for its safety profile. Pharmacol. Res. 2016, 113, 257–264. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Boyer, T.; Garcia-Tsao, G.; Regenstein, F.; Rossaro, L.; Appenrodt, B.; Blei, A.; Gulberg, V.; Sigal, S.; Teuber, P.; et al. A randomized, prospective, double-blind, placebo-controlled trial of terlipressin for type 1 hepatorenal syndrome. Gastroenterology 2008, 134, 1360–1368. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, A.J.; Boyer, T.D.; Frederick, R.T.; Wong, F.; Rossaro, L.; Araya, V.; Vargas, H.E.; Reddy, K.R.; Pappas, S.C.; Teuber, P.; et al. Reversal of hepatorenal syndrome type 1 with terlipressin plus albumin vs. placebo plus albumin in a pooled analysis of the OT-0401 and reverse randomised clinical studies. Aliment. Pharmacol. Ther. 2017, 45, 1390–1402. [Google Scholar] [CrossRef] [Green Version]
- Wong, F.; Pappas, S.C.; Curry, M.P.; Reddy, K.R.; Rubin, R.A.; Porayko, M.K.; Gonzalez, S.A.; Mumtaz, K.; Lim, N.; Simonetto, D.A.; et al. Terlipressin plus Albumin for the Treatment of Type 1 Hepatorenal Syndrome. N. Engl. J. Med. 2021, 384, 818–828. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.V.; Ravikumar, S.T.; Tevethia, H.; Premkumar, M.; Kumar, K.; Sharma, M.; Gupta, R.; Rao, P.N.; Reddy, D.N. Safety and efficacy of terlipressin in acute-on-chronic liver failure with hepatorenal syndrome-acute kidney injury (HRS-AKI): A prospective cohort study. Sci. Rep. 2022, 12, 5503. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.V.; Kumar, P.; Rao, N.P.; Reddy, N. Terlipressin-induced ischaemic skin necrosis. BMJ Case Rep. 2020, 13, e233089. [Google Scholar] [CrossRef] [PubMed]
- Sarma, P.; Muktesh, G.; Dhaka, N.; Ruhela, R.; Mishra, A.; Singh, R.; Sinha, S.K.; Medhi, B.; Kochhar, R. Terlipressin-induced Peripheral Ischemic Gangrene in a Diabetic Patient. J. Pharmacol. Pharmacother. 2017, 8, 148–150. [Google Scholar] [CrossRef]
- Sola, E.; Lens, S.; Guevara, M.; Martin-Llahi, M.; Fagundes, C.; Pereira, G.; Pavesi, M.; Fernandez, J.; Gonzalez-Abraldes, J.; Escorsell, A.; et al. Hyponatremia in patients treated with terlipressin for severe gastrointestinal bleeding due to portal hypertension. Hepatology 2010, 52, 1783–1790. [Google Scholar] [CrossRef]
- Garcia-Tsao, G. Terlipressin and Intravenous Albumin in Advanced Cirrhosis—Friend and Foe. N. Engl. J. Med. 2021, 384, 869–871. [Google Scholar] [CrossRef]
- Wong, F.; Pappas, S.C.; Reddy, K.R.; Vargas, H.; Curry, M.P.; Sanyal, A.; Jamil, K. Terlipressin use and respiratory failure in patients with hepatorenal syndrome type 1 and severe acute-on-chronic liver failure. Aliment. Pharmacol. Ther. 2022, 56, 1284–1293. [Google Scholar] [CrossRef]
- Allegretti, A.S.; Subramanian, R.M.; Francoz, C.; Olson, J.C.; Cardenas, A. Respiratory events with terlipressin and albumin in hepatorenal syndrome: A review and clinical guidance. Liver Int. 2022, 42, 2124–2130. [Google Scholar] [CrossRef]
- Testino, G. Hepatorenal syndrome: Role of the transjugular intrahepatic stent shunt in real life practice. Clujul Med. 2017, 90, 464–465. [Google Scholar] [CrossRef] [Green Version]
- Song, T.; Rossle, M.; He, F.; Liu, F.; Guo, X.; Qi, X. Transjugular intrahepatic portosystemic shunt for hepatorenal syndrome: A systematic review and meta-analysis. Dig. Liver Dis. 2018, 50, 323–330. [Google Scholar] [CrossRef]
- Guevara, M.; Gines, P.; Bandi, J.C.; Gilabert, R.; Sort, P.; Jimenez, W.; Garcia-Pagan, J.C.; Bosch, J.; Arroyo, V.; Rodes, J. Transjugular intrahepatic portosystemic shunt in hepatorenal syndrome: Effects on renal function and vasoactive systems. Hepatology 1998, 28, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, S.; George, T.; Philips, C.A.; Ahamed, R.; Kumbar, S.; Mohan, N.; Mohanan, M.; Augustine, P. Transjugular intrahepatic portosystemic shunt in cirrhosis: An exhaustive critical update. World J. Gastroenterol. 2020, 26, 5561–5596. [Google Scholar] [CrossRef]
- Garcia Martinez, J.J.; Bendjelid, K. Artificial liver support systems: What is new over the last decade? Ann. Intensive Care 2018, 8, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saliba, F. The Molecular Adsorbent Recirculating System (MARS) in the intensive care unit: A rescue therapy for patients with hepatic failure. Crit. Care 2006, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Tatum, J.M.; Barmparas, G.; Ko, A.; Dhillon, N.; Smith, E.; Margulies, D.R.; Ley, E.J. Analysis of Survival After Initiation of Continuous Renal Replacement Therapy in a Surgical Intensive Care Unit. JAMA Surg. 2017, 152, 938–943. [Google Scholar] [CrossRef]
- Allegretti, A.S.; Parada, X.V.; Eneanya, N.D.; Gilligan, H.; Xu, D.H.; Zhao, S.; Dienstag, J.L.; Chung, R.T.; Thadhani, R.I. Prognosis of Patients with Cirrhosis and AKI Who Initiate RRT. Clin. J. Am. Soc. Nephro. 2018, 13, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Staufer, K.; Roedl, K.; Kivaranovic, D.; Drolz, A.; Horvatits, T.; Rasoul-Rockenschaub, S.; Zauner, C.; Trauner, M.; Fuhrmann, V. Renal replacement therapy in critically ill liver cirrhotic patients-outcome and clinical implications. Liver Int. 2017, 37, 843–850. [Google Scholar] [CrossRef]
- Wadei, H.M. Patients with Hepatorenal Syndrome Should Be Dialyzed? CON. Kidney360 2021, 2, 410–412. [Google Scholar] [CrossRef]
- Fong, T.L.; Khemichian, S.; Shah, T.; Hutchinson, I.V.; Cho, Y.W. Combined Liver-Kidney Transplantation Is Preferable to Liver Transplant Alone for Cirrhotic Patients With Renal Failure. Transplantation 2012, 94, 411–416. [Google Scholar] [CrossRef]
- Gonwa, T.A.; McBride, M.A.; Anderson, K.; Mai, M.L.; Wadei, H.; Ahsan, N. Continued influence of preoperative renal function on outcome of orthotopic liver transplant (OLTX) in the US: Where will MELD lead us? Am. J. Transplant. 2006, 6, 2651–2659. [Google Scholar] [CrossRef]
- Pita, A.; Kaur, N.; Emamaullee, J.; Lo, M.; Nguyen, B.; Sabour, A.; Tristan, V.; Nadim, M.; Genyk, Y.; Sher, L. Outcomes of Liver Transplantation in Patients on Renal Replacement Therapy: Considerations for Simultaneous Liver Kidney Transplantation Versus Safety Net. Transplant. Direct 2019, 5, e490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laskey, H.L.; Schomaker, N.; Hung, K.W.; Asrani, S.K.; Jennings, L.; Nydam, T.L.; Gralla, J.; Wiseman, A.; Rosen, H.R.; Biggins, S.W. Predicting renal recovery after liver transplant with severe pretransplant subacute kidney injury: The impact of warm ischemia time. Liver Transpl. 2016, 22, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Brennan, T.V.; Lunsford, K.E.; Vagefi, P.A.; Bostrom, A.; Ma, M.; Feng, S. Renal outcomes of simultaneous liver-kidney transplantation compared to liver transplant alone for candidates with renal dysfunction. Clin. Transplant. 2015, 29, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Wadei, H.M.; Abader, P.; Alsaad, A.A.; Croome, K.; Cortese, C.; Geiger, X.J.; Khouzam, S.; Mai, M.L.; Taner, C.B.; Keaveny, A.P. Arterial Blood Pressure at Liver Transplant Evaluation Predicts Renal Histology in Candidates With Renal Dysfunction. Liver Transplant. 2019, 25, 1756–1767. [Google Scholar] [CrossRef] [PubMed]
- Nadim, M.K.; Sung, R.S.; Davis, C.L.; Andreoni, K.A.; Biggins, S.W.; Danovitch, G.M.; Feng, S.; Friedewald, J.J.; Hong, J.C.; Kellum, J.A.; et al. Simultaneous liver-kidney transplantation summit: Current state and future directions. Am. J. Transplant. 2012, 12, 2901–2908. [Google Scholar] [CrossRef] [Green Version]
- Formica, R.N.; Aeder, M.; Boyle, G.; Kucheryavaya, A.; Stewart, D.; Hirose, R.; Mulligan, D. Simultaneous Liver-Kidney Allocation Policy: A Proposal to Optimize Appropriate Utilization of Scarce Resources. Am. J. Transplant. 2016, 16, 758–766. [Google Scholar] [CrossRef] [Green Version]
Old Classification | New Classification | Diagnostic Criteria | Stages | |
---|---|---|---|---|
HRS-1 | HRS-AKI | a. Absolute increase in sCr ≥0.3 mg/dL within 48 h and/or b. Percent increase in sCr ≥50% using the last available value of outpatient sCr within 3 months as the baseline value | Stage 1: increase in SCr ≥0.3 mg/dL (26.5 μmol/L) within 48 h or increase ≥1.5–1.9 fold from baseline 1a: SCr <1.5 mg/dL 1b: SCr >1.5 mg/dL | |
Stage 2: increase in SCr 2–3 fold from baseline | ||||
Stage 3: increase in SCr ≥3-fold from baseline or SCr ≥4.0 mg/dL (353.6 μmol/L) with an acute increase ≥0.3 mg/dL (26.5 μmol/L) or initiation of renal-replacement therapy | ||||
HRS-2 | HRS-NAKI | HRS-AKD | eGFR < 60 mL/min per 1.73 m2 for <3 months in the absence of other causes | |
HRS-CKD | eGFR < 60 mL/min per 1.73 m2 for ≥3 months in the absence of other causes |
Etiology | Potential Causes and Pathophysiology | Diagnosis | Management |
---|---|---|---|
Pre-renal AKI | Decreased oral intake, use of diuretics for ascites, use of laxatives for hepatic encephalopathy prophylaxis | Clinical history, POCUS findings, bland urinary sediment | Discontinuation of diuretics and repletion of intravascular volume preferably with albumin. |
Ischemic acute tubular necrosis (ATN) | Prolonged pre-renal insult, gastrointestinal bleed leading to hypovolemic shock, septic shock due to spontaneous bacterial peritonitis (SBP) | Clinical history, granular casts on urine microscopy | Conservative, diuretics for volume overload as needed, renal replacement therapy (RRT) |
Toxic ATN | Nephrotoxic medications such as vancomycin or fluoroquinolones used for SBP treatment | Clinical history, granular casts on urine microscopy | Conservative, diuretics for volume overload as needed, RRT |
Bile cast nephropathy (aka cholemic nephropathy) | Deposition of intra-tubular bilirubin casts in severe liver failure | Serum bilirubin levels typically >10 mg/dL, bilirubin casts on urine microscopy | Liver transplant to decrease serum bilirubin levels, diuretics for volume overload as needed, RRT |
HRS-AKI (formerly HRS-1) | Splanchnic vasodilatation, peripheral arterial vasodilation, and intense renal vasoconstriction | Diagnosis of exclusion in the absence of shock, nephrotoxic drug exposure, or structural kidney disease (proteinuria >500 mg per day, microhematuria >50 red blood cells per high-power field, and/or abnormal renal ultrasonography) | Albumin, vasopressors (norepinephrine, terlipressin) |
Cirrhotic cardiomyopathy | Hyperdynamic circulation leading to renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system (SNS) activation, cardiosuppressants such as nitric oxide and inflammatory cytokines | Echocardiography | Liver transplant, diuretics to help reduce preload, vasopressors |
Abdominal compartment syndrome | Tense ascites causing severe intra-abdominal hypertension and renal vein congestion | Sustained intra-abdominal pressure >20 mmHg | Large-volume paracentesis |
Secondary immunoglobulin A (IgA) nephropathy | Decrease in the expression of the hepatic sialo-glycoprotein receptor leading to defective IgA glycosylation | Hematuria and proteinuria on urinalysis, renal biopsy | Liver transplant |
Membranoproliferative glomerulonephritis (MPGN) | Hepatitis C virus (HCV) (frequently leads to cryoglobulinemic vasculitis), or Hepatitis B virus (HBV) | Hematuria and proteinuria on urinalysis, red blood cell casts on urine microscopy, positive HCV RNA or HBV DNA by polymerase chain reaction (PCR) | Direct-acting antiviral drugs |
Acute Interstitial nephritis (AIN) | Fluoroquinolone use for SBP prophylaxis or proton-pump inhibitor (PPI) use for GI prophylaxis | Clinical history, sterile pyuria on urinalysis, white blood cell casts on urine microscopy | Withdrawal of offending agent |
Obstructive uropathy | Midodrine (alpha agonist used for blood pressure support in HRS) | Physical exam, bladder scan, POCUS, renal ultrasonography | Withdrawal of offending medication, urinary catheterization |
PRA | ATN | HRS | |
---|---|---|---|
Hypotension | Yes | Yes | Yes |
Shock | No | Yes | No |
Nephrotoxins | No | Yes | No |
Ascites | +/− | +/− | + |
Response to IV Albumin | Yes | No | No |
IVC | <2.5 cm, >50% collapse | >2.5 cm, <50% collapse | >2.5 cm, <50% collapse |
Urine sediment | Negative | Granular casts | Negative |
FeNa | <1% | <1% | <1% (<0.1%) |
Urinary Na | <10 mEq/L | <10> mEq/L | <10 mEq/L |
Urine Biomarkers (NGAL) | + | +++ | + |
Biomarker | Description | Utility | Pitfalls |
---|---|---|---|
Cystatin C | - Cysteine protease inhibitor - Produced by all nucleated cells in the body - Filtered by the glomerulus and metabolized in the tubules | - Less influenced by muscle mass, age, and diabetes than serum creatinine [26] - Useful in AKI prediction and prognostication: MELD-Cystatin C improves predictive accuracy of mortality [27] - Equations based on both creatinine and Cysatin C least biased in assessing the GFR in cirrhosis [28] | - Several non-GFR determinants of higher Cystatin C such as male sex, greater height and weight, higher lean body mass, higher fat mass, diabetes, higher levels of inflammatory markers, hyper- and hypothyroidism, and glucocorticoid use [29,30] |
Urinary NGAL | - Produced by neutrophils and epithelial cells including kidney tubular cells - Abundantly expressed in the urine following ischemic injury | - Marker of tubular damage - Useful for differentiating pre-renal AKI from ATN (highest in ATN) - Greatest accuracy among monomeric NGAL (mNGAL), interleukin (IL)-18, and other conventional urinary biomarkers for differential diagnosis between ATN and other types of AKI when measured at day 3 in decompensated cirrhosis [31] - Predictor of 90-day patient transplant-free survival [32,33] and prognostic factor for mortality in ACLF [34] - Starts to rise after 3 h in the urine following renal injury [35] | - Lack of standardization - Uncertainty regarding the cutoff value - Unavailable in many countries thus making it a research only test |
Urinary KIM-1 | - Transmembrane protein that is upregulated in the proximal tubule and shed in the urine in response to ischemia | - Rises 2–3 h following kidney injury - Useful in differentiating types of AKI and predicting patient mortality - Highest in ATN | - Lack of standardization - Poor sensitivity and specificity [36] |
Urinary L-FABP | - Intracellular lipid chaperone involved in lipid-mediated processes | - Promising prognostic biomarker in patients with decompensated cirrhosis [37] - Highest in ATN | - Limited studies in decompensated cirrhosis |
Urinary IL-18 | - Proinflammatory cytokine, expressed in the proximal tubular cells - Upregulated in acute ischemic injury | - Marker of tubular damage: higher in ATN compared with pre-renal azotemia, UIT, and CKD | - Does not predict patient mortality or kidney outcomes |
IVC Diameter (cm) | Respiratory Variation (Collapse) | CVP (cm H2O) |
---|---|---|
<1.5 | Total collapse | 0–5 |
1.5–2.5 | >50% | 6–10 |
1.5–2.5 | <50% | 11–15 |
>2.5 | <50% | 16–20 |
>2.5 | No change | >20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attieh, R.M.; Wadei, H.M. Acute Kidney Injury in Liver Cirrhosis. Diagnostics 2023, 13, 2361. https://doi.org/10.3390/diagnostics13142361
Attieh RM, Wadei HM. Acute Kidney Injury in Liver Cirrhosis. Diagnostics. 2023; 13(14):2361. https://doi.org/10.3390/diagnostics13142361
Chicago/Turabian StyleAttieh, Rose Mary, and Hani M. Wadei. 2023. "Acute Kidney Injury in Liver Cirrhosis" Diagnostics 13, no. 14: 2361. https://doi.org/10.3390/diagnostics13142361
APA StyleAttieh, R. M., & Wadei, H. M. (2023). Acute Kidney Injury in Liver Cirrhosis. Diagnostics, 13(14), 2361. https://doi.org/10.3390/diagnostics13142361