Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Acquisition
2.2. Image Segmentation
2.3. Radiomic Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sobolewska, B.; Chee, S.P.; Zaguia, F.; Goldstein, D.A.; Smith, J.R.; Fend, F.; Mochizuki, M.; Zierhut, M. Vitreoretinal Lymphoma. Cancers 2021, 13, 3921. [Google Scholar] [CrossRef]
- Gozzi, F.; Aldigeri, R.; Mastrofilippo, V.; De Simone, L.; Bolletta, E.; Marzano, J.; Iannetta, D.; Coassin, M.; Ilariucci, F.; Ferrari, A.; et al. Survival and Recurrence in Vitreoretinal Lymphoma Simulating Uveitis at Presentation: The Possible Role of Combined Chemotherapy. Ocul. Immunol. Inflamm. 2022, 30, 1833–1841. [Google Scholar] [CrossRef] [PubMed]
- Habot-Wilner, Z.; Pe’er, J.; Frenkel, S. The Challenge in the Diagnosis and Management of Vitreoretinal Lymphoma. Clin. Exp. Ophthalmol. 2023, 51, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Coupland, S.E.; Bechrakis, N.E.; Anastassiou, G.; Foerster, A.M.H.; Heiligenhaus, A.; Pleyer, U.; Hummel, M.; Stein, H. Evaluation of Vitrectomy Specimens and Chorioretinal Biopsies in the Diagnosis of Primary Intraocular Lymphoma in Patients with Masquerade Syndrome. Graefe’s Arch. Clin. Exp. Ophthalmol. 2003, 241, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Melli, B.; Gentile, P.; Nicoli, D.; Farnetti, E.; Croci, S.; Gozzi, F.; Bolletta, E.; De Simone, L.; Sanguedolce, F.; Palicelli, A.; et al. Primary Vitreoretinal Lymphoma: Current Diagnostic Laboratory Tests and New Emerging Molecular Tools. Curr. Oncol. 2022, 29, 6908–6921. [Google Scholar] [CrossRef]
- Carbonell, D.; Mahajan, S.; Chee, S.P.; Sobolewska, B.; Agrawal, R.; Bülow, T.; Gupta, V.; Jones, N.P.; Accorinti, M.; Agarwal, M.; et al. Consensus Recommendations for the Diagnosis of Vitreoretinal Lymphoma. Ocul. Immunol. Inflamm. 2021, 29, 507–520. [Google Scholar] [CrossRef]
- Chan, C.C.; Sen, H.N. Current Concepts in Diagnosing and Managing Primary Vitreoretinal (Intraocular) Lymphoma. Discov. Med. 2013, 15, 93–100. [Google Scholar] [PubMed]
- Cani, A.K.; Hovelson, D.H.; Demirci, H.; Johnson, M.W.; Tomlins, S.A.; Rao, R.C. Next Generation Sequencing of Vitreoretinal Lymphomas from Small-Volume Intraocular Liquid Biopsies: New Routes to Targeted Therapies. Oncotarget 2017, 8, 7989–7998. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.T.; Huang, Y.; Liao, A.; Anthony, C.L.; Voloschin, A.; Yeh, S. Multimodal Diagnostic Imaging in Primary Vitreoretinal Lymphoma. Int. J. Retin. Vitr. 2022, 8, 58. [Google Scholar] [CrossRef]
- Fardeau, C.; Lee, C.P.L.; Merle-Béral, H.; Cassoux, N.; Bodaghi, B.; Davi, F.; Lehoang, P. Retinal Fluorescein, Indocyanine Green Angiography, and Optic Coherence Tomography in Non-Hodgkin Primary Intraocular Lymphoma. Am. J. Ophthalmol. 2009, 147, 886–894.e1. [Google Scholar] [CrossRef]
- Casady, M.; Faia, L.; Nazemzadeh, M.; Nussenblatt, R.; Chan, C.-C.; Sen, H.N. Fundus Autofluorescence Patterns in Primary Intraocular Lymphoma. Retina 2014, 34, 366–372. [Google Scholar] [CrossRef] [Green Version]
- Pichi, F.; Dolz-Marco, R.O.S.A.; Francis, J.H.; Au, A.; Davis, J.L.; Fawzi, A.; Gattousi, S.; Goldstein, D.A.; Keane, P.A.; Miserocchi, E.; et al. Advanced OCT Analysis of Biopsy-Proven Vitreoretinal Lymphoma. Am. J. Ophthalmol. 2022, 238, 16–26. [Google Scholar] [CrossRef]
- Barry, R.J.; Tasiopoulou, A.; Murray, P.I.; Patel, P.J.; Sagoo, M.S.; Denniston, A.K.; Keane, P.A. Characteristic Optical Coherence Tomography Findings in Patients with Primary Vitreoretinal Lymphoma: A Novel Aid to Early Diagnosis. Br. J. Ophthalmol. 2018, 102, 1362–1366. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.; Xiao, Y.; Zhao, H.; Hu, F.; Chen, C.; Peng, X. Spectral-Domain Optical Coherence Tomography Biomarkers in Vitreoretinal Lymphoma. Clin. Exp. Ophthalmol. 2023, 51, 144–153. [Google Scholar] [CrossRef]
- Invernizzi, A.; Marchi, S.; Aldigeri, R.; Mastrofilippo, V.; Viscogliosi, F.; Soldani, A.; Adani, C.; Garoli, E.; Viola, F.; Fontana, L.; et al. Objective Quantification of Anterior Chamber Inflammation: Measuring Cells and Flare by Anterior Segment Optical Coherence Tomography. Ophthalmology 2017, 124, 1670–1677. [Google Scholar] [CrossRef] [PubMed]
- Pichi, F.; Neri, P.; Hay, S.; Parrulli, S.; Zicarelli, F.; Invernizzi, A. An En Face Swept Source Optical Coherence Tomography Study of the Vitreous in Eyes with Anterior Uveitis. Acta Ophthalmol. 2022, 100, e820–e826. [Google Scholar] [CrossRef] [PubMed]
- Matsumiya, W.; Kusuhara, S.; Sotani, N.; Kim, K.W.; Nishisho, R.; Sotani, R.; Imai, H.; Uji, A.; Nakamura, M. Characteristics of Cellular Infiltration into Posterior Vitreous in Eyes with Uveitis on the Classification Basis Assessed Using Optical Coherence Tomography. Clin. Ophthalmol. 2023, 17, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Barbazetto, I.A.; Spaide, R.F. Intravitreal Cellular Infiltrate Imaged as Punctate Spots by Spectral-Domain Optical Coherence Tomography in Eyes with Posterior Segment Inflammatory Disease. Retina 2013, 33, 559–565. [Google Scholar] [CrossRef]
- Keane, P.A.; Karampelas, M.; Sim, D.A.; Sadda, S.R.; Tufail, A.; Sen, H.N.; Nussenblatt, R.B.; Dick, A.D.; Lee, R.W.; Murray, P.I.; et al. Objective Measurement of Vitreous Inflammation Using Optical Coherence Tomography. Ophthalmology 2014, 121, 1706–1714. [Google Scholar] [CrossRef] [Green Version]
- Zicarelli, F.; Ometto, G.; Montesano, G.; Motta, S.; De Simone, L.; Cimino, L.; Staurenghi, G.; Agarwal, A.; Pichi, F.; Invernizzi, A. Objective Quantification of Posterior Segment Inflammation: Measuring Vitreous Cells and Haze Using Optical Coherence Tomography. Am. J. Ophthalmol. 2023, 245, 134–144. [Google Scholar] [CrossRef]
- Zicarelli, F.; Staurenghi, G.; Invernizzi, A. Anterior Segment Optical Coherence Tomography (AS-OCT) Visualization of Anterior Vitritis. Ocul. Immunol. Inflamm. 2023, 31, 1101–1102. [Google Scholar] [CrossRef]
- Oahalou, A.; Schellekens, P.A.W.J.F.; De Groot-Mijnes, J.D.; Rothova, A. Diagnostic Pars Plana Vitrectomy and Aqueous Analyses in Patients with Uveitis of Unknown Cause. Retina 2014, 34, 108–114. [Google Scholar] [CrossRef]
- Bouchenaki, N.; Herbort, C.P. Fuchs’ Uveitis: Failure to Associate Vitritis and Disc Hyperfluorescence with the Disease Is the Major Factor for Misdiagnosis and Diagnostic Delay. Middle East Afr. J. Ophthalmol. 2009, 16, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Couto, C.; Hurtado, E.; Faingold, D.; Demetrio, C.; Schlaen, A.; Zas, M.; Zarate, J.; Rosetti, S.; Paes De Lima, A.; Croxatto, J.O.; et al. Atypical Bilateral Fuchs Uveitis: Diagnostic Challenges. Case Rep. Ophthalmol. 2015, 6, 284–288. [Google Scholar] [CrossRef]
- Mochizuki, M.; Smith, J.R.; Takase, H.; Kaburaki, T.; Acharya, N.R.; Rao, N.A. Revised Criteria of International Workshop on Ocular Sarcoidosis (IWOS) for the Diagnosis of Ocular Sarcoidosis. Br. J. Ophthalmol. 2019, 103, 1418–1422. [Google Scholar] [CrossRef]
- Tugal-Tutkun, I.; Onal, S.; Stanford, M.; Akman, M.; Twisk, J.W.R.; Boers, M.; Oray, M.; Özdal, P.; Kadayifcilar, S.; Amer, R.; et al. An Algorithm for the Diagnosis of Behçet Disease Uveitis in Adults. Ocul. Immunol. Inflamm. 2021, 29, 1154–1163. [Google Scholar] [CrossRef]
- Sagoo, M.S.; Mehta, H.; Swampillai, A.J.; Cohen, V.M.L.; Amin, S.Z.; Plowman, P.N.; Lightman, S. Primary Intraocular Lymphoma. Surv. Ophthalmol. 2014, 59, 503–516. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, Q.; Zamir, E. Update on Fuchs’ Uveitis Syndrome. Curr. Opin. Ophthalmol. 2005, 16, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Sallam, A.; Lynn, W.; Mccluskey, P.; Lightman, S. Endogenous Candida endophthalmitis. Expert Rev. Anti-Infect. Ther. 2006, 4, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; Van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Castellano, G.; Bonilha, L.; Li, L.M.; Cendes, F. Texture Analysis of Medical Images. Clin. Radiol. 2004, 59, 1061–1069. [Google Scholar] [CrossRef]
- Tourassi, G.D. Journey toward Computer-Aided Diagnosis: Role of Image Texture Analysis. Radiology 1999, 213, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in Medical Imaging—“How-to” Guide and Critical Reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Qian, Z.; Sun, Z.; Xu, K.; Wang, K.; Liu, S.; Fan, X.; Li, S.; Zhang, Z.; et al. A Radiomic Signature as a Non-Invasive Predictor of Progression-Free Survival in Patients with Lower-Grade Gliomas. NeuroImage Clin. 2018, 20, 1070–1077. [Google Scholar] [CrossRef]
- Jensen, L.J.; Kim, D.; Elgeti, T.; Steffen, I.G.; Schaafs, L.-A.; Hamm, B.; Nagel, S.N. Enhancing the Stability of CT Radiomics across Different Volume of Interest Sizes Using Parametric Feature Maps: A Phantom Study. Eur. Radiol. Exp. 2022, 6, 43. [Google Scholar] [CrossRef]
- Vallières, M.; Freeman, C.R.; Skamene, S.R.; El Naqa, I. A Radiomics Model from Joint FDG-PET and MRI Texture Features for the Prediction of Lung Metastases in Soft-Tissue Sarcomas of the Extremities. Phys. Med. Biol. 2015, 60, 5471–5496. [Google Scholar] [CrossRef]
- Vallières, M.; Kay-Rivest, E.; Perrin, L.J.; Liem, X.; Furstoss, C.; Aerts, H.J.W.L.; Khaouam, N.; Nguyen-Tan, P.F.; Wang, C.-S.; Sultanem, K.; et al. Radiomics Strategies for Risk Assessment of Tumour Failure in Head-and-Neck Cancer. Sci. Rep. 2017, 7, 10117. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Vallières, M.; Bai, H.X.; Su, C.; Tang, H.; Oldridge, D.; Zhang, Z.; Xiao, B.; Liao, W.; Tao, Y.; et al. MRI Features Predict Survival and Molecular Markers in Diffuse Lower-Grade Gliomas. Neuro-Oncol. 2017, 19, 862–870. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Takhar, J.; Doan, T.; Gonzales, J.A. Vitreoretinal Lymphoma: A Literature Review and Introduction of a New Diagnostic Method. Asia-Pac. J. Ophthalmol. 2021, 10, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Cimino, L.; Coassin, M.; Chan, C.C.; Marchi, S.; Belpoliti, M.; Fanti, A.; Iovieno, A.; Fontana, L. Vitreoretinal Lymphomas Misdiagnosed as Uveitis: Lessons Learned from a Case Series. Indian J. Ophthalmol. 2016, 64, 369–375. [Google Scholar] [CrossRef]
- Marchese, A.; Miserocchi, E.; Giuffrè, C.; Cicinelli, M.V.; Querques, G.; Bandello, F.; Modorati, G. Aurora Borealis and String of Pearls in Vitreoretinal Lymphoma: Patterns of Vitreous Haze. Br. J. Ophthalmol. 2019, 103, 1656–1659. [Google Scholar] [CrossRef] [PubMed]
- Touhami, S.; Audo, I.; Terrada, C.; Gaudric, A.; LeHoang, P.; Touitou, V.; Bodaghi, B. Neoplasia and Intraocular Inflammation: From Masquerade Syndromes to Immunotherapy-Induced Uveitis. Prog. Retin. Eye Res. 2019, 72, 100761. [Google Scholar] [CrossRef] [PubMed]
- Touhami, S.; Leclercq, M.; Stanescu-Segall, D.; Touitou, V.; Bodaghi, B. Differential Diagnosis of Vitritis in Adult Patients. Ocular Immunol. Inflamm. 2021, 29, 786–795. [Google Scholar] [CrossRef]
- Sebag, J. Ageing of the Vitreous. Eye 1987, 1, 254–262. [Google Scholar] [CrossRef]
- Sebag, J. Vitreous and Vision Degrading Myodesopsia. Prog. Retin. Eye Res. 2020, 79, 100847. [Google Scholar] [CrossRef]
- Ruminski, D.; Sebag, J.; Toledo, R.D.; Jiménez-Villar, A.; Nowak, J.K.; Manzanera, S.; Artal, P.; Grulkowski, I. Volumetric Optical Imaging and Quantitative Analysis of Age-Related Changes in Anterior Human Vitreous. Investig. Ophthalmol. Vis. Sci. 2021, 62, 31. [Google Scholar] [CrossRef]
- Spaide, R.F.; Valmaggia, P.; Maloca, P.M.; Scholl, H.P.N.; Otto, T.P.; Caujolle, S. Imaging the Vitreous with a Novel Boosted Optical Coherence Tomography Technique: Vitreous Degeneration and Cisterns. Retina 2022, 42, 1433–1441. [Google Scholar] [CrossRef]
- Prasanna, P.; Bobba, V.; Figueiredo, N.; Sevgi, D.D.; Lu, C.; Braman, N.; Alilou, M.; Sharma, S.; Srivastava, S.K.; Madabhushi, A.; et al. Radiomics-Based Assessment of Ultra-Widefield Leakage Patterns and Vessel Network Architecture in the PERMEATE Study: Insights into Treatment Durability. Br. J. Ophthalmol. 2021, 105, 1155–1160. [Google Scholar] [CrossRef]
- Afarid, M.; Mohsenipoor, N.; Parsaei, H.; Amirmoezzi, Y.; Ghofrani-Jahromi, M.; Jafari, P.; Mohsenipour, A.; Sanie-Jahromi, F. Assessment of Macular Findings by OCT Angiography in Patients without Clinical Signs of Diabetic Retinopathy: Radiomics Features for Early Screening of Diabetic Retinopathy. BMC Ophthalmol. 2022, 22, 281. [Google Scholar] [CrossRef]
- Avanzo, M.; Stancanello, J.; El Naqa, I. Beyond Imaging: The Promise of Radiomics. Phys. Medica 2017, 38, 122–139. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, Q.; Chen, H.; Jin, Y.; Ji, Z.; Han, H.; Wang, W. Radiomics of Multi-Modality Ultrasound in Rabbit VX2 Liver Tumors: Differentiating Residual Tumors from Hyperemic Rim After Ablation. J. Med. Biol. Eng. 2022, 42, 780–789. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, Y.; Suo, J.; Shi, J.; Yu, J.; Guo, Y.; Wang, Y.; Zheng, H. Sonoelastomics for Breast Tumor Classification: A Radiomics Approach with Clustering-Based Feature Selection on Sonoelastography. Ultrasound Med. Biol. 2017, 43, 1058–1069. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Ma, C.; Duan, J.; Qiu, Q.; Guo, Y.; Zhang, Z.; Yin, Y. Using CT Texture Analysis to Differentiate between Peripheral Lung Cancer and Pulmonary Inflammatory Pseudotumor. BMC Med. Imaging 2020, 20, 75. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Ginat, D.T. Preliminary Computed Tomography Radiomics Model for Predicting Pretreatment CD8+ T-Cell Infiltration Status for Primary Head and Neck Squamous Cell Carcinoma. J. Comput. Assist. Tomogr. 2021, 45, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Wu, S.; Zhang, M.; Hong, J.; Liu, B.; Xu, N.; Zeng, Q.; Tang, K.; Zheng, X. A Radiomic-Based Model of Different Contrast-Enhanced CT Phase for Differentiate Intrahepatic Cholangiocarcinoma from Inflammatory Mass with Hepatolithiasis. Abdom. Radiol. 2021, 46, 3835–3844. [Google Scholar] [CrossRef]
- Committeri, U.; Barone, S.; Salzano, G.; Arena, A.; Borriello, G.; Giovacchini, F.; Fusco, R.; Vaira, L.A.; Scarpa, A.; Abbate, V.; et al. Support Tools in the Differential Diagnosis of Salivary Gland Tumors through Inflammatory Biomarkers and Radiomics Metrics: A Preliminary Study. Cancers 2023, 15, 1876. [Google Scholar] [CrossRef]
- Lecler, A.; Duron, L.; Balvay, D.; Savatovsky, J.; Bergès, O.; Zmuda, M.; Farah, E.; Galatoire, O.; Bouchouicha, A.; Fournier, L.S. Combining Multiple Magnetic Resonance Imaging Sequences Provides Independent Reproducible Radiomics Features. Sci. Rep. 2019, 9, 2068. [Google Scholar] [CrossRef] [Green Version]
- Du, D.; Gu, J.; Chen, X.; Lv, W.; Feng, Q.; Rahmim, A.; Wu, H.; Lu, L. Integration of PET/CT Radiomics and Semantic Features for Differentiation between Active Pulmonary Tuberculosis and Lung Cancer. Mol. Imaging Biol. 2021, 23, 287–298. [Google Scholar] [CrossRef]
- Brancato, V.; Cerrone, M.; Lavitrano, M.; Salvatore, M.; Cavaliere, C. A Systematic Review of the Current Status and Quality of Radiomics for Glioma Differential Diagnosis. Cancers 2022, 14, 2731. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Yuan, Z.; Janson, B.; Peng, Y.; Yang, Y.; Wang, W. Older Pedestrian Traffic Crashes Severity Analysis Based on an Emerging Machine Learning XGBoost. Sustainability 2021, 13, 926. [Google Scholar] [CrossRef]
- Van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [Green Version]
- Yoo, T.K.; Choi, J.Y.; Kim, H.K. Feasibility Study to Improve Deep Learning in OCT Diagnosis of Rare Retinal Diseases with Few-Shot Classification. Med. Biol. Eng. Comput. 2021, 59, 401–415. [Google Scholar] [CrossRef] [PubMed]
- Tafuri, B.; Lombardi, A.; Nigro, S.; Urso, D.; Monaco, A.; Pantaleo, E.; Diacono, D.; De Blasi, R.; Bellotti, R.; Tangaro, S.; et al. The Impact of Harmonization on Radiomic Features in Parkinson’s Disease and Healthy Controls: A Multicenter Study. Front. Neurosci. 2022, 16, 1012287. [Google Scholar] [CrossRef]
- Bertolini, M.; Trojani, V.; Botti, A.; Cucurachi, N.; Galaverni, M.; Cozzi, S.; Borghetti, P.; La Mattina, S.; Pastorello, E.; Avanzo, M.; et al. Novel Harmonization Method for Multi-Centric Radiomic Studies in Non-Small Cell Lung Cancer. Curr. Oncol. 2022, 29, 5179–5194. [Google Scholar] [CrossRef]
- Orlhac, F.; Eertink, J.J.; Cottereau, A.-S.; Zijlstra, J.M.; Thieblemont, C.; Meignan, M.; Boellaard, R.; Buvat, I. A Guide to ComBat Harmonization of Imaging Biomarkers in Multicenter Studies. J. Nucl. Med. 2022, 63, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.A.S.; Kelahan, L.C.; Magnetta, M.; Savas, H.; Agrawal, R.; Avery, R.J.; Aouad, P.; Liu, B.; Xue, Y.; Chae, Y.K.; et al. A Framework for Harmonization of Radiomics Data for Multicenter Studies and Clinical Trials. JCO Clin. Cancer Inform. 2022, 6, e2200023. [Google Scholar] [CrossRef]
Patient Code | Patient Sex | Analyzed Images (n) | Label | Site | Age (y) | Acquisition Method | Training | Testing | Lens Type Left Eye (L) | Lens Type Right Eye (R) |
---|---|---|---|---|---|---|---|---|---|---|
433 | F | 124 | Vitritis (FU) | R,L | 26 | both | X | Phakic | Phakic | |
434 | M | 98 | Vitritis (OS) | R,L | 57 | new | X | Phakic | Phakic | |
439 | F | 132 | Vitritis (OS) | R,L | 74 | new | X | Phakic | Phakic | |
440 | M | 99 | Vitritis (FU) | L | 50 | new | X | Phakic | N.A. | |
444 | M | 97 | Vitritis (FU) | L | 39 | new | X | Phakic | N.A. | |
445 | M | 114 | Vitritis (OS) | R,L | 52 | new | X | Pseudo-phakic | Pseudo-phakic | |
405 | M | 111 | Vitritis (FU) | R | 38 | old | X | N.A. | Phakic | |
435 | F | 96 | Vitritis (BU) | R,L | 20 | new | X | Phakic | Phakic | |
437 | F | 239 | Vitritis (BU) | R,L | 26 | new | X | Phakic | Phakic | |
438 | M | 95 | Vitritis (OS) | R,L | 46 | new | X | Pseudo-phakic | Pseudo-phakic | |
448 | F | 217 | Vitritis (FU) | R,L | 65 | old | X | Phakic | Phakic | |
410 | F | 109 | Vitritis (UUO) | R,L | 79 | old | X | Pseudo-phakic | Pseudo-phakic | |
446 | F | 110 | Vitritis (UUO) | L | 66 | both | X | Phakic | N.A. | |
466 | F | 90 | Vitritis (UUO) | R | 62 | both | X | N.A. | Phakic | |
468 | F | 124 | Vitritis (UUO) | R,L | 78 | both | X | Pseudo-phakic | Pseudo-phakic | |
491 | M | 174 | Vitritis (UUO) | R,L | 75 | both | X | Pseudo-phakic | Pseudo-phakic | |
493 | F | 102 | Vitritis (UUO) | L | 79 | both | X | Pseudo-phakic | N.A. | |
393 | F | 56 | VRL | R,L | 91 | New | X | Pseudo-phakic | Pseudo-phakic | |
432 | M | 132 | VRL | R,L | 73 | new | X | Phakic | Phakic | |
436 | M | 166 | VRL | R,L | 76 | new | X | Pseudo-phakic | Phakic | |
442 | F | 62 | VRL | R,L | 88 | new | X | Phakic | Pseudo-phakic | |
447 | M | 95 | VRL | R | 99 | new | X | N.A. | Pseudo-phakic | |
103 | M | 82 | VRL | R,L | 55 | old | X | Phakic | Phakic | |
173 | M | 145 | VRL | R,L | 51 | old | X | Phakic | Phakic | |
186 | M | 18 | VRL | L | 58 | old | X | Phakic | N.A. | |
363 | F | 80 | VRL | R,L | 71 | old | X | Phakic | Phakic | |
364 | F | 32 | VRL | L | 82 | old | X | N.A. | Phakic | |
398 | F | 261 | VRL | R,L | 58 | old | X | Phakic | Phakic |
Site | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | R | |||||||||||||||
Acquisition Method | Acquisition Method | |||||||||||||||
New | Old | New | Old | |||||||||||||
Lens Type | Lens Type | Lens Type | Lens Type | |||||||||||||
Phakic | Pseudo-Phakic | Phakic | Pseudo-Phakic | Phakic | Pseudo-Phakic | Phakic | Pseudo-Phakic | |||||||||
Sex | Sex | Sex | Sex | Sex | Sex | Sex | Sex | |||||||||
M | F | M | F | M | F | M | F | M | F | M | F | M | F | M | F | |
Vitritis (n) | 247 | 326 | 161 | 44 | 0 | 40 | 19 | 98 | 47 | 432 | 172 | 27 | 111 | 113 | 31 | 64 |
Average age (y) | 47.1 | 46.3 | 63.8 | 78 | NA | 41.9 | 78 | 79 | 57 | 45.4 | 59 | 78 | 38 | 46.7 | 66 | 79 |
VRL (n) | 44 | 37 | 94 | 0 | 129 | 191 | 23 | 39 | 137 | 0 | 95 | 25 | 116 | 182 | 0 | 17 |
Average age (y) | 73 | 88 | 76 | NA | 53.2 | 61.3 | 76 | 91 | 74.1 | NA | 94 | 88 | 52.4 | 64.5 | NA | 91 |
Accuracy (Train) (Test) | Precision (Train) (Test) | AUC (Train [CI 95%]) (Test) | Radiomic Features Selected | |
---|---|---|---|---|
Dataset Ng = 16 | 0.878 | 0.968 | 0.947 [0.937–0.956] | GLCM_Homogeneity, NGTDM_Busyness, GLRLM_LRHGE, NGTDM_Coarseness, GLCM_Correlation |
0.735 | 0.525 | 0.813 | ||
Dataset Ng = 32 | 0.844 | 0.987 | 0.938 [0.928–0.949] | GLRLM_LRHGE, GLCM_Contrast, NGTDM_Coarseness, GLCM_Correlation, GLCM_Homogeneity |
0.825 | 0.790 | 0.798 | ||
Dataset Ng = 64 | 0.860 | 0.995 | 0.942 [0.932–0.951] | GLRLM_LRHGE, GLCM_Homogeneity, NGTDM_Coarseness, GLCM_Correlation, GLCM_Contrast |
0.827 | 0.798 | 0.809 | ||
Dataset Ng = 128 | 0.860 | 0.985 | 0.949 [0.940–0.958] | GLRLM_LRHGE, NGTDM_Strength, GLSZM_HGZE, NGTDM_Coarseness, GLCM_Correlation |
0.830 | 0.795 | 0.843 | ||
Dataset Ng = 256 | 0.853 | 0.990 | 0.945 [0.935–0.954] | GLRLM_LRHGE, NGTDM_Coarseness, GLCM_Correlation, GLRLM_SRE, NGTDM_Complexity |
0.785 | 0.589 | 0.841 |
GLRLM_LRHGE | NGTDM_Strength | GLSZM_HGZE | NGTDM_Coarseness | GLCM_Correlation | |
---|---|---|---|---|---|
GLRLM_LRHGE | 1.00 | ||||
NGTDM_Strength | 0.54 | 1.00 | |||
GLSZM_HGZE | 0.43 | 0.81 | 1.00 | ||
NGTDM_Coarseness | 0.59 | 0.86 | 0.59 | 1.00 | |
GLCM_Correlation | 0.44 | 0.44 | 0.48 | 0.37 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gozzi, F.; Bertolini, M.; Gentile, P.; Verzellesi, L.; Trojani, V.; De Simone, L.; Bolletta, E.; Mastrofilippo, V.; Farnetti, E.; Nicoli, D.; et al. Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma. Diagnostics 2023, 13, 2451. https://doi.org/10.3390/diagnostics13142451
Gozzi F, Bertolini M, Gentile P, Verzellesi L, Trojani V, De Simone L, Bolletta E, Mastrofilippo V, Farnetti E, Nicoli D, et al. Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma. Diagnostics. 2023; 13(14):2451. https://doi.org/10.3390/diagnostics13142451
Chicago/Turabian StyleGozzi, Fabrizio, Marco Bertolini, Pietro Gentile, Laura Verzellesi, Valeria Trojani, Luca De Simone, Elena Bolletta, Valentina Mastrofilippo, Enrico Farnetti, Davide Nicoli, and et al. 2023. "Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma" Diagnostics 13, no. 14: 2451. https://doi.org/10.3390/diagnostics13142451
APA StyleGozzi, F., Bertolini, M., Gentile, P., Verzellesi, L., Trojani, V., De Simone, L., Bolletta, E., Mastrofilippo, V., Farnetti, E., Nicoli, D., Croci, S., Belloni, L., Zerbini, A., Adani, C., De Maria, M., Kosmarikou, A., Vecchi, M., Invernizzi, A., Ilariucci, F., ... Cimino, L. (2023). Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma. Diagnostics, 13(14), 2451. https://doi.org/10.3390/diagnostics13142451