Radiomics Based on Single-Phase CTA for Distinguishing Left Atrial Appendage Thrombus from Circulatory Stasis in Patients with Atrial Fibrillation before Ablation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. CT Image Acquisition and Analysis
2.3. Transesophageal Echocardiography
2.4. VOI Segmentation for Radiomics
2.5. Extraction and Selection of Radiomics Features
2.6. Model Development and Evaluation
2.7. Statistical Analysis
3. Results
3.1. Clinical and Radiological Features
3.2. Radiomics Analysis and Model Development
3.3. Model Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lloyd-Jones, D.M.; Wang, T.J.; Leip, E.P.; Larson, M.G.; Levy, D.; Vasan, R.S.; D’Agostino, R.B.; Massaro, J.M.; Beiser, A.; Wolf, P.A.; et al. Lifetime risk for development of atrial fibrillation: The Framingham Heart Study. Circulation 2004, 110, 1042–1046. [Google Scholar] [CrossRef]
- January, C.T.; Wann, L.S.; Alpert, J.S.; Calkins, H.; Cigarroa, J.E.; Cleveland, J.C., Jr.; Conti, J.B.; Ellinor, P.T.; Ezekowitz, M.D.; Field, M.E.; et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation 2014, 130, e199–e267. [Google Scholar] [CrossRef]
- Kim, M.H.; Johnston, S.S.; Chu, B.C.; Dalal, M.R.; Schulman, K.L. Estimation of total incremental health care costs in patients with atrial fibrillation in the United States. Circ. Cardiovasc. Qual. Outcomes 2011, 4, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Odutayo, A.; Wong, C.X.; Hsiao, A.J.; Hopewell, S.; Altman, D.G.; Emdin, C.A. Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: Systematic review and meta-analysis. BMJ 2016, 354, i4482. [Google Scholar] [CrossRef] [Green Version]
- Blackshear, J.L.; Odell, J.A. Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation. Ann. Thorac. Surg. 1996, 61, 755–759. [Google Scholar] [CrossRef]
- Beigel, R.; Wunderlich, N.C.; Ho, S.Y.; Arsanjani, R.; Siegel, R.J. The left atrial appendage: Anatomy, function, and noninvasive evaluation. JACC Cardiovasc. Imaging 2014, 7, 1251–1265. [Google Scholar] [CrossRef] [Green Version]
- Calkins, H.; Hindricks, G.; Cappato, R.; Kim, Y.H.; Saad, E.B.; Aguinaga, L.; Akar, J.G.; Badhwar, V.; Brugada, J.; Camm, J.; et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace 2018, 20, e1–e160. [Google Scholar] [CrossRef]
- Romero, J.; Cao, J.J.; Garcia, M.J.; Taub, C.C. Cardiac imaging for assessment of left atrial appendage stasis and thrombosis. Nat. Rev. Cardiol. 2014, 11, 470–480. [Google Scholar] [CrossRef]
- Daniel, W.G.; Erbel, R.; Kasper, W.; Visser, C.A.; Engberding, R.; Sutherland, G.R.; Grube, E.; Hanrath, P.; Maisch, B.; Dennig, K.; et al. Safety of transesophageal echocardiography. A multicenter survey of 10,419 examinations. Circulation 1991, 83, 817–821. [Google Scholar] [CrossRef] [Green Version]
- Romero, J.; Husain, S.A.; Kelesidis, I.; Sanz, J.; Medina, H.M.; Garcia, M.J. Detection of left atrial appendage thrombus by cardiac computed tomography in patients with atrial fibrillation: A meta-analysis. Circ. Cardiovasc. Imaging 2013, 6, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Hur, J.; Kim, Y.J.; Lee, H.J.; Nam, J.E.; Hong, Y.J.; Kim, H.Y.; Lee, J.W.; Choi, B.W. Cardioembolic stroke: Dual-energy cardiac CT for differentiation of left atrial appendage thrombus and circulatory stasis. Radiology 2012, 263, 688–695. [Google Scholar] [CrossRef] [Green Version]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Xue, Y.; Schoepf, U.J.; Varga-Szemes, A.; Griffith, J.; Yacoub, B.; Zhou, F.; Zhou, C.; Yang, Y.; Xing, W.; et al. Radiomics: The Next Frontier of Cardiac Computed Tomography. Circ. Cardiovasc. Imaging 2021, 14, e011747. [Google Scholar] [CrossRef]
- Charalambous, S.; Klontzas, M.E.; Kontopodis, N.; Ioannou, C.V.; Perisinakis, K.; Maris, T.G.; Damilakis, J.; Karantanas, A.; Tsetis, D. Radiomics and machine learning to predict aggressive type 2 endoleaks after endovascular aneurysm repair: A proof of concept. Acta Radiol. 2022, 63, 1293–1299. [Google Scholar] [CrossRef]
- Jiang, J.; Wei, J.; Zhu, Y.; Wei, L.; Wei, X.; Tian, H.; Zhang, L.; Wang, T.; Cheng, Y.; Zhao, Q.; et al. Clot-based radiomics model for cardioembolic stroke prediction with CT imaging before recanalization: A multicenter study. Eur. Radiol. 2023, 33, 970–980. [Google Scholar] [CrossRef]
- Rezaeitaleshmahalleh, M.; Mu, N.; Lyu, Z.; Zhou, W.; Zhang, X.; Rasmussen, T.E.; McBane, R.D., 2nd; Jiang, J. Radiomic-based Textural Analysis of Intraluminal Thrombus in Aortic Abdominal Aneurysms: A Demonstration of Automated Workflow. J. Cardiovasc. Transl. Res. 2023. [Google Scholar] [CrossRef]
- Chun, S.H.; Suh, Y.J.; Han, K.; Park, S.J.; Shim, C.Y.; Hong, G.R.; Lee, S.; Lee, S.H.; Kim, Y.J.; Choi, B.W. Differentiation of left atrial appendage thrombus from circulatory stasis using cardiac CT radiomics in patients with valvular heart disease. Eur. Radiol. 2021, 31, 1130–1139. [Google Scholar] [CrossRef]
- Ebrahimian, S.; Digumarthy, S.R.; Homayounieh, F.; Primak, A.; Lades, F.; Hedgire, S.; Kalra, M.K. Use of radiomics to differentiate left atrial appendage thrombi and mixing artifacts on single-phase CT angiography. Int. J. Cardiovasc. Imaging 2021, 37, 2071–2078. [Google Scholar] [CrossRef]
- Tsao, H.M.; Wu, M.H.; Huang, B.H.; Lee, S.H.; Lee, K.T.; Tai, C.T.; Lin, Y.K.; Hsieh, M.H.; Kuo, J.Y.; Lei, M.H.; et al. Morphologic remodeling of pulmonary veins and left atrium after catheter ablation of atrial fibrillation: Insight from long-term follow-up of three-dimensional magnetic resonance imaging. J. Cardiovasc. Electrophysiol. 2005, 16, 7–12. [Google Scholar] [CrossRef]
- Di Biase, L.; Santangeli, P.; Anselmino, M.; Mohanty, P.; Salvetti, I.; Gili, S.; Horton, R.; Sanchez, J.E.; Bai, R.; Mohanty, S.; et al. Does the left atrial appendage morphology correlate with the risk of stroke in patients with atrial fibrillation? Results from a multicenter study. J. Am. Coll. Cardiol. 2012, 60, 531–538. [Google Scholar] [CrossRef]
- Sallach, J.A.; Puwanant, S.; Drinko, J.K.; Jaffer, S.; Donal, E.; Thambidorai, S.K.; Asher, C.R.; Jaber, W.A.; Stoddard, M.F.; Zoghbi, W.A.; et al. Comprehensive left atrial appendage optimization of thrombus using surface echocardiography: The CLOTS multicenter pilot trial. J. Am. Soc. Echocardiogr. 2009, 22, 1165–1172. [Google Scholar] [CrossRef]
- Mori, K.; Hahn, H.K.; Suehling, M.; Muehlberg, A.; Lades, F.; Wels, M.G. General purpose radiomics for multi-modal clinical research. In Proceedings of the Medical Imaging 2019: Computer-Aided Diagnosis, San Diego, CA, USA, 16–21 February 2019. [Google Scholar]
- Korsholm, K.; Berti, S.; Iriart, X.; Saw, J.; Wang, D.D.; Cochet, H.; Chow, D.; Clemente, A.; De Backer, O.; Moller Jensen, J.; et al. Expert Recommendations on Cardiac Computed Tomography for Planning Transcatheter Left Atrial Appendage Occlusion. JACC Cardiovasc. Interv. 2020, 13, 277–292. [Google Scholar] [CrossRef]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [Green Version]
- Xue, C.; Yuan, J.; Lo, G.G.; Chang, A.T.Y.; Poon, D.M.C.; Wong, O.L.; Zhou, Y.; Chu, W.C.W. Radiomics feature reliability assessed by intraclass correlation coefficient: A systematic review. Quant. Imaging Med. Surg. 2021, 11, 4431–4460. [Google Scholar] [CrossRef]
- Hur, J.; Kim, Y.J.; Lee, H.J.; Nam, J.E.; Ha, J.W.; Heo, J.H.; Chang, H.J.; Kim, H.S.; Hong, Y.J.; Kim, H.Y.; et al. Dual-enhanced cardiac CT for detection of left atrial appendage thrombus in patients with stroke: A prospective comparison study with transesophageal echocardiography. Stroke 2011, 42, 2471–2477. [Google Scholar] [CrossRef]
- Nakamura, R.; Oda, A.; Tachibana, S.; Sudo, K.; Shigeta, T.; Sagawa, Y.; Kurabayashi, M.; Goya, M.; Okishige, K.; Sasano, T.; et al. Prone-position computed tomography in the late phase for detecting intracardiac thrombi in the left atrial appendage before catheter ablation for atrial fibrillation. J. Cardiovasc. Electrophysiol. 2021, 32, 1803–1811. [Google Scholar] [CrossRef]
- Kitkungvan, D.; Nabi, F.; Ghosn, M.G.; Dave, A.S.; Quinones, M.; Zoghbi, W.A.; Valderrabano, M.; Shah, D.J. Detection of LA and LAA Thrombus by CMR in Patients Referred for Pulmonary Vein Isolation. JACC Cardiovasc. Imaging 2016, 9, 809–818. [Google Scholar] [CrossRef] [Green Version]
- Spagnolo, P.; Giglio, M.; Di Marco, D.; Cannao, P.M.; Agricola, E.; Della Bella, P.E.; Monti, C.B.; Sardanelli, F. Diagnosis of left atrial appendage thrombus in patients with atrial fibrillation: Delayed contrast-enhanced cardiac CT. Eur. Radiol. 2021, 31, 1236–1244. [Google Scholar] [CrossRef]
- Inoue, T.; Suematsu, Y. Poor enhancement pattern of left atrial appendage in cardiac computed tomography is associated with stroke in persistent atrial fibrillation patients. J. Thorac. Dis. 2019, 11, 3315–3324. [Google Scholar] [CrossRef]
- Noubiap, J.J.; Nyaga, U.F.; Ndoadoumgue, A.L.; Nkeck, J.R.; Ngouo, A.; Bigna, J.J. Meta-Analysis of the Incidence, Prevalence, and Correlates of Atrial Fibrillation in Rheumatic Heart Disease. Glob. Heart 2020, 15, 38. [Google Scholar] [CrossRef]
- Wolf, P.A.; Dawber, T.R.; Thomas, H.E., Jr.; Kannel, W.B. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: The Framingham study. Neurology 1978, 28, 973–977. [Google Scholar] [CrossRef] [Green Version]
- Negrotto, S.M.; Lugo, R.M.; Metawee, M.; Kanagasundram, A.N.; Chidsey, G.; Baker, M.T.; Michaud, G.F.; Piana, R.N.; Benjamin Shoemaker, M.; Ellis, C.R. Left atrial appendage morphology predicts the formation of left atrial appendage thrombus. J. Cardiovasc. Electrophysiol. 2021, 32, 1044–1052. [Google Scholar] [CrossRef]
- Osawa, K.; Nakanishi, R.; Ceponiene, I.; Nezarat, N.; French, W.J.; Budoff, M.J. Predicting Left Atrial Appendage Thrombus from Left Atrial Volume and Confirmation by Computed Tomography with Delayed Enhancement. Tex. Heart Inst. J. 2020, 47, 78–85. [Google Scholar] [CrossRef]
- Fang, R.; Li, Y.; Zhang, Y.; Chen, Q.; Liu, Q.; Li, Z. Impact of left atrial appendage location on risk of thrombus formation in patients with atrial fibrillation. Biomech. Model. Mechanobiol. 2021, 20, 1431–1443. [Google Scholar] [CrossRef]
Manufacturer | SIEMENS (Munich, Germany), n = 120; GE, n = 71; UIH, n = 13 |
Image Extent (pixels) | 512 × 512 |
Voxel Spacing (mm) | Mean ± SD: 0.640 ± 0.125; Median (P25–P75): 0.625 (0.625–0.700) |
Slice Thickness (mm) | 0.5, n = 4; 0.6, n = 3; 0.625, n = 71; 0.75, n = 38; 1.0, n = 88 |
Reconstruction diameter (mm) | Mean ± SD: 243.7 ± 48.9; Median (P25–P75): 231 (215–264) |
Reconstruction Kernel | STANDARD, n = 90; I26f, n = 64; B26f, n = 23; DETALL, n = 14; C_SOFT_AA, n = 13 |
Tube voltage (kV) | 80, n = 18; 100, n = 124; 120, n = 62 |
Tube Current (mA) | Mean ± SD: 887.8 ± 368.5; (P25–P75): 793 (582.5–1283) |
Characteristics | LAAT Group (n = 102) | Stasis Group (n = 102) | p Value | Training Set (n = 144) | Test Set (n = 60) | p Value |
---|---|---|---|---|---|---|
Age (years) | 63.50 ± 11.07 | 68.74 ± 9.43 | <0.001 | 66.17 ± 11.09 | 65.98 ± 9.36 | 0.907 |
Sex (male/female) | 48/54 | 57/45 | 0.207 | 70/74 | 35/25 | 0.206 |
NYHA (≥3/<3) | 37/65 | 10/92 | <0.001 | 33/111 | 14/46 | 0.949 |
CRI (±) | 10/92 | 1/101 | 0.005 | 9/135 | 2/58 | 0.514 |
RHD (±) | 34/68 | 3/99 | <0.001 | 26/118 | 11/49 | 0.963 |
SUC (umol/L) | 400.07 ± 128.43 | 363.61 ± 83.83 | 0.017 | 381.57 ± 108.73 | 382.49 ± 112.96 | 0.957 |
SC (±) | 14/88 | 5/97 | 0.048 | 14/130 | 4/56 | 0.483 |
Albumin (g/L) | 41.14 ± 4.15 | 42.20 ± 2.92 | 0.037 | 41.68 ± 3.86 | 41.65 ± 3.01 | 0.961 |
PT (s) | 13.15 | 13.00 | 0.332 | 13.05 | 12.80 | 0.304 |
(11.80–18.03) | (11.78–16.48) | (11.80–18.08) | (11.63–15.63) | |||
INR | 1.15 | 1.11 | 0.242 | 1.14 | 1.11 | 0.122 |
(1.04–1.60) | (1.03–1.42) | (1.04–1.56) | (1.01–1.41) | |||
APTT (s) | 30.00 | 30.95 | 0.307 | 30.50 | 30.35 | 0.627 |
(26.88–35.20) | (27.98–35.63) | (27.23–35.60) | (26.90–35.35) | |||
TT (s) | 19.05 | 19.40 | 0.057 | 19.45 | 19.10 | 0.529 |
(18.28–20.20) | (18.60–20.73) | (18.43–20.60) | (18.40–20.65) | |||
Fibrinogen (g/L) | 3.06 ± 0.78 | 2.82 ± 0.62 | 0.016 | 2.98 ± 0.74 | 2.84 ± 0.64 | 0.215 |
WBC (109/L) | 6.70 ± 2.25 | 5.92 ± 1.59 | 0.005 | 6.17 ± 1.79 | 6.64 ± 2.37 | 0.120 |
RDWsd (fL) | 48.04 ± 4.73 | 46.62 ± 4.39 | 0.028 | 47.45 ± 4.64 | 47.04 ± 4.55 | 0.561 |
RDWcd (%) | 14.34 ± 2.13 | 13.84 ± 1.34 | 0.042 | 14.19 ± 1.96 | 13.85 ± 1.27 | 0.218 |
Characteristics | LAAT Group (n = 102) | Stasis Group (n = 102) | p Value | Training Set (n = 144) | Test Set (n = 60) | p Value |
---|---|---|---|---|---|---|
CT value (Hu) | 54.00 | 78.50 | <0.001 | 65.50 | 65.00 | 0.653 |
(41.75–86.25) | (54.75–126.00) | (42.50–116.00) | (52.00–96.75) | |||
TD-LA (cm) | 8.61 ± 1.47 | 8.06 ± 0.93 | 0.002 | 8.38 ± 1.30 | 8.23 ± 1.14 | 0.461 |
VD-LA (cm) | 7.74 ± 1.36 | 7.22 ± 0.89 | 0.002 | 7.46 ± 1.18 | 7.52 ± 1.17 | 0.749 |
AD-LA (cm) | 5.32 ± 1.25 | 4.86 ± 0.78 | 0.002 | 5.11 ± 1.13 | 5.06 ± 0.91 | 0.770 |
Volume (cm3) | 172.19 | 144.57 | 0.001 | 153.58 | 156.33 | 0.656 |
(131.33–214.69) | (120.27–181.35) | (125.60–198.24) | (120.74–185.88) | |||
Position (±) | 48/54 | 13/89 | <0.001 | 41/103 | 20/40 | 0.490 |
Shape (±) | 51/51 | 9/93 | <0.001 | 39/105 | 21/39 | 0.258 |
Characteristics | Univariable | Multivariable | |||||
---|---|---|---|---|---|---|---|
OR | 95%CI | p Value | Corrected-p | OR | 95%CI | p Value | |
NYHA | 4.26 | 1.83–10.90 | 0.001 | 0.019 | |||
CFI | 8.87 | 1.57–167.00 | 0.042 | 0.798 | |||
RHD | 37.80 | 7.60–686.00 | <0.001 | 0.019 | 37.80 | 4.95–288.07 | <0.001 |
BUC | 1.00 | 1.00–1.01 | 0.033 | 0.627 | |||
SC | 4.15 | 1.23–19.00 | 0.035 | 0.665 | |||
Albumin | 0.90 | 0.82–0.99 | 0.030 | 0.570 | |||
PT | 1.05 | 0.99–1.12 | 0.140 | 1 | |||
INR | 1.79 | 0.92–3.75 | 0.100 | 1 | |||
APTT | 1.01 | 0.97–1.06 | 0.600 | 1 | |||
TT | 0.99 | 0.98–1.00 | 0.200 | 1 | |||
Fibrinogen | 1.80 | 1.12–2.99 | 0.019 | 0.361 | |||
WBC | 1.27 | 1.04–1.58 | 0.022 | 0.418 | |||
RDWsd | 1.11 | 1.02–1.21 | 0.016 | 0.304 | |||
RDWcv | 1.22 | 0.99–1.56 | 0.093 | 1 | |||
CT value | 0.99 | 0.98–0.99 | <0.001 | 0.009 | |||
TD-LA | 1.57 | 1.17–2.20 | 0.005 | 0.045 | 0.36 | 0.15–0.87 | 0.024 |
VD-LA | 1.74 | 1.22–2.59 | 0.004 | 0.036 | |||
AD-LA | 2.47 | 1.56–4.16 | <0.001 | 0.009 | |||
Volume | 1.01 | 1.01–1.02 | <0.001 | 0.009 | 1.02 | 1.01–1.04 | 0.002 |
Location | 8.31 | 3.53–22.10 | <0.001 | 0.009 | 7.90 | 2.64–23.65 | <0.001 |
Shape | 9.31 | 3.81–26.50 | <0.001 | 0.009 | 11.80 | 4.01–34.72 | <0.001 |
Variables | Radiomics Feature Name | Coefficient |
---|---|---|
A | wavelet.HHL_glszm_ZoneEntropy | −0.2842 |
B | wavelet.LLL_glcm_IMC1 | 1.3021 |
C | wavelet.LLH_glszm_SmallAreaLowGrayLevelEmphasis | −0.4753 |
D | wavelet.LHL_firstorder_Median | 0.5513 |
E | logarithm_glcm_inverseVariance | −1.1622 |
Group | AUC | Sensitivity | Specificity | Accuracy | Precision | |
---|---|---|---|---|---|---|
(%) | (%) | (%) | (%) | |||
Rad-score | training set | 0.82 | 70.8 | 80.6 | 75.7 | 78.5 |
(95%CI: 0.75–0.89) | ||||||
test set | 0.82 | 76.7 | 63.3 | 70.0 | 67.6 | |
(95%CI: 0.72–0.93) | ||||||
Rad-clinic score | training set | 0.86 | 72.2 | 80.6 | 76.4 | 78.8 |
(95%CI: 0.80–0.92) | ||||||
test set | 0.82 | 80.0 | 66.7 | 73.3 | 70.6 | |
(95%CI: 0.71–0.93) | ||||||
Rad-radio score | training set | 0.90 | 75.0 | 80.6 | 77.8 | 79.4 |
(95%CI: 0.85–0.95) | ||||||
test set | 0.84 | 86.7 | 63.3 | 75.0 | 70.3 | |
(95%CI: 0.75–0.94) | ||||||
Nomo-score | training set | 0.93 | 76.4 | 87.5 | 81.9 | 85.9 |
(95%CI: 0.89–0.97) | ||||||
test set | 0.85 | 90.0 | 66.7 | 78.3 | 73.0 | |
(95%CI: 0.76–0.95) |
Group | Model A | Model B | AUC of Model A | AUC of Model B | p-Value |
---|---|---|---|---|---|
training set | Nomo-score | Rad-score | 0.93 | 0.82 | 0.002 |
Nomo-score | Rad-clinic score | 0.93 | 0.86 | 0.006 | |
Nomo-score | Rad-radio score | 0.93 | 0.90 | 0.204 | |
Rad-score | Rad-clinic score | 0.82 | 0.86 | 0.989 | |
Rad-score | Rad-radio score | 0.82 | 0.90 | 0.006 | |
Rad-clinic score | Rad-radio score | 0.86 | 0.90 | 0.049 | |
test set | Nomo-score | Rad-score | 0.85 | 0.82 | 0.147 |
Nomo-score | Rad-clinic score | 0.85 | 0.82 | 0.079 | |
Nomo-score | Rad-radio score | 0.85 | 0.84 | 0.743 | |
Rad-score | Rad-clinic score | 0.82 | 0.82 | 0.710 | |
Rad-score | Rad-radio score | 0.82 | 0.84 | 0.183 | |
Rad-clinic score | Rad-radio score | 0.82 | 0.84 | 0.179 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Cai, Y.; Chen, X.; Ming, Y.; He, W.; Liu, J.; Pu, H.; Chen, X.; Peng, L. Radiomics Based on Single-Phase CTA for Distinguishing Left Atrial Appendage Thrombus from Circulatory Stasis in Patients with Atrial Fibrillation before Ablation. Diagnostics 2023, 13, 2474. https://doi.org/10.3390/diagnostics13152474
Li X, Cai Y, Chen X, Ming Y, He W, Liu J, Pu H, Chen X, Peng L. Radiomics Based on Single-Phase CTA for Distinguishing Left Atrial Appendage Thrombus from Circulatory Stasis in Patients with Atrial Fibrillation before Ablation. Diagnostics. 2023; 13(15):2474. https://doi.org/10.3390/diagnostics13152474
Chicago/Turabian StyleLi, Xue, Yuyan Cai, Xiaoyi Chen, Yue Ming, Wenzhang He, Jing Liu, Huaxia Pu, Xinyue Chen, and Liqing Peng. 2023. "Radiomics Based on Single-Phase CTA for Distinguishing Left Atrial Appendage Thrombus from Circulatory Stasis in Patients with Atrial Fibrillation before Ablation" Diagnostics 13, no. 15: 2474. https://doi.org/10.3390/diagnostics13152474
APA StyleLi, X., Cai, Y., Chen, X., Ming, Y., He, W., Liu, J., Pu, H., Chen, X., & Peng, L. (2023). Radiomics Based on Single-Phase CTA for Distinguishing Left Atrial Appendage Thrombus from Circulatory Stasis in Patients with Atrial Fibrillation before Ablation. Diagnostics, 13(15), 2474. https://doi.org/10.3390/diagnostics13152474