An Efficient Ensemble Approach for Alzheimer’s Disease Detection Using an Adaptive Synthetic Technique and Deep Learning
Abstract
:1. Introduction
- An efficient ensemble approach was proposed that combines VGG16 and Efficient-Net-B2 for Alzheimer disease classification with high accuracy using multiclass and binary-class datasets, also exploring the effect of transfer learning to improve the performance of the model.
- The adaptive synthetic oversampling technique was applied to a highly imbalanced dataset to balance the Alzheimer’s disease classes. The efficacy of the ADASYN in terms of model overfitting was also investigated to increase the generalization performance of deep learning models.
- The efficacy of the proposed method was analyzed using k-fold cross-validation and comparing with other state-of-the-art approaches. We also performed a comparison of ensemble and individual deep learning models.
2. Literature Review
3. Proposed Methodology
3.1. Dataset Description and Pre-processing
3.2. Adaptive Synthetic (ADASYN) Technique
Algorithm 1 ADASYN algorithm |
Input: Data_images ⟵ Input features Labels ⟵ Corresponding labels Output: X_res ⟵ Oversampled image f eature vectors y_res ⟵ Oversampled corresponding labels Start: 1: Import ADASYN f rom imblearn.over_sampling 2: Create ADASYN oversamping instance and assign a variable sm 3: Applying the ADASYN oversampling technique to the dataset 4: Fit resample method is called and passes through the arguments (Data_images and Labels). 5: Assign Oversampled image f eature vectors to X_res 6: Assign Oversampled corresponding labels to y_res 7: Return (X_res, y_res) End |
3.3. Ensemble Deep Learning with Transfer Learning Approach
3.4. Fine-Tuned Individual Deep Learning Models
3.4.1. CNN
3.4.2. DenseNet121
3.4.3. EfficientNet-B2
3.4.4. VGG16
3.4.5. Xception
3.5. Performance Measures
4. Results and Discussion
4.1. Results of Individual Fine-Tuned Deep Learning Models
4.2. Results of Ensemble Deep Learning Models with Multiclass Dataset
4.3. Results of Ensemble Deep Learning Models with Binary-Class Dataset
4.4. K-Fold Cross-Validation Results for Ensemble Models
4.5. Comparison of Proposed Ensemble Model with Previous Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mckhann, G. Report of the NINCDS-ADRDA work group under the auspices of department of health and human service task force on Alzheimer’s disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.K.; Madusanka, N.; Choi, H.K.; So, J.H.; Kim, C.H.; Park, H.G.; Bhattacharjee, S.; Prakash, D. Convolutional neural network-based MR image analysis for Alzheimer’s disease classification. Curr. Med. Imaging 2020, 16, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Gunawardena, K.; Rajapakse, R.; Kodikara, N. Applying convolutional neural networks for pre-detection of alzheimer’s disease from structural MRI data. In Proceedings of the 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Auckland, New Zealand, 21–23 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–7. [Google Scholar]
- Ferretti, M.T.; Iulita, M.F.; Cavedo, E.; Chiesa, P.A.; Schumacher Dimech, A.; Santuccione Chadha, A.; Baracchi, F.; Girouard, H.; Misoch, S.; Giacobini, E.; et al. Sex differences in Alzheimer disease—the gateway to precision medicine. Nat. Rev. Neurol. 2018, 14, 457–469. [Google Scholar] [CrossRef] [PubMed]
- Böhle, M.; Eitel, F.; Weygandt, M.; Ritter, K. Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer’s disease classification. Front. Aging Neurosci. 2019, 11, 194. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.S.; Nandhini, M. A comprehensive survey: Early detection of Alzheimer’s disease using different techniques and approaches. Int. J. Comput. Eng. Technol. 2017, 8, 31–44. [Google Scholar]
- Li, Y.; Ng, J.J.; Tan, C.W.; Douriez, M.; Thea, L. Machine Learning, Wearable Computing, and Alzheimer’s Disease; Capstone Project Technical Report, No. UCB/EECS-2016-91; Berkeley University of California: Berkeley, CA, USA, 2016. [Google Scholar]
- Tong, T.; Gray, K.; Gao, Q.; Chen, L.; Rueckert, D.; Alzheimer’s Disease Neuroimaging Initiative. Multi-modal classification of Alzheimer’s disease using nonlinear graph fusion. Pattern Recognit. 2017, 63, 171–181. [Google Scholar] [CrossRef]
- Beheshti, I.; Maikusa, N.; Matsuda, H.; Demirel, H.; Anbarjafari, G. Histogram-based feature extraction from individual gray matter similarity-matrix for Alzheimer’s disease classification. J. Alzheimer’s Dis. 2017, 55, 1571–1582. [Google Scholar] [CrossRef]
- Falahati, F.; Westman, E.; Simmons, A. Multivariate data analysis and machine learning in Alzheimer’s disease with a focus on structural magnetic resonance imaging. J. Alzheimer’s Dis. 2014, 41, 685–708. [Google Scholar] [CrossRef] [PubMed]
- Haller, S.; Lovblad, K.O.; Giannakopoulos, P. Principles of classification analyses in mild cognitive impairment (MCI) and Alzheimer disease. J. Alzheimer’s Dis. 2011, 26, 389–394. [Google Scholar] [CrossRef]
- Rathore, S.; Habes, M.; Iftikhar, M.A.; Shacklett, A.; Davatzikos, C. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. NeuroImage 2017, 155, 530–548. [Google Scholar] [CrossRef]
- Bernal, J.; Kushibar, K.; Asfaw, D.S.; Valverde, S.; Oliver, A.; Martí, R.; Lladó, X. Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: A review. Artif. Intell. Med. 2019, 95, 64–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abunadi, I. Deep and hybrid learning of MRI diagnosis for early detection of the progression stages in Alzheimer’s disease. Connect. Sci. 2022, 34, 2395–2430. [Google Scholar] [CrossRef]
- Jabeen, F.; Rehman, Z.U.; Shah, S.; Alharthy, R.D.; Jalil, S.; Khan, I.A.; Iqbal, J.; Abd El-Latif, A.A. Deep learning-based prediction of inhibitors interaction with Butyrylcholinesterase for the treatment of Alzheimer’s disease. Comput. Electr. Eng. 2023, 105, 108475. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Raza, M.; Saba, T.; Rehman, A. Brain tumor classification: Feature fusion. In Proceedings of the 2019 International Conference on Computer and Information Sciences (ICCIS), Sakaka, Saudi Arabia, 3–4 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Khan, M.A.; Akram, T.; Sharif, M.; Javed, K.; Raza, M.; Saba, T. An automated system for cucumber leaf diseased spot detection and classification using improved saliency method and deep features selection. Multimed. Tools Appl. 2020, 79, 18627–18656. [Google Scholar] [CrossRef]
- TEbrahimighahnavieh, M.A.; Luo, S.; Chiong, R. Deep learning to detect Alzheimer’s disease from neuroimaging: A systematic literature review. Comput. Methods Programs Biomed. 2020, 187, 105242. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Bengio, Y.; LeCun, Y. Scaling learning algorithms towards AI. Large-Scale Kernel Mach. 2007, 34, 1–41. [Google Scholar]
- Liu, M.; Li, F.; Yan, H.; Wang, K.; Ma, Y.; Shen, L.; Xu, M.; Alzheimer’s Disease Neuroimaging Initiative. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. Neuroimage 2020, 208, 116459. [Google Scholar] [CrossRef]
- Yildirim, M.; Cinar, A. Classification of Alzheimer’s Disease MRI Images with CNN Based Hybrid Method. Ingénierie des Systèmes d’Information 2020, 25, 413–418. [Google Scholar] [CrossRef]
- Payan, A.; Montana, G. Predicting Alzheimer’s disease: A neuroimaging study with 3D convolutional neural networks. arXiv 2015, arXiv:1502.02506. [Google Scholar]
- Hilal, A.M.; Al-Wesabi, F.N.; Othman, M.T.B.; Almustafa, K.M.; Nemri, N.; Al Duhayyim, M.; Hamza, M.A.; Zamani, A.S. Design of Intelligent Alzheimer Disease Diagnosis Model on CIoT Environment. Comput. Mater. Contin. 2022, 71, 5979–5994. [Google Scholar]
- Sarraf, S.; Tofighi, G. Classification of Alzheimer’s disease structural MRI data by deep learning convolutional neural networks. arXiv 2016, arXiv:1607.06583. [Google Scholar]
- Gupta, A.; Ayhan, M.; Maida, A. Natural image bases to represent neuroimaging data. In Proceedings of the International Conference on Machine Learning (PMLR), Atlanta, GA, USA, 16–21 June 2013; pp. 987–994. [Google Scholar]
- Ben Ahmed, O.; Benois-Pineau, J.; Allard, M.; Ben Amar, C.; Catheline, G.; Initiative, A.D.N. Classification of Alzheimer’s disease subjects from MRI using hippocampal visual features. Multimed. Tools Appl. 2015, 74, 1249–1266. [Google Scholar] [CrossRef] [Green Version]
- Sarraf, S.; DeSouza, D.D.; Anderson, J.; Tofighi, G.; Initiativ, A.D.N. DeepAD: Alzheimer’s disease classification via deep convolutional neural networks using MRI and fMRI. BioRxiv 2016, 070441. [Google Scholar] [CrossRef] [Green Version]
- Tajbakhsh, N.; Shin, J.Y.; Gurudu, S.R.; Hurst, R.T.; Kendall, C.B.; Gotway, M.B.; Liang, J. Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Trans. Med. Imaging 2016, 35, 1299–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Ni, D.; Qin, J.; Li, S.; Yang, X.; Wang, T.; Heng, P.A. Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J. Biomed. Health Inform. 2015, 19, 1627–1636. [Google Scholar] [CrossRef]
- Razavi, F.; Tarokh, M.J.; Alborzi, M. An intelligent Alzheimer’s disease diagnosis method using unsupervised feature learning. J. Big Data 2019, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Cuingnet, R.; Gerardin, E.; Tessieras, J.; Auzias, G.; Lehéricy, S.; Habert, M.O.; Chupin, M.; Benali, H.; Colliot, O.; Initiative, A.D.N.; et al. Automatic classification of patients with Alzheimer’s disease from structural MRI: A comparison of ten methods using the ADNI database. Neuroimage 2011, 56, 766–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerardin, E.; Chételat, G.; Chupin, M.; Cuingnet, R.; Desgranges, B.; Kim, H.S.; Niethammer, M.; Dubois, B.; Lehéricy, S.; Garnero, L.; et al. Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. Neuroimage 2009, 47, 1476–1486. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Liu, S.; Cai, W.; Pujol, S.; Kikinis, R.; Feng, D. Early diagnosis of Alzheimer’s disease with deep learning. In Proceedings of the 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), Beijing, China, 29 April–2 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1015–1018. [Google Scholar]
- Shin, H.C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.; Jain, N.; Aggarwal, A.; Hemanth, D.J. Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images. Cogn. Syst. Res. 2019, 57, 147–159. [Google Scholar] [CrossRef]
- Sezer, A.; Sezer, H.B. Convolutional neural network based diagnosis of bone pathologies of proximal humerus. Neurocomputing 2020, 392, 124–131. [Google Scholar] [CrossRef]
- Maqsood, M.; Nazir, F.; Khan, U.; Aadil, F.; Jamal, H.; Mehmood, I.; Song, O.Y. Transfer learning assisted classification and detection of Alzheimer’s disease stages using 3D MRI scans. Sensors 2019, 19, 2645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iram, S. Early Detection of Neurodegenerative Diseases from Bio-Signals: A Machine Learning Approach; Liverpool John Moores University: Liverpool, UK, 2014; p. 10047032. [Google Scholar]
- Kim, K.Y. Identification of Combined Biomarker for Predicting Alzheimer’s Disease Using Machine Learning. Korean J. Biol. Psychiatry 2023, 30, 24–30. [Google Scholar] [CrossRef]
- Han, D.H.; Ga, H.; Kim, S.M.; Kim, S.; Chang, J.S.; Jang, S.; Lee, S.H. Biosignals to detect the imbalance of explicit and implicit affect in dementia: A pilot study. Am. J. of Alzheimer’s Dis. Other Dementias® 2019, 34, 457–463. [Google Scholar] [CrossRef]
- López-de-Ipiña, K.; Solé-Casals, J.; Martinez de Lizarduy, U.; Calvo, P.M.; Iradi, J.; Faundez-Zanuy, M.; Bergareche, A. Non-invasive Biosignal Analysis Oriented to Early Diagnosis and Monitoring of Cognitive Impairments. In Converging Clinical and Engineering Research on Neurorehabilitation II, Proceedings of the 3rd International Conference on NeuroRehabilitation (ICNR2016), Segovia, Spain, 18–21 October 2016; Springer International Publishing: Cham, Switzerland, 2017; pp. 867–872. [Google Scholar]
- Hazarika, R.A.; Maji, A.K.; Kandar, D.; Jasinska, E.; Krejci, P.; Leonowicz, Z.; Jasinski, M. An Approach for Classification of Alzheimer’s Disease Using Deep Neural Network and Brain Magnetic Resonance Imaging (MRI). Electronics 2023, 12, 676. [Google Scholar] [CrossRef]
- Acharya, H.; Mehta, R.; Singh, D.K. Alzheimer disease classification using transfer learning. In Proceedings of the 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 8–10 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1503–1508. [Google Scholar]
- Murugan, S.; Venkatesan, C.; Sumithra, M.; Gao, X.Z.; Elakkiya, B.; Akila, M.; Manoharan, S. DEMNET: A deep learning model for early diagnosis of Alzheimer diseases and dementia from MR images. IEEE Access 2021, 9, 90319–90329. [Google Scholar] [CrossRef]
- Kwan, R.S.; Evans, A.C.; Pike, G.B. MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. Med. Imaging 1999, 18, 1085–1097. [Google Scholar] [CrossRef]
- Aftab, K.; Fatima, H.S.; Aziz, N.; Baig, E.; Khurram, M.; Mubarak, F.; Enam, S.A. Machine Learning and Sampling Techniques to Enhance Radiological Diagnosis of Cerebral Tuberculosis. In Proceedings of the 2021 International Conference on Engineering and Emerging Technologies (ICEET), Istanbul, Turkey, 27–28 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [Google Scholar]
- Pal, S. Transfer Learning and Fine Tuning for cross Domain Image Classification with Keras; GitHub: San Francisco, CA, USA, 2016. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 248–255. [Google Scholar]
- Zhou, T.; Lu, H.; Yang, Z.; Qiu, S.; Huo, B.; Dong, Y. The ensemble deep learning model for novel COVID-19 on CT images. Appl. Soft Comput. 2021, 98, 106885. [Google Scholar] [CrossRef]
- Gao, H.; Cheng, B.; Wang, J.; Li, K.; Zhao, J.; Li, D. Object classification using CNN-based fusion of vision and LIDAR in autonomous vehicle environment. IEEE Trans. Ind. Inform. 2018, 14, 4224–4231. [Google Scholar] [CrossRef]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Chen, L.; Wang, R.; Yang, J.; Xue, L.; Hu, M. Multi-label image classification with recurrently learning semantic dependencies. Vis. Comput. 2019, 35, 1361–1371. [Google Scholar] [CrossRef]
- Zhaputri, A.; Hayaty, M.; Laksito, A.D. Classification of Brain Tumour Mri Images Using Efficient Network. In Proceedings of the 2021 4th International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 30–31 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 108–113. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Tufail, A.B.; Ma, Y.K.; Zhang, Q.N. Binary classification of Alzheimer’s disease using sMRI imaging modality and deep learning. J. Digit. Imaging 2020, 33, 1073–1090. [Google Scholar] [CrossRef] [PubMed]
Class | Mean MMSE Score | Standard Deviation of MMSE Score | Gap between the Classes |
---|---|---|---|
Mild demented | 25.12 | 4.90 | Gap between mild demented and moderate demented: 3.33 |
Moderate demented | 21.77 | 2.67 | Gap between mild demented and non-demented: 1.62 |
Non-demented | 23.50 | 5.10 | Gap between mild demented and very mild demented: 0.59 |
Very mild demented | 24.51 | 5.28 | Gap between moderate demented and non-demented: 1.72 |
Mean MMSE score | 23.72 | Gap between moderate demented and very mild demented: 2.72 | |
Mean standard deviation | 4.49 | Gap between non-demented and very mild demented: 1.01 |
MD | MOD | ND | VMD | Total | |
---|---|---|---|---|---|
Training images | 2256 | 2253 | 2252 | 2231 | 8992 |
Testing images | 987 | 956 | 958 | 953 | 3854 |
Total | 3243 | 3209 | 3210 | 3184 | 12,846 |
Sr # | Layers | Output Shape | Parameters # |
---|---|---|---|
1 | Input layers | 224 × 224 × 3 | 0 |
2 | VGG-16 | 7 × 7 × 512 | 14,714,688 |
3 | EfficientNet-B2 | 7 × 7 × 1408 | 7,768,569 |
4 | Concatenate | 7 × 7 × 1920 | 0 |
5 | Dropout | 7 × 7 × 1920 | 0 |
6 | Flatten | 94,080 | 0 |
7 | Batch normalization | 94,080 | 376,320 |
8 | Dense layer | 256 | 24,084,736 |
9 | Batch normalization | 256 | 1024 |
10 | Activation layer | 256 | 0 |
11 | Dropout | 256 | 0 |
12 | Batch normalization | 256 | 1024 |
13 | Dense layer | 64 | 16,448 |
14 | Batch normalization | 64 | 256 |
15 | Activation layer | 64 | 0 |
16 | Dense layer | 4 | 260 |
Model | Accuracy | Precision | Recall | F1 Score | AUC |
---|---|---|---|---|---|
DenseNet-121 | 72.94 | 77.74 | 65.54 | 70.89 | 92.69 |
CNN | 90.50 | 92.87 | 86.14 | 89.35 | 98.84 |
EfficientNet-B2 | 95.89 | 96.18 | 95.95 | 96.02 | 99.72 |
Xception | 75.04 | 79.99 | 68.37 | 73.84 | 93.70 |
VGG-16 | 90.11 | 91.27 | 89.26 | 90.23 | 97.59 |
Model | Accuracy | Precision | Recall | F1 Score | AUC |
---|---|---|---|---|---|
EfficientNet-B2+DenseNet-121 | 96.96 | 97.00 | 96.98 | 96.93 | 99.60 |
VGG-16+DenseNet-121 | 95.56 | 95.50 | 95.23 | 95.50 | 98.75 |
EfficientNet-B2+Xception | 96.26 | 96.24 | 96.50 | 96.25 | 99.11 |
Xception+DenseNet-121 | 91.05 | 91.50 | 91.00 | 90.75 | 97.78 |
VGG-16+EfficientNet-B2 | 97.35 | 97.32 | 97.35 | 97.37 | 99.64 |
Model | Accuracy | Precision | Recall | F1 Score | AUC |
---|---|---|---|---|---|
EfficientNet-B2+DenseNet-121 | 92.82 | 94.29 | 93.76 | 91.52 | 99.38 |
VGG-16+DenseNet-121 | 91.52 | 95.21 | 92.43 | 92.11 | 98.96 |
EfficientNet-B2+Xception | 90.45 | 92.61 | 87.80 | 90.40 | 98.80 |
Xception+DenseNet-121 | 89.29 | 85.83 | 88.90 | 90.87 | 98.28 |
VGG-16+EfficientNet-B2 | 95.00 | 95.23 | 93.34 | 96.13 | 99.41 |
Accuracy | Precision | Recall | F1 Score | AUC | Learning Rate |
---|---|---|---|---|---|
94.47 | 94.55 | 94.45 | 94.48 | 98.53 | 0.01 |
97.33 | 97.30 | 97.35 | 97.30 | 99.60 | 0.001 |
97.35 | 97.32 | 97.35 | 97.37 | 99.64 | 0.0001 |
Model | Accuracy | Precision | Recall | F1 Score | AUC |
---|---|---|---|---|---|
EfficientNet-B2+DenseNet-121 | 95.45 | 95.10 | 95.45 | 95.50 | 98.68 |
VGG-16+DenseNet-121 | 94.90 | 94.56 | 94.90 | 94.97 | 98.43 |
EfficientNet-B2+Xception | 91.80 | 91.80 | 91.80 | 92.19 | 97.34 |
Xception+DenseNet-121 | 90.53 | 90.84 | 90.35 | 91.04 | 96.22 |
VGG-16+EfficientNet-B2 | 97.07 | 96.91 | 97.27 | 97.16 | 99.59 |
Model | Accuracy | Standard Deviation (std) |
---|---|---|
EfficientNet-B2+DenseNet-121 | 96.1% | +/− 0.04 |
VGG-16+DenseNet-121 | 94.2% | +/− 0.02 |
EfficientNet-B2+Xception | 94.5% | +/− 0.03 |
Xception+DenseNet-121 | 91.1% | +/− 0.03 |
VGG-16+EfficientNet-B2 | 96.3% | +/− 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mujahid, M.; Rehman, A.; Alam, T.; Alamri, F.S.; Fati, S.M.; Saba, T. An Efficient Ensemble Approach for Alzheimer’s Disease Detection Using an Adaptive Synthetic Technique and Deep Learning. Diagnostics 2023, 13, 2489. https://doi.org/10.3390/diagnostics13152489
Mujahid M, Rehman A, Alam T, Alamri FS, Fati SM, Saba T. An Efficient Ensemble Approach for Alzheimer’s Disease Detection Using an Adaptive Synthetic Technique and Deep Learning. Diagnostics. 2023; 13(15):2489. https://doi.org/10.3390/diagnostics13152489
Chicago/Turabian StyleMujahid, Muhammad, Amjad Rehman, Teg Alam, Faten S. Alamri, Suliman Mohamed Fati, and Tanzila Saba. 2023. "An Efficient Ensemble Approach for Alzheimer’s Disease Detection Using an Adaptive Synthetic Technique and Deep Learning" Diagnostics 13, no. 15: 2489. https://doi.org/10.3390/diagnostics13152489
APA StyleMujahid, M., Rehman, A., Alam, T., Alamri, F. S., Fati, S. M., & Saba, T. (2023). An Efficient Ensemble Approach for Alzheimer’s Disease Detection Using an Adaptive Synthetic Technique and Deep Learning. Diagnostics, 13(15), 2489. https://doi.org/10.3390/diagnostics13152489