Assessment of the Severity of Left Anterior Descending Coronary Artery Stenoses by Enhanced Transthoracic Doppler Echocardiography: Validation of a Method Based on the Continuity Equation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Groups
2.2. Color Flow Mapping in the LMA and the Whole LAD
2.3. LAD Segmentation and Anatomy
2.4. Ultrasound Plane Orientation
2.5. Heart Rate Lowering Protocol
2.6. Echocardiographic Data Analysis
2.7. E-Doppler TTE: Pulsed-Wave Doppler Analysis
2.8. E-Doppler TTE Versus Quantitative Coronary Angiography and IVUS: Doppler Determination of Percentage Area Stenosis
2.9. Coronary Angiography and IVUS
2.10. Quantitative Coronary Angiography
Significant Stenosis Subgroup
2.11. IVUS Procedure and Analysis of IVUS Data
2.11.1. Non-Significant Stenosis Subgroup
2.11.2. Analysis of IVUS Data
2.12. Statistical Analysis
3. Results
3.1. E-Doppler TTE Data
3.2. Doppler Performance in Predicting the % Reduction in the Stenotic Area
4. Discussion
4.1. Assessment of Stenosis Severity Using the Continuity Equation
4.2. Factors Affecting the Spatial Velocity Profile
4.3. Previous Studies
4.4. Clinical Utility of the Application of the Continuity Equation
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klocke, F.J. Measurements of coronary blood flow and degree of stenosis: Current clinical implications and continuing uncertainties. J. Am. Coll. Cardiol. 1983, 1, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holte, E.; Vegsundvåg, J.; Hegbom, K.; Hole, T.; Wiseth, R. Transthoracic Doppler for detection of stenoses in the three main coronary arteries by use of stenotic to prestenotic velocity ratio and aliased coronary flow. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 1323–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, E.L.; Yock, P.G.; Hargrave, V.K.; Srebro, J.P.; Manubens, S.M.; Seitz, W.; Ports, T.A. Assessment of severity of coronary stenoses using a Doppler catheter. Validation of a method based on the continuity equation. Circulation 1989, 80, 625–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakatani, S.; Yamagishi, M.; Tamai, J.; Takaki, H.; Haze, K.; Miyatake, K. Quantitative assessment of coronary artery stenosis by intravascular Doppler catheter technique. Application of the continuity equation. Circulation 1992, 85, 1786–1791. [Google Scholar] [CrossRef] [Green Version]
- Di Mario, C.; Meneveau, N.; Gil, R.; de Jaegere, P.; de Feyter, P.J.; Slager, C.J.; Roelandt, J.R.; Serruys, P.W. Maximal blood flow velocity in severe coronary stenoses measured with a Doppler guidewire: Limitations for the application of the continuity equation in the assessment of stenosis severity. Am. J. Cardiol. 1993, 71, D54–D61. [Google Scholar] [CrossRef]
- Yamagishi, M.; Nakatani, S.; Miyatake, K. Quantitative Assessment of Lumen Area Stenosis by Doppler Echocardiography and Application of Continuity Equation. Echocardiography 1994, 11, 293–304. [Google Scholar] [CrossRef]
- Hozumi, T.; Yoshikawa, J.; Yoshida, K.; Akasaka, T.; Shakudo, M.; Takagi, T.; Honda, Y.; Okura, H. Assessment of coronary stenosis severity using a Doppler guide wire in vivo: Is the continuity equation applicable to moderate to severe coronary artery stenosis? J. Cardiol. 1995, 25, 1–7. [Google Scholar]
- Hozumi, T.; Yoshikawa, J.; Yoshida, K.; Akasaka, T. Estimation of severity of stenosis with a Doppler guide wire in the experimental models. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 1995, 8 Pt 1, 595–601. [Google Scholar] [CrossRef]
- Vrublevsky, A.V.; Boshchenko, A.A.; Karpov, R.S. Diagnostics of main coronary artery stenoses and occlusions: Multiplane transoesophageal Doppler echocardiographic assessment. Eur. J. Echocardiogr. J. Work. Group Echocardiogr. Eur. Soc. Cardiol. 2001, 2, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Rapp, B.E. Chapter 10—Conservation of mass: The continuity equation. In Microfluidics, 2nd ed.; Rapp, B.E., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 283–289. [Google Scholar]
- Caiati, C.; Aragona, P.; Iliceto, S.; Rizzon, P. Improved doppler detection of proximal left anterior descending coronary artery stenosis after intravenous injection of a lung-crossing contrast agent: A transesophageal doppler echocardiographic study. J. Am. Coll. Cardiol. 1996, 27, 1413–1421. [Google Scholar] [CrossRef]
- Isaaz, K.; da Costa, A.; de Pasquale, J.P.; Cerisier, A.; Lamaud, M. Use of the continuity equation for transesophageal Doppler assessment of severity of proximal left coronary artery stenosis: A quantitative coronary angiography validation study. J. Am. Coll. Cardiol. 1998, 32, 42–48. [Google Scholar]
- Caiati, C.; Zedda, N.; Cadeddu, M.; Chen, L.; Montaldo, C.; Iliceto, S.; Lepera, M.E.; Favale, S. Detection, location, and severity assessment of left anterior descending coronary artery stenoses by means of contrast-enhanced transthoracic harmonic echo Doppler. Eur. Heart J. 2009, 30, 1797–1806. [Google Scholar]
- Caiati, C.; Lepera, M.E.; Pollice, P.; Iacovelli, F.; Favale, S. A new noninvasive method for assessing mild coronary atherosclerosis: Transthoracic convergent color Doppler after heart rate reduction. Validation vs. intracoronary ultrasound. Coron. Artery Dis. 2020, 31, 500–511. [Google Scholar] [CrossRef] [PubMed]
- Caiati, C.; Pollice, P.; Lepera, M.E. Heart Rate Lowering Significantly Increases Feasibility in Doppler Recording Blood Flow Velocity in Coronaries during Transthoracic Doppler Echocardiography. Diagnostics 2023, 13, 670. [Google Scholar] [PubMed]
- Jenni, R.; Büchi, M.; Zweifel, H.J.; Ritter, M. Impact of Doppler guidewire size and flow rates on intravascular velocity profiles. Catheter. Cardiovasc. Diagn. 1998, 45, 96–100. [Google Scholar] [CrossRef]
- Kern, M.J.; Lerman, A.; Bech, J.W.; De Bruyne, B.; Eeckhout, E.; Fearon, W.F. Physiological assessment of coronary artery disease in the cardiac catheterization laboratory: A scientific statement from the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology. Circulation 2006, 114, 1321–1341. [Google Scholar]
- De Bruyne, B.; Pijls, N.H.J.; Heyndrickx, G.R.; Hodeige, D.; Kirkeeide, R.; Gould, K.L. Pressure-Derived Fractional Flow Reserve to Assess Serial Epicardial Stenoses. Circulation 2000, 101, 1840–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilic, I.; Timcic, S.; Odanovic, N.; Otasevic, P.; Collet, C. Serial stenosis assessment—Can we rely on invasive coronary physiology. Front. Cardiovasc. Med. 2023, 10, 1172906. [Google Scholar] [CrossRef]
- Dobrić, M.; Furtula, M.; Tešić, M.; Timčić, S.; Borzanović, D.; Lazarević, N.; Lipovac, M.; Farkić, M.; Ilić, I.; Boljević, D.; et al. Current status and future perspectives of fractional flow reserve derived from invasive coronary angiography. Front. Cardiovasc. Med. 2023, 10, 1181803. [Google Scholar] [CrossRef]
- Caiati, C.; Lepera, M.E.; Santoro, D.; Grande, D.; Tito, A.; Marolla, P.; Stufano, M.; Meliota, G.; Iacovelli, F.; Masi, F.; et al. Physiologic significance assessment of intermediate severity coronary lesions by transthoracic enhanced doppler echocardiography in convergent color doppler mode: Validation versus fractional flow reserve. J. Am. Coll. Cardiol. 2014, 63, A401. [Google Scholar] [CrossRef]
- Chen, C.C.; Morganroth, J.; Ogawa, S.; Mardelli, T.J. Detecting left main coronary artery disease by apical, cross-sectional echocardiography. Circulation 1980, 62, 288–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruberte, J.; Navarro, M.; Carretero, A.; König, H.E. 11—Circulatory System. In Morphological Mouse Phenotypin; Ruberte, J., Carretero, A., Navarro, M., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 269–347. [Google Scholar]
- Caiati, C.; Montaldo, C.; Zedda, N.; Bina, A.; Iliceto, S. New noninvasive method for coronary flow reserve assessment—Contrast-enhanced transthoracic second harmonic echo Doppler. Circulation 1999, 99, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, N.; Asano, T.; Nakazawa, G.; Aoki, J.; Tanabe, K.; Hibi, K.; Ikari, Y.; Kozuma, K. Clinical expert consensus document on quantitative coronary angiography from the Japanese Association of Cardiovascular Intervention and Therapeutics. Cardiovasc. Interv. Ther. 2020, 35, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Zahedmehr, A. Chapter 10—Catheterization and Angiography. In Practical Cardiology; Maleki, M., Alizadehasl, A., Haghjoo, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 173–181. [Google Scholar]
- Weber, C.; Brown, K.N.; Borger, J. Anatomy, Thorax, Heart Anomalous Left Anterior Descending (LAD) Artery. In StatPearls; StatPearls Publishing: Tampa, FL, USA, 2023. [Google Scholar]
- Mintz, G.S.; Nissen, S.E.; Anderson, W.D.; Bailey, S.R.; Erbel, R.; Fitzgerald, P.J.; Pinto, F.J.; Rosenfield, K.; Siegel, R.J.; Tuzcu, E.M.; et al. American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (ivus): A report of the american college of cardiology task force on clinical expert consensus documents. J. Am. Coll. Cardiol. 2001, 37, 1478–1492. [Google Scholar]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Hatle, L.; Angelsen, B.A. Doppler Ultrasound in Cardiology, 2nd ed.; Lea & Febiger: Philadelphia, PA, USA, 1985. [Google Scholar]
- Isaaz, K.; De Pasquale, J.P.; Da Costa, A.; Cerisier, A.; Lamaud, M. Changes in coronary flow spatial velocity profile demonstrated in humans by digital computer analysis of TEE Doppler color flow. J. Am. Coll. Cardiol. 1997, 29, 363A. [Google Scholar]
- Doucette, J.W.; Corl, P.D.; Payne, H.M.; Flynn, A.E.; Goto, M.; Nassi, M.; Segal, J. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 1992, 85, 1899–1911. [Google Scholar] [CrossRef] [Green Version]
- Bom, N.; Li, W.; Carlier, S.; Céspedes, I.; van der Steen, A.F.W. Cardiovascular flow measurements with IVUS. In What’s New in Cardiovascular Imaging? Reiber, J.H.C., Van Der Wall, E.E., Eds.; Springer: Dordrecht, The Netherlands, 1998; pp. 149–158. [Google Scholar]
- Yamagishi, M.; Miyatake, K.; Beppu, S.; Kumon, K.; Suzuki, S.; Tanaka, N.; Nimura, Y. Assessment of coronary blood flow by transesophageal two-dimensional pulsed Doppler echocardiography. Am. J. Cardiol. 1988, 62, 641–644. [Google Scholar] [CrossRef] [PubMed]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef] [Green Version]
- Lethen, H.; Tries, H.P.; Kersting, S.; Lambertz, H. Validation of noninvasive assessment of coronary flow velocity reserve in the right coronary artery. A comparison of transthoracic echocardiographic results with intracoronary Doppler flow wire measurements. Eur. Heart J. 2003, 24, 1567–1575. [Google Scholar] [CrossRef] [Green Version]
- Yoganathan, A.P.; Cape, E.G.; Sung, H.-W.; Williams, F.P.; Jimoh, A. Review of hydrodynamic principles for the cardiologist: Applications to the study of blood flow and jets by imaging techniques. J. Am. Coll. Cardiol. 1988, 12, 1344–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato, M.; Buscema, M.; Massini, G.; Maurelli, G.; Grossi, E.; Frigerio, B.; Ravani, A.L.; Sansaro, D.; Coggi, D.; Ferrari, C.; et al. Assessment of New Coronary Features on Quantitative Coronary Angiographic Images with Innovative Unsupervised Artificial Adaptive Systems: A Proof-of-Concept Study. Front. Cardiovasc. Med. 2021, 8, 730626. [Google Scholar] [CrossRef]
- Poyet, R.; Cuisset, T.; Bali, L.; Quilici, J.; Lambert, M.; Bonnet, J.L. Coronary wall characteristics after myocardial infarction without significant coronary angiographic lesion: An intravascular ultrasound study. Acta Cardiol. 2010, 65, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Hermiller, J.B.; Tenaglia, A.N.; Kisslo, K.B.; Phillips, H.R.; Bashore, T.M.; Stack, R.S.; Davidson, C.J. In vivo validation of compensatory enlargement of atherosclerotic coronary arteries. Am. J. Cardiol. 1993, 71, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Carpeggiani, C.; Landi, P.; Michelassi, C.; Andreassi, M.G.; Sicari, R.; Picano, E. Stress Echocardiography Positivity Predicts Cancer Death. J. Am. Heart Assoc. 2017, 6, e07104. [Google Scholar] [CrossRef] [Green Version]
- Kabacik, S.; Raj, K. Ionising radiation increases permeability of endothelium through ADAM10-mediated cleavage of VE-cadherin. Oncotarget 2017, 8, 82049–82063. [Google Scholar] [CrossRef] [Green Version]
- Kouam, P.N.; Rezniczek, G.A.; Adamietz, I.A.; Bühler, H. Ionizing radiation increases the endothelial permeability and the transendothelial migration of tumor cells through ADAM10-activation and subsequent degradation of VE-cadherin. BMC Cancer 2019, 19, 958. [Google Scholar] [CrossRef] [Green Version]
- Halle, M.; Gabrielsen, A.; Paulsson-Berne, G.; Gahm, C.; Agardh, H.E.; Farnebo, F.; Tornvall, P. Sustained Inflammation Due to Nuclear Factor-Kappa B Activation in Irradiated Human Arteries. J. Am. Coll. Cardiol. 2010, 55, 1227–1236. [Google Scholar] [CrossRef] [Green Version]
- Janus, P.; Szołtysek, K.; Zając, G.; Stokowy, T.; Walaszczyk, A.; Widłak, W.; Widlak, P. Pro-inflammatory cytokine and high doses of ionizing radiation have similar effects on the expression of NF-kappaB-dependent genes. Cell. Signal. 2018, 46, 23–31. [Google Scholar] [CrossRef]
- Gofman, J.W. Radiation from Medical Procedure in the Pathogenesis of Cancer and Ischemic Heart Disease: Dose-Response Studies with Physicians per 100,000 Population. Ph.D. Thesis, C.N.R. Book Division, Committee for Nuclear Responsibility, Inc., San Francisco, CA, USA, 1999. [Google Scholar]
- Baselet, B.; Rombouts, C.; Benotmane, A.M.; Baatout, S.; Aerts, A. Cardiovascular diseases related to ionizing radiation: The risk of low-dose exposure (Review). Int. J. Mol. Med. 2016, 38, 1623–1641. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kwag, H.J.; Yoo, S.M.; Yoo, J.Y.; Chae, I.-H.; Choi, D.-J.; Park, M.-J.; Vembar, M.; Chun, E.J. Discrepancies between coronary CT angiography and invasive coronary angiography with focus on culprit lesions which cause future cardiac events. Eur. Radiol. 2018, 28, 1356–1364. [Google Scholar] [PubMed]
- Simova, I.; Hospital, S.N.C. Coronary Flow Velocity Reserve Assessment with Transthoracic Doppler Echocardiography. Eur. Cardiol. Rev. 2015, 10, 12–18. [Google Scholar]
- Florenciano Sánchez, R.; La Morena Valenzuela, G.G.; Soria Arcos, F.; Rubio Patón, R.; López Palop, R.; Villegas García, M.; Eduardo Pinar, B. Detection of angiographic lesions in the left anterior descending coronary artery by transthoracic Doppler echocardiography: Usefulness of non-invasive assessment of coronary flow reserve. Rev. Esp. De Cardiol. 2003, 56, 561–568. [Google Scholar] [CrossRef]
- Hildick-Smith, D.J.; Maryan, R.; Shapiro, L.M. Assessment of coronary flow reserve by adenosine transthoracic echocardiography: Validation with intracoronary doppler. J. Am. Soc. Echocardiogr. 2002, 15, 984–990. [Google Scholar] [CrossRef]
- Caiati, C.; Scardapane, A.; Iacovelli, F.; Pollice, P.; Achille, T.I.; Favale, S.; Lepera, M.E. Coronary Flow and Reserve by Enhanced Transthoracic Doppler Trumps Coronary Anatomy by Computed Tomography in Assessing Coronary Artery Stenosis. Diagnostics 2021, 11, 245. [Google Scholar] [CrossRef] [PubMed]
- Wasilewski, J.; Niedziela, J.; Osadnik, T.; Duszańska, A.; Sraga, W.; Desperak, P.; Myga-Porosiło, J.; Jackowska, Z.; Nowakowski, A.; Głowacki, J. Predominant location of coronary artery atherosclerosis in the left anterior descending artery. The impact of septal perforators and the myocardial bridging effect. Pol. J. Cardio-Thorac. Surg. 2015, 12, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Caiati, C.; Lepera, M.; Santoro, D.; Grande, D.; Tito, A.; Tarantino, N.; Favale, S. Transthoracic Enhanced Doppler Echocardiography-Assessed Absence of Atherosclerosis in The Left Anterior Descending Coronary Artery Rules out Critical Right and/or Circumflex Coronary Artery Disease. J. Am. Coll. Cardiol. 2013, 61, A1025. [Google Scholar] [CrossRef] [Green Version]
Significant Stenosis | Non-Significant Stenosis | |
---|---|---|
Gender | ||
Males, #patients (%) | 35 (79.5) | 41 (82) |
Females, #patients (%) | 9 (20.5) | 9 (18) |
Weight, kg | 76.29 ± 11.31 | 79.32 ± 11.74 |
Height, cm | 167.9 ± 9.95 | 168.66 ± 10.41 |
Hypertension, #patients (%) | 35 (79.5) | 39 (78) |
Diabetes, #patients (%) | 17 (38.6) | 17 (34) |
Atypical angina, #patients (%) | 7 (16) | 14 (28) |
Typical angina, #patients (%) | 20 (45) | 11 (22) |
Previous MI, #patients (%) | 13 (29.5) | 12 (24) |
Previous PTCA, #patients (%) | 11 (25) | 14 (28) |
LVEF, % | 47 ± 22 | 53 ± 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caiati, C.; Stanca, A.; Lepera, M.E. Assessment of the Severity of Left Anterior Descending Coronary Artery Stenoses by Enhanced Transthoracic Doppler Echocardiography: Validation of a Method Based on the Continuity Equation. Diagnostics 2023, 13, 2526. https://doi.org/10.3390/diagnostics13152526
Caiati C, Stanca A, Lepera ME. Assessment of the Severity of Left Anterior Descending Coronary Artery Stenoses by Enhanced Transthoracic Doppler Echocardiography: Validation of a Method Based on the Continuity Equation. Diagnostics. 2023; 13(15):2526. https://doi.org/10.3390/diagnostics13152526
Chicago/Turabian StyleCaiati, Carlo, Alessandro Stanca, and Mario Erminio Lepera. 2023. "Assessment of the Severity of Left Anterior Descending Coronary Artery Stenoses by Enhanced Transthoracic Doppler Echocardiography: Validation of a Method Based on the Continuity Equation" Diagnostics 13, no. 15: 2526. https://doi.org/10.3390/diagnostics13152526
APA StyleCaiati, C., Stanca, A., & Lepera, M. E. (2023). Assessment of the Severity of Left Anterior Descending Coronary Artery Stenoses by Enhanced Transthoracic Doppler Echocardiography: Validation of a Method Based on the Continuity Equation. Diagnostics, 13(15), 2526. https://doi.org/10.3390/diagnostics13152526