Cytokine Gene Expression Profiles during HIV and Helminth Coinfection in Underprivileged Peri-Urban South African Adults
Abstract
:1. Introduction
2. Methods
2.1. Study Design, Setting and Patient Recruitment
2.2. Stool Collection and Helminth Parasite Detection
2.3. Blood Collection, Biochemical Analysis and HIV Confirmation
2.4. Classification of Study Participants
2.5. RNA Isolation and cDNA Synthesis
2.6. Gene Expression Analysis by Real Time-Quantitative PCR (RT-qPCR)
2.7. Statistical Analysis
3. Results
3.1. Demographics and Clinical Characteristics
3.2. Parasite Prevalence
3.3. Cytokine Gene Expression Profiling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zilberman-Schapira, G.; Zmora, N.; Itav, S.; Bashiardes, S.; Elinav, H.; Elinav, E. The gut microbiome in human immunodeficiency virus infection. BMC Med. 2016, 14, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayan, K.K.V.; Karthigeyan, K.P.; Tripathi, S.P.; Hanna, L.E. Pathophysiology of CD4+ T-Cell Depletion in HIV-1 and HIV-2 Infections. Front. Immunol. 2017, 8, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovanetti, M.; Ciccozzi, M.; Parolin, C.; Borsetti, A. Molecular Epidemiology of HIV-1 in African Countries: A Comprehensive Overview. Pathogens 2020, 9, 1072. [Google Scholar] [CrossRef] [PubMed]
- UNAIDS. Global HIV & AIDS Statistics—Fact Sheet. 2021. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 14 February 2022).
- Statistics South Africa (StatsSA). Statistical Release P0302 Mid-Year Population Estimates. 2021. Available online: https://www.statssa.gov.za/publications/P0302/P03022021.pdf (accessed on 14 February 2022).
- McHugh, J. A Tap and Drain: Sinking CD4+ T Cells. Nat. Rev. Rheumatol. 2018. Available online: https://www.nature.com/articles/d42859-018-00014-8 (accessed on 14 February 2022).
- World Health Organization (WHO). HIV/AIDS. Report. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/hiv-aids (accessed on 14 February 2022).
- Vandormael, A.; Cuadros, D.; Kim, H.-Y.; Bärnighausen, T.; Tanser, F. The state of the HIV epidemic in rural KwaZulu-Natal, South Africa: A novel application of disease metrics to assess trajectories and highlight areas for intervention. Leuk. Res. 2020, 49, 666–675. [Google Scholar] [CrossRef]
- Allinder, S. The World’s Largest HIV Epidemic in Crisis: HIV in South Africa. Center for Strategic and International Studies. 2019. Available online: https://www.csis.org/analysis/worlds-largest-hiv-epidemic-crisis-hiv-south-africa (accessed on 14 February 2022).
- Adeleke, O.A.; Yogeswaran, P.; Wright, G. Intestinal helminth infections amongst HIV-infected adults in Mthatha General Hospital, South Africa. Afr. J. Prim. Health Care Fam. Med. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- Mkhize-Kwitshana, Z.L.; Taylor, M.; Jooste, P.; Mabaso, M.L.; Walzl, G. The influence of different helminth infection phenotypes on immune responses against HIV in co-infected adults in South Africa. BMC Infect. Dis. 2011, 11, 273. [Google Scholar] [CrossRef] [Green Version]
- Borkow, G.; Bentwich, Z. Chronic Immune Activation Associated with Chronic Helminthic and Human Immunodeficiency Virus Infections: Role of Hyporesponsiveness and Anergy. Clin. Microbiol. Rev. 2004, 17, 1012–1030. [Google Scholar] [CrossRef] [Green Version]
- Aksoy, S.; Walson, J.L. PLOS NTDs celebrates our 10th anniversary: Looking forward to the next decade. PLoS Neglected Trop. Dis. 2018, 12, e0006176. [Google Scholar] [CrossRef] [Green Version]
- Naidoo, P.; Ghazi, T.; Chuturgoon, A.A.; Naidoo, R.N.; Ramsuran, V.; Mpaka-Mbatha, M.N.; Bhengu, K.N.; Nembe, N.; Duma, Z.; Pillay, R.; et al. SARS-CoV-2 and helminth co-infections, and environmental pollution exposure: An epidemiological and immunological perspective. Environ. Int. 2021, 156, 106695. [Google Scholar] [CrossRef]
- Hotez, P.J.; Molyneux, D.H. Tropical Anemia: One of Africa’s Great Killers and a Rationale for Linking Malaria and Neglected Tropical Disease Control to Achieve a Common Goal. PLoS Neglected Trop. Dis. 2008, 2, e270. [Google Scholar] [CrossRef] [Green Version]
- Weisman, Z.; Kalinkovich, A.; Stein, M.; Greenberg, Z.; Borkow, G.; Adlerstein, D.; Mahdi, J.A.; Bentwich, Z. Effects of Helminth Eradication on the Immune System. Pathog. Immun. 2017, 2, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Hotez, P.J.; Alvarado, M.; Basáñez, M.-G.; Bolliger, I.; Bourne, R.; Boussinesq, M.; Brooker, S.J.; Brown, A.S.; Buckle, G.; Budke, C.M.; et al. The Global Burden of Disease Study 2010: Interpretation and Implications for the Neglected Tropical Diseases. PLoS Neglected Trop. Dis. 2014, 8, e2865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jourdan, P.M.; Lamberton, P.H.L.; Fenwick, A.; Addiss, D.G. Soil-Transmitted Helminth Infections. Lancet 2018, 391, 252–265. Available online: https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections (accessed on 27 November 2021). [CrossRef] [Green Version]
- World Health Organization. Schistosomiasis (Bilharzia). 2021. Available online: https://www.who.int/health-topics/schistosomiasis#tab=tab_1 (accessed on 14 February 2022).
- Kjetland, E.F.; Ndhlovu, P.D.; Gomo, E.; Mduluza, T.; Midzi, N.; Gwanzura, L.; Mason, P.R.; Sandvik, L.; Friis, H.; Gundersen, S.G. Association between genital schistosomiasis and HIV in rural Zimbabwean women. Aids 2006, 20, 593–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, P.; Rose, C.E.; Kjetland, E.F.; Downs, J.A.; Mbabazi, P.S.; Sabin, K.; Chege, W.; Watts, D.H.; Secor, W.E. Association of schistosomiasis and HIV infections: A systematic review and meta-analysis. Int. J. Infect. Dis. 2021, 102, 544–553. [Google Scholar] [CrossRef]
- Downs, J.A.; Mguta, C.; Kaatano, G.M.; Mitchell, K.B.; Bang, H.; Simplice, H.; Kalluvya, S.E.; Changalucha, J.M.; Johnson, W.D.; Fitzgerald, D.W. Urogenital schistosomiasis in women of reproductive age in Tanzania’s Lake Victoria region. Am. J. Trop. Med. Hyg. 2011, 84, 364–369. [Google Scholar] [CrossRef] [Green Version]
- Tanser, F.; Azongo, D.K.; Vandormael, A.; Bärnighausen, T.; Appleton, C. Impact of the scale-up of piped water on urogenital schistosomiasis infection in rural South Africa. Elife 2018, 7, e33065. [Google Scholar] [CrossRef]
- Hotez, P.J.; Molyneux, D.H.; Fenwick, A.; Ottesen, E.; Ehrlich Sachs, S.; Sachs, J.D. Incorporating a Rapid-Impact Package for Neglected Tropical Diseases with Programs for HIV/AIDS, Tuberculosis, and Malaria. PLoS Med. 2006, 3, e102. [Google Scholar] [CrossRef] [Green Version]
- Mpaka-Mbatha, M.N.; Naidoo, P.; Islam, M.; Singh, R.; Mkhize-Kwitshana, Z.L. Demographic profile of HIV and helminth-coinfected adults in KwaZulu-Natal, South Africa. South. Afr. J. Infect. Dis. 2022, 37, a466. [Google Scholar] [CrossRef]
- Chachage, M.; Podola, L.; Clowes, P.; Nsojo, A.; Bauer, A.; Mgaya, O.; Kowour, D.; Froeschl, G.; Maboko, L.; Hoelscher, M.; et al. Helminth-Associated Systemic Immune Activation and HIV Co-receptor Expression: Response to Albendazole/Praziquantel Treatment. PLoS Neglected Trop. Dis. 2014, 8, e2755. [Google Scholar] [CrossRef]
- Wang, L.J.; Cao, Y.; Shi, H.N. Helminth infections and intestinal inflammation. World J. Gastroenterol. 2008, 14, 5125–5132. [Google Scholar] [CrossRef] [PubMed]
- Roff, S.R.; Noon-Song, E.N.; Yamamoto, J.K. The Significance of Interferon-γ in HIV-1 Pathogenesis, Therapy, and Prophylaxis. Front. Immunol. 2013, 4, 498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stacey, A.R.; Norris, P.J.; Qin, L.; Haygreen, E.A.; Taylor, E.; Heitman, J.; Borrow, P. Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J. Virol. 2009, 83, 3719–3733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kedzierska, K.; Crowe, S.M. Cytokines and HIV-1: Interactions and Clinical Implications. Antivir. Chem. Chemother. 2001, 12, 133–150. [Google Scholar] [CrossRef] [Green Version]
- Merrill, J.E.; Martínez-Maza, O. Interleukin 2 and Soluble Interleukin 2 Receptor. Neurobiology of Cytokines. Neurosciences 1993, 17, 243–266. [Google Scholar] [CrossRef]
- Yang, Z.; Engel, J.D. Human T cell transcription factor GATA-3 stimulates HIV-1 expression. Nucleic Acids Res. 1993, 21, 2831–2836. [Google Scholar] [CrossRef] [Green Version]
- Johnston, C.J.C.; Smyth, D.J.; Kodali, R.B.; White, M.P.J.; Harcus, Y.; Filbey, K.J.; Hewitson, J.P.; Hinck, C.S.; Ivens, A.; Kemter, A.M.; et al. A structurally distinct TGF-β mimic from an intestinal helminth parasite potently induces regulatory T cells. Nat. Commun. 2017, 8, 1741. [Google Scholar] [CrossRef] [Green Version]
Parameters | Uninfected Controls (n = 20) | HIV-Infected Only (n = 60) | Helminth-Infected Only (n = 37) | HIV + Helminth Coinfection (n = 47) | p-Value |
---|---|---|---|---|---|
Age | 56.00 (18.00–70.00) | 41.00 (22.00–61.00) | 35.00 (19.00–74.00) | 41.00 (18.00–63.00) | 0.09 |
Gender | 0.13 | ||||
Males | 5 (25) | 27 (45) | 15 (40.5) | 12 (25.5) | |
Females | 15 (75) | 33 (55) | 22 (29.5) | 35 (74.5) | |
BMI | 26.00 (15.70–52.10) | 26.40 (15.00–47.00) | 25.00 (17.00–46.00) | 24.80 (12.20–49.80) | 0.75 |
CD4 counts | 895.00 (292.00–1989) | 490.00 (55.00–1255) | 861.00 (359.00–1302) | 553.00 (37.00–1458) | <0.01 |
Viral load | 255.00 (31.00–1,500,000) | 250.00 (28.00–240,000) | 0.76 | ||
Eosinophils | 0.14 (0.00–0.61) | 0.10 (0.00–1.30) | 0.12 (0.02–1.40) | 0.12 (0.00–0.31) | 0.31 |
Neutrophils | 3.20 (1.52–6.71) | 2.44 (0.87–28.30) | 3.36 (1.40–8.70) | 2.70 (0.87–5.13) | 0.07 |
Lymphocytes | 2.02 (0.62–3.77) | 1.73 (0.57–4.50) | 2.10 (0.84–3.51) | 1.80 (0.74–4.73) | 0.09 |
Monocytes | 0.44 (0.20–0.76) | 0.41 (0.16–1.34) | 0.46 (0.16–0.98) | 0.38 (0.21–0.87) | 0.17 |
Basophils | 0.03 (0.01–0.09) | 0.02 (0.01–0.40) | 0.03 (0.01–0.10) | 0.02 (0.01–0.10) | 0.17 |
C-reactive protein (n = 135) | 5.30 (1.10–25.20) | 7.10 (0.78–95.60) | 4.30 (0.60–114.60) | 3.90 (0.50–46.10) | 0.23 |
Parasite Species | n | % |
---|---|---|
Ascaris lumbricoides | 65 | 39.6 |
Taenia spp. | 7 | 4.3 |
Schistosoma spp. | 8 | 4.9 |
Strongyloides spp. | 4 | 2.4 |
Trichuris trichiura | 3 | 1.8 |
Hookworms | 1 | 0.6 |
Enterobius vermicularis | 3 | 1.8 |
Entamoeba coli | 11 | 6.7 |
Hymenolepis spp. | 1 | 0.6 |
Unstandardised β-Coefficient Values (Reference Group: Uninfected Controls) | |||||||
---|---|---|---|---|---|---|---|
Parameters | HIV-Infected | Helminth-Infected | HIV and Helminth-Coinfected | ||||
β (95% CI) | p | β (95% CI) | p | β (95% CI) | p | ||
T-helper type 1 (Th1) and Transcription Factors: | |||||||
Tumour necrosis factor-α (TNF-α) | A | 0.18 (−0.35–0.71) | 0.510 | 0.11 (0.33–0.55) | 0.607 | 0.52 (0.09–0.95) | 0.020 |
B | 0.31 (−0.66–1.29) | 0.511 | 0.13 (−0.32–0.58) | 0.559 | 0.61 (−0.21–1.42) | 0.134 | |
Interferon-gamma | A | 0.06 (−0.28–0.40) | 0.734 | −0.11 (−0.465–0.24) | 0.513 | 0.16 (−0.16–0.47) | 0.123 |
(IFN-γ) | B | 0.03 (−0.62–0.63) | 0.992 | −0.08 (−0.48–0.30) | 0.659 | −0.17 (−0.66–-0.31) | 0.463 |
Interleukin 2 (IL2) | A | 1.80 (−6.44–10.05) | 0.660 | 2.55 (−2.15–7.25) | 0.279 | 5.14 (1.21–9.07) | 0.012 |
B | 4.65 (−7.84–17.14) | 0.448 | 3.60 (−1.94–9.08) | 0.196 | 7.37 (0.78–13.96) | 0.030 | |
Nuclear factor of activated T cells 2 (NFATC2) | A | −0.22 (−0.77–0.32) | 0.420 | −0.53 (−1.04–−0.01) | 0.044 | −0.02 (−0.72–0.68) | 0.947 |
B | −0.07 (−0.68–0.57) | 0.801 | −0.53 (−1.10–0.39) | 0.067 | −0.13 (−0.71–0.93) | 0.673 | |
GATA3 | A | −0.76 (−1.34–0.20) | 0.012 | −0.49 (−1.10) | 0.106 | 0.16 (−0.16–0.47) | 0.322 |
B | −0.84 (−1.94–0.23) | 0.128 | −0.59 (−1.22–044) | 0.067 | −0.60 (−1.67–0.48) | 0.258 | |
Eomesoderin (Eomes) | A | −0.24 (−0.76–0.28) | 0.364 | 0.48 (−0.93–0.04) | 0.035 | −0.38 (−0.94) | 0.167 |
B | −1.03 (−1.82–0.23) | 0.014 | −0.24 (−067–0.19) | 0.018 | −0.83 (−1.74–0.08) | 0.072 | |
T-helper type 17 (Th17) | |||||||
Interleukin-17 (IL-17) | A | 1.21 (0.79–1.64) | 0.000 | 0.78 (0.31–1.25) | 0.002 | 1.13 (0.58–1.67) | 0.000 |
B | 0.81 (0.01–1.61) | 0.048 | 0.88 (0.39–1.37) | 0.001 | 01.25 (0.45–2.06) | 0.004 | |
Immune Protein and Proteases | |||||||
Granzyme B (GrB) | A | 0.05 (−0.32–0.42) | 0.794 | −0.33 (−074–0.80) | 0.112 | 0.09 (−0.28–0.47) | 0.616 |
B | −0.21 (−0.83–0.42) | 0.497 | −0.24 (−0.67) | 0.262 | −0.18 (−0.70–0.34) | 0.475 | |
Perforin | A | −0.79 (−0.60–0.19) | 0.309 | −0.27 (−066–0.129) | 0.180 | −0.29 (−0.65–0.08) | 0.123 |
B | −0.72 (−1.33–0.12) | 0.022 | −0.36 (−0.78–0.60) | 0.091 | −0.36(−1.00–0.29) | 0.263 | |
T-helper type 2 (Th2) and Transcription factors: | |||||||
Interleukin 4 (IL4) | A | −0.16 (−6.44–10.04) | 0.455 | 0.08 (−0.38–0.55) | 0.718 | −0.04 (−0.55–0.47) | 0.883 |
B | −0.08 (−0.64–0.48) | 0.757 | 0.05 (−0.50–0.58) | 0.856 | 0.08 (−0.47–0.63) | 0.760 | |
Forkhead box P3 (FOXP3) | A | 0.26 (−0.27–0.79) | 0.334 | 0.20 (−0.21–0.60) | 0.339 | 0.10 (−0.4–0.61) | 0.682 |
B | 0.88 (−0.24–2.00) | 0.118 | 0.26 (−0.18–0.70) | 0.234 | 0.18 (−0.72–1.09) | 0.675 | |
Regulatory | |||||||
Interleukin 10 (IL10) | A | −0.10 (−0.54–0.42) | 0.803 | −0.152 (0.57–0.26) | 0.463 | −0.09 (−0.52–0.046) | 0.685 |
B | −0.05 (−0.65–0.55) | 0.867 | 0.00 (−0.46–0.47) | 0.985 | −0.05 (−0.63–0.53) | 0.867 | |
Transforming growth factor-β (TGF-β) | A | −0.50 (−1.20–0.20) | 0.158 | −1.04 (−1.80–−0.27) | 0.009 | −0.68 (−1.55–0.19) | 0.119 |
B | −1.05 (−2.42–0.33) | 0.128 | −0.86 (−1.65–−0.07) | 0.033 | −0.86 (−2.39–0.68) | 0.255 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpaka-Mbatha, M.N.; Naidoo, P.; Bhengu, K.N.; Islam, M.M.; Singh, R.; Nembe-Mafa, N.; Mkhize-Kwitshana, Z.L. Cytokine Gene Expression Profiles during HIV and Helminth Coinfection in Underprivileged Peri-Urban South African Adults. Diagnostics 2023, 13, 2475. https://doi.org/10.3390/diagnostics13152475
Mpaka-Mbatha MN, Naidoo P, Bhengu KN, Islam MM, Singh R, Nembe-Mafa N, Mkhize-Kwitshana ZL. Cytokine Gene Expression Profiles during HIV and Helminth Coinfection in Underprivileged Peri-Urban South African Adults. Diagnostics. 2023; 13(15):2475. https://doi.org/10.3390/diagnostics13152475
Chicago/Turabian StyleMpaka-Mbatha, Miranda N., Pragalathan Naidoo, Khethiwe N. Bhengu, Md. Mazharul Islam, Ravesh Singh, Nomzamo Nembe-Mafa, and Zilungile L. Mkhize-Kwitshana. 2023. "Cytokine Gene Expression Profiles during HIV and Helminth Coinfection in Underprivileged Peri-Urban South African Adults" Diagnostics 13, no. 15: 2475. https://doi.org/10.3390/diagnostics13152475
APA StyleMpaka-Mbatha, M. N., Naidoo, P., Bhengu, K. N., Islam, M. M., Singh, R., Nembe-Mafa, N., & Mkhize-Kwitshana, Z. L. (2023). Cytokine Gene Expression Profiles during HIV and Helminth Coinfection in Underprivileged Peri-Urban South African Adults. Diagnostics, 13(15), 2475. https://doi.org/10.3390/diagnostics13152475