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Abstract: Background: the objective of this study is to evaluate the predictive power of the survival
model using deep learning of diffusion-weighted images (DWI) in patients with non-small-cell lung
cancer (NSCLC). Methods: DWI at b-values of 0, 100, and 700 sec/mm2 (DWI0, DWI100, DWI700) were
preoperatively obtained for 100 NSCLC patients who underwent curative surgery (57 men, 43 women;
mean age, 62 years). The ADC0-100 (perfusion-sensitive ADC), ADC100-700 (perfusion-insensitive
ADC), ADC0-100-700, and demographic features were collected as input data and 5-year survival
was collected as output data. Our survival model adopted transfer learning from a pre-trained
VGG-16 network, whereby the softmax layer was replaced with the binary classification layer for
the prediction of 5-year survival. Three channels of input data were selected in combination out of
DWIs and ADC images and their accuracies and AUCs were compared for the best performance
during 10-fold cross validation. Results: 66 patients survived, and 34 patients died. The predictive
performance was the best in the following combination: DWI0-ADC0-100-ADC0-100-700 (accuracy:
92%; AUC: 0.904). This was followed by DWI0-DWI700-ADC0-100-700, DWI0-DWI100-DWI700, and
DWI0-DWI0-DWI0 (accuracy: 91%, 81%, 76%; AUC: 0.889, 0.763, 0.711, respectively). Survival
prediction models trained with ADC performed significantly better than the one trained with DWI
only (p-values < 0.05). The survival prediction was improved when demographic features were
added to the model with only DWIs, but the benefit of clinical information was not prominent when
added to the best performing model using both DWI and ADC. Conclusions: Deep learning may
play a role in the survival prediction of lung cancer. The performance of learning can be enhanced
by inputting precedented, proven functional parameters of the ADC instead of the original data of
DWIs only.

Keywords: NSCLC; MR; DWI; prognosis prediction; AI; deep learning

1. Introduction

Lung cancer is the most common cause of cancer death, accounting for 26.6% of all
cancer deaths [1]. The survival of lung cancer patients is expected differently according
to the stage of lung cancer when it is diagnosed. Non-small-cell lung cancer (NSCLC)
with localized disease without regional or distant metastasis shows 59.0% 5-year relative
survival, whereas NSCLC with distant metastasis shows only a 5.8% 5-year relative survival
rate [2]. The possibility of survival of lung cancer at the time of diagnosis can only be
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estimated using an alleged percentage of survival at each given stage of lung cancer. The
stage of lung cancer is determined based on the extent of the primary cancer and the
extent of metastasis through lymphatic drainage and hematogenous metastasis or pleural
seeding, which can be determined using anatomic information obtained via preoperative
CT, PET/CT, or MRI, and confirmed via percutaneous biopsy, surgical biopsy, or curative
surgery [3].

MRI is a state-of-the-art imaging modality which can picturize human anatomy with
good contrast and resolution. Although the ability of pulmonary nodule detection is lower
than CT, MRI can detect malignant nodules without radiation exposure. In the TNM
staging of lung cancer, MRI shows superiority in the evaluation of mediastinal or chest
wall invasion, or Pancoast tumor, and comparable N staging assessment capability with
the use of PET/CT. The use of diffusion-weighted images (DWIs) achieves good results of
detection and characterization of malignant nodule or lymph node metastasis [4]. On DWIs,
MRI can quantify functional information such as cellular density and molecular movability
in a tissue. The anatomic information from MRI can be interpreted using human visual
perception, but functional parameters of MRI, such as diffusion and perfusion parameters,
are presented with numbers for each pixel, and its clinical significance cannot be inferred
visually. The apparent diffusion coefficient (ADC) value reveals the diffusivity of water
molecules and can be quantified from functional indices [5,6]. The measured ADC value
can be used in the discrimination of the benign or malignant nature of tumors using the
criterion of the optimal cutoff of 1.470 × 10−3 mm2/s in lung cancer and the subtype
differentiation of renal cell carcinoma [7,8]. It is also helpful in prognosis evaluation in
terms of chemotherapy response prediction in malignancies such as breast cancer, rectal
cancer, osteosarcoma, and hepatic metastasis from colorectal cancer [9–12]. Concerning
prognosis prediction, lower values of the ADC suggest more aggressive histologic types and
grades, and worse prognosis [13–15], whereas there is also a report that states suspicion in
the usefulness of ADC values in determining the histological grade of malignancy, despite
the excellence of MRI staging in endometrial cancer [16].

Artificial intelligence (AI) is a mechanism of computing based on learning and thinking
from data itself, imitating human behavior. Machine learning, a system of learning through
experience, is a subset of AI, and deep learning is also a subset of machine learning,
which represents systems based on neural networks. The convolutional neural network
(CNN) is a class of methods which was successfully applied in image analysis such as
detection, classification, segmentation, and prediction tasks using medical image data
such as pathology, X-ray, CT, and MRI. Medical images are also quite a promising field of
research, using CNN in the detection and classification of pathology and the prediction of
clinically relevant outcomes [17–28]. To our knowledge, there have been no reports of deep
learning using CNN in the analysis of DWI and the prognosis of lung cancer. Deep learning
from diffusion MRI may clarify the clinical significance of functional information which is
encoded in DWI and ADC, which cannot be analyzed upon viewing diffusion-weighted
images. The problem that we primarily identified in previous survival prediction models
was that previous models [29–32] have only utilized clinical data (e.g., age, sex, smoking
history) in their survival prediction models, without using diffusion MRI. We have not
only incorporated conventional MRI images into our model (DWI0), but we have also
incorporated the functional parameters of diffusion MRI (ADC), since diffusion MRI can be
analyzed more accurately when its functional parameters of the ADC are used alongside
the images themselves. Functional parameters naturally lend themselves well to deep
learning, because each of the functional parameters assigned to each pixel—which are
extremely numerous in aggregate—can readily be optimized using deep learning.

The purpose of this study is to evaluate the predictive power of prognostic model
learning from DWI only or learning from both DWI and ADC or DWI, ADC, and clinical
information in patients with NSCLC.



Diagnostics 2023, 13, 2555 3 of 12

2. Materials and Methods
2.1. Patients

The institutional review board of our institution approved this study as a part of a clin-
ical trial for the staging of lung cancer, which was registered as a randomized clinical trial
with ClinicalTrials.gov number NCT01065415. Written informed consent was obtained from
all patients in the single tertiary referral hospital. From January 2010 through to November
2011, patients with stage I, II, or IIIA NSCLC (other than N2 disease) based on clinical
staging underwent conventional work up including physical examination, laboratory tests,
bronchoscopy, chest CT, or PET/CT upon admission (n = 151). In cases of an inappropriate
condition for surgery, such as poor pulmonary function, poor performance status (ECOG 3
or 4), concurrent medical diseases, history of malignancy treatment, contraindication for
MR image acquisition, or refusal of involvement, patients were excluded (n = 51). After
MR image acquisition, thoracotomy with or without mediastinoscopy was performed, and
100 patients were included (57 men, 43 women; mean age, 62 years).

We evaluated age, sex, smoking history, tumor size, pathologic type, surgical stage
of NSCLC (AJCC 7th), and survival information based on an electrical chart review. The
causes of death statistics were updated annually by the National Statistical Office, and the
electrical charts of cancer patients had their updated survival information. From the date
of MR acquisition, 5-year survival was determined by the date of death or last follow-up
date of survivors on the chart.

2.2. MR Acquisition

All thoracic MR examinations were performed via a 1.5-T machine (Magnetom Avanto;
Siemens, Erlangen, Germany), using surface array coils. MR images were obtained with
diffusion-weighted images using a single-shot, spin echo, echo planar imaging (EPI) sequence
with spectrally adiabatic inversion recovery (SPAIR) fat suppression (FS) and b-values of 0, 100,
and 700 s/mm2 (repetition time (TR)/echo time (TE) = 11,700 ms/73 ms; number of repetition av-
erages, 4; matrix size = 192 × 162; in-plane resolution = 2.08 × 2.08 mm; FOV = 400 × 325 mm2;
slice thickness = 5 mm; number of slices = 60).

2.3. Image Processing

DWI is used for the calculation of the ADC. To generate the perfusion-insensitive ADC
by eliminating the pseudo-diffusion effect, the ADC was calculated based on a b-value
of 100 and 700 (ADC100-700). The perfusion-sensitive ADC value was calculated using a
b-value of 0 and 100 (ADC0-100). The overall conventional ADC value was calculated using
a b-value of 0, 100, and 700 (ADC0-100-700). Specifically, the ADC value was calculated using
a mono-exponential model [33]:

S(b)/S0 = exp (−b × ADC),

where S(b) is the signal intensity at a particular b-value, S0 is the signal intensity with
b = 0 s/mm2, and b is the b-factor. The ADC value was estimated via linear fitting us-
ing Matlab (Mathworks, Natick, MA, USA). For each voxel, three ADC (ADC0-100-700,
ADC0-100, and ADC100-700) values were estimated with a low b-value (slope between 0 and
100 s/mm2, ADC0-100; microperfusion-facilitated ADC), a high b-value (slope between
100 and 700 s/mm2, ADC100-700; perfusion-insensitive ADC), and overall b-values (slope
between 0, 100, and 700 s/mm2, ADC100-700; conventional ADC). The tumor ROI was
manually defined on the axial ADC0-100-700 map. The voxels ranging from 2.5% to 7.5%
of the ADC0-100-700 values within the tumor ROI were extracted and averaged to compute
the ADC0-100-700 value. The corresponding voxels were used to compute the ADC0-100 and
ADC100-700 values.

The DWI and ADC images were normalized as input data for the value of signal
intensity and the size of the pixel. The signal intensity of images was normalized into
a range from 0 to 1 and all images were interpolated as 2 mm sized pixel images. The
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cancer was manually segmented on the ADC map by a radiologist (CAY with 20 years
of experience). From the manually segmented lung cancer volume, the slice with the
largest area of the lung cancer was selected as a mask. Then, the lung cancer region of the
DWI and ADC images (DWI0, DWI100, DWI700, ADC0-100, ADC100-700, and ADC0-100-700)
were segmented using the selected mask. In our dataset, the maximum size of the lung
cancer was found to be 34 × 30 pixels. The segmented images were padded into the size
of 56 × 56 pixels, and then resized to 224 × 224 pixels to be fed as an input to our deep
learning model.

2.4. Deep Learning Model for Survival Prediction

In this paper, we propose a survival prediction model for lung cancer using deep
learning with the transfer learning of VGG-16 as the backbone structure. VGG-16 is a
convolutional neural network model proposed by K. Simonyan and A. Zisserman [34].
VGG-16 consists of sixteen layers: 13 convolutional layers, 2 fully connected layers, and
1 softmax layer for the output. The input of the network is three channels of images in
224 × 224 resolution. When three channels of images entered the model as input data, the
feature maps of the network were generated through a convolution operation process with
a combination of three channels of images. The output was the classification of 1000 objects
through the softmax layer in the ImageNet dataset.

In this study, we modified the softmax layer of the VGG-16 model into a binary
classification of survival and death. The architecture of the modified VGG-16 is described
in Figure 1. When clinical information was added to our model, a fully connected layer
was added in the latter part of the deep learning structure to evaluate the augmented
performance for the prediction of survival in NSCLC patients.
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Figure 1. Survival prediction model architecture.

We evaluated the predictive power of deep learning in three different combinations
for input data: 1. DWI only, 2. DWI and ADC, and 3. DWI, ADC, and clinical information.
As input data for the network, three channels of image data were selected from DWI and
ADC. Combinations included DWI as anatomical data, ADC0-100 as perfusion-sensitive
ADC, ADC100-700 as perfusion-insensitive ADC, and ADC0-100-700 as conventional ADC.
The survival network could capture features related to the survival of the lung cancer
patient from the input dataset through training. The output of the network was the survival
probability of the lung cancer patients.
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2.5. Implementation

The models were implemented using Tensorflow (version 1.14). The pretrained VGG16
model in ImageNet was used to obtain the initial parameters of our network. Our model
was trained at the initial learning rate of 0.001 for one classification layer, two fully con-
nected layers, and three convolutional layers until 70 epochs, and at the learning rate of
0.00001 for the fine tuning of the whole layers until 100 epochs. The total epoch was set
to 170. Cross entropy was used for loss function, and the stochastic gradient descent was
used as an optimizer. Data augmentation, such as flipping the x and y axis and rotation
(−30~30), was performed during training. For the inputs of the model, the three channels
of images were used as various combinations of the DWI (DWI0, DWI100, DWI700) and
the ADC map (ADC0-100, ADC100-700, ADC0-100-700). Ten-fold cross validation was used to
evaluate the survival prediction model. A total of 100 subjects were divided into 10 subsets
containing 10 subjects for each subset. One subset (10 subjects) was used as the test set and
nine subsets (90 subjects) were used as the training set. The accuracy of the model was
reported as the average of the prediction accuracy from the 10 experiments.

2.6. Statistical Analysis

Several commonly reported performance metrics such as the area under the receiver
operating characteristic curve (AUC), sensitivity, specificity, kappa, accuracy, and balanced
accuracy were used to evaluate whether survival at 5 years could be classified using deep
learning models which were trained with different sets of input data as the predictor. Here,
in the confusion matrix, Cohen’s kappa is a measure of the proportion of a “true” agreement
beyond that expended by chance, and the balanced accuracy was defined as the average of
sensitivity and specificity to deal with the class imbalance problems [35].

To provide measurements of the uncertainty of the model’s prediction accuracy, we
calculated the 95% confidence intervals (CIs) for the estimation of measurements by pro-
viding bootstrap samples with 1000 replications. When the 95% CI for a given comparison
did not include zero, we concluded that there was a difference between the two models.
The association between MR images and the 5-year survival of lung cancer patients was
tested via logistic regression analysis, adjusted for clinical information such as age, sex,
smoking history, tumor size, pathologic type, and surgical stage. The optimal cutoff was
calculated using Youden’s index.

All statistical analyses were carried out using R packages (version 3.6.1; R Development
Core Team, www.r-project.org, accessed on 13 May 2022) and SAS (version 9.4; SAS Institute,
Cary, NC, USA). All statistical tests were two-sided with a significance level of 0.05.

3. Results
3.1. Demographics

Clinical, pathologic, and prognostic characteristics are summarized in Table 1. Patho-
logic diagnosis of 100 patients included adenocarcinoma (n = 63), squamous cell carcinoma
(n = 32), adenosquamous carcinoma (n = 2), large cell neuroendocrine carcinoma (n = 1),
pleomorphic adenocarcinoma (n = 1), and other NSCLC (n = 1). Among 100 NSCLC pa-
tients, 66 patients survived, and 34 patients died at 5-year follow up after curative surgery.
Sixty-three patients had no progression and the remaining thirty-seven patients showed
local recurrence (n = 2) or metastasis (n = 36).

www.r-project.org
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Table 1. Patient demographics (n = 100).

Characteristics N Characteristics N

Age, years (mean, range) 62 (40–79) Tumor size (mean, range) 37 (7–90)
Gender (%) Surgical stage (%)

Male 57 (57) IA 30 (30)
Female 43 (43) IB 27 (17)

Smoking (%) IIA 12 (12)
Never-smoker 44 (44) IIB 8 (8)
Ex-smoker 40 (40) IIIA 14 (14)
Current smoker 16 (16) IIIB 2 (2)
Pack-year (mean, range) 21.4 (0–150) IV 7 (7)

Pathology (%) Prognosis (%)
Adenocarcinoma 63 (63) Death 34 (34)
Squamous cell carcinoma 32 (32) Survival 66 (66)
Adenosquamous carcinoma 2 (2) Progression (%)
Large cell neuroendocrine carcinoma 1 (1) Progression-free 63 (63)
Pleomorphic carcinoma 1 (1) Progression 37 (37)

NSCLC, other 1 (1) Local recurrence 2 (2)
Metastasis 36 (36)

3.2. Performance of the Survival Prediction Model Using DWI and ADC

The best predictive performance (92% accuracy) was achieved in the model learning
from the combination of DWI0-ADC0-100-ADC0-100-700 input data (Table 2). The model
trained with at least one ADC map showed high accuracies (87~92%). On the other hand,
the models trained with only DWIs showed low accuracies (76% in DWI0-DWI0-DWI0
and 81% in DWI0-DWI100-DWI700 input data), although this model structure integrated
features from each DWI’s input data (Figure 2).

Table 2. Survival prediction with deep learning model using DWI with or without ADC.

Input Data Prediction
Results Survival Death AUC 1 Kappa 2 Sensitivity Specificity Accuracy

(%)

Balanced
Accuracy

(%) 3

AUC 1

Difference
(95% CI)

DWI0-DWI0-DWI0
Survival 57 15

0.711 0.441 0.559 0.864 76 71
0.193

Death 9 19 (0.116, 0.279)

DWI0-DWI100-
DWI700

Survival 60 13
0.763 0.554 0.618 0.909 81 76

0.141
Death 6 21 (0.065, 0.223)

ADC0-100-ADC100-700-
ADC0-100-700

Survival 61 8
0.844 0.704 0.765 0.924 87 84

0.061
Death 5 26 (−0.027, 0.151)

DWI0-DWI700-
ADC0-100-700

Survival 63 6
0.889 0.795 0.824 0.955 91 89

0.015
Death 3 28 (0, 0.048)

DWI0-ADC0-100-700-
ADC0-100-700

Survival 63 7
0.874 0.771 0.794 0.955 90 87

0.029
Death 3 27 (0, 0.074)

DWI0-ADC0-100-
ADC0-100-700

Survival 63 5
0.904 0.819 0.853 0.955 92 90 ReferenceDeath 3 29

1 AUC, area under curve. 2 Kappa, Cohen’s kappa as a measure of the proportion of “true” agreement beyond that
expended by chance. 3 Balanced accuracy, average of sensitivity and specificity to deal with the class imbalance
problems.

When the accuracies were compared, the model trained using DWI0-ADC0-100-ADC0-100-700
input data showed significantly better performances than the model trained with only DWIs,
but there was no significant difference between the models using at least one ADC input datum
(Table 2).

Looking at the individual cases that the models accurately predicted, the model using
both ADC and DWI accurately predicted 9 additional cases which were not predicted
accurately by the model using only ADC, and 12 additional cases which were not predicted
accurately by the model using only DWI. On the other hand, the model using both ADC
and DWI did not make correct predictions in four cases which were correctly predicted
using ADC only, and one case which was correctly predicted using DWI only. The three
cases could not be predicted correctly by any of these three models (Figure 3).
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Figure 2. DWI and ADC images of three patients. (A,B) 50-year-old woman with T1 N0 M0 adeno-
carcinoma of lung. ADC value was 1.504 × 10−3 mm2/s. Our survival prediction models predicted
the survival of this patient in all of the combinations of DWI and ADC. She remained alive 5 years
after curative surgery. (C,D) 71-year-old man with T2 N0 M0 squamous cell carcinoma of lung. ADC
value was 1.174 × 10−3 mm2/s, which is suggestive of poor prognosis. Our survival prediction
models predicted death of this patient in all of the combinations of DWI and ADC. At 25 months
after curative surgery, he died. (E,F) 62-year-old man with T1 N0 M0 adenocarcinoma of lung.
ADC value was 1.12 × 10−3 mm2/s, which could suggest poor prognosis, but he remained alive
5 years after curative surgery. Deep learning model with DWI-only combination (DWI0-DWI0-DWI0,
DWI0-DWI100-DWI700) failed to predict the survival, but the model with ADC input predicted his
survival correctly.

3.3. Performance of the Survival Prediction Model Using DWI, ADC, and Clinical Information

When clinical information (age, sex, smoking history, tumor size, pathologic type, and
surgical stage) was added to the AI-generated survival predictions using diffusion MRI,
the survival prediction improved when demographic features were added to the model
with only DWIs, but the benefit of clinical information was not prominent when added
to the best performing model using both DWI and ADC (Table 3). The best performance
(94%) was achieved with a model using DWI0-ADC0-100-ADC0-100-700 and all of the clinical
information as input data, which was slightly better than the accuracy with a model using
DWI0-ADC0-100-ADC0-100-700 only (92%). However, when clinical information was added
to the model using DWI only (76~81% accuracies), the survival prediction was improved
with more than a 7% increase in accuracies (83~89% accuracies).
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Figure 3. Results of survival prediction model according to the image input dataset. In the graphs,
the X-axis indicates 100 patients and the Y-axis shows the result of each patient; 0: survival, 1: death,
*: prediction of model, and #: ground truth. The blank circles (#) indicate failed prediction of
survival. On the other hand, the filled circles with asterisks indicate correct prediction. By adding
ADC information to DWI as an input datum, the number of correct predictions increased, as shown
in each individual case.

Table 3. Accuracy (%) of survival prediction with regression model incorporating clinical information
and AI-generated predictions using diffusion MRI. *: baseline accuracy predicted via deep learning
using MRI parameters.

Baseline
Accuracy *

Incorporated Clinical Information

Age Sex Smoking
Pack-Year

Tumor
Size

Pathologic
Type

Surgical
Stage All

DWI0-DWI0-DWI0 76 78 76 76 77 76 76 83
DWI0-DWI100-DWI700 81 81 81 81 82 81 81 89
ADC0-100-ADC100-700-

ADC0-100-700
87 87 87 87 88 87 86 92

DWI0-DWI700-
ADC0-100-700

91 91 91 91 92 91 91 94

DWI0-ADC0-100-700-
ADC0-100-700

90 90 90 90 91 90 88 93

DWI0-ADC0-100-
ADC0-100-700

92 92 92 92 93 92 92 94

4. Discussion

DWI and ADC of MR images reveal the diffusion capacity of water molecules and are
widely used for oncologic imaging in terms of characterization, diagnosis, and prognosis
prediction. Either a visual assessment of diffusion restriction by comparing the signal
intensity of high- and low-b-value DWI or measuring the value less than 1.5 × 10−3 mm2/s
on the ADC map may suggest poor prognosis of a patient. For example, based on these two
assessments, radiologists could suggest a diagnosis of malignancy based on MR images,
although the ADC range of lung cancer can vary [12,36]. Intense restriction on DWI and
smaller ADC values can suggest poor prognosis in terms of higher pathologic grade, lymph
node metastasis, and response to chemoradiation therapy, but there are no obvious criteria
nor cutoff values for the differentiation of survival and death in each NSCLC patient [37,38].
Such identifications of diffusion restriction can help to predict the probability of better or
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poorer prognosis, but individual (personalized) prediction of 5-year death or survival for a
specific patient cannot be achieved via visual assessment or value measurement only.

The prognostic prediction of NSCLC patients using deep learning models has been
applied with several biomarkers such as radiologic, histopathologic, genetic, or molecular
evidence [39–42]. In the medical field of pulmonary image analysis and prognosis predic-
tion, several deep learning applications have been suggested in terms of chest radiograph,
CT, or PET/CT. Lu et al. demonstrated that deep learning chest radiograph risk scoring
could stratify the mortality risk of individuals of the Prostate, Lung, Colorectal, and Ovarian
Cancer Screening Trial and National Lung Screening Trial [43]. Hosny et al. demonstrated
a mortality assessment on the CT images of NSCLC patients via deep learning [44]. Also,
Baek et al. visualized the U-Net algorithm of PET/CT in NSCLC patients in a prediction
of survival. From our knowledge, this is the first study demonstrating the 5-year overall
survival prognostication of NSCLC patients after curative surgery based on a deep learning
model from DWI and ADC data of the tumor. The accuracy of this prediction was 92%, the
highest in our model learning input data of DWI and ADC.

Signal intensity loss on the diffusion-sensitive sequence can be quantified by calcu-
lating ADC [45]. Based on non-linear transformation of the voxel values of each DWI, the
deep learning model could generate ADC-like feature maps. However, in our study, we
found that the deep learning model produced low-accuracy results using DWI images
only. This could be due to the lack of training samples for weight optimization. The deep
learning model could learn more efficiently when clinically significant parameters such as
ADC0-100 and ADC0-100-700 were precalculated and then provided as input data, rather than
it directly learning from the diffusion images. These clinically significant parametric maps
enhance the predictive power of the deep learning model in cases of limited training sam-
ples. Alternatively, deep learning models trained solely with DWI0, DWI100, and DWI700
images seemed to make predictions based on the “black box” nature of deep learning
models, whether or not the model had extracted clinically relevant ADC data from the
DWIs. In the case that the models had not extracted ADC from DWI, both the accuracy
and the reliability of the model declined significantly. Our solution to this problem was
to directly provide ADC (alleged known functional parameters which reflect the cellular
density) to the deep learning model, so that we could be assured that the deep learning
model incorporated ADC in its decision making.

The survival prediction with a regression model incorporating clinical information
and AI-generated predictions using diffusion MRI improved the accuracies of models
using diffusion MRI. The benefit of the clinical information is prominent in the relatively
low-performing deep learning model using DWIs only, but the gain was not prominent
in the best-performing deep learning model using both DWIs and ADCs, which already
showed high accuracies of 92%. It would be difficult to further increase this high accuracy
with the limited amount of data in our current study.

Our study is limited due to the small number of datasets. To deal with this limitation,
we applied three techniques for evaluating the survival prediction model. Firstly, ten-cross
validation was performed. The cross validation technique could minimize the problem of
overfitting that may occur with a small number of datasets [46,47]. In this study, the train
and test datasets were divided into 9:1 and the validation was conducted crosswise 10 times
to maximize the amount of data that could be learned out of 100 datasets. Secondly, transfer
learning was adopted to handle possible problems such as over-fitting or a lack of datasets.
In this study, the model was trained by reusing the parameters of the pre-trained VGG16,
and the number of weights for optimization was reduced. Lastly, data augmentation was
performed to train the network to avoid the overfitting problem. The data augmentation
technique is a well-known approach in the generalization of a deep learning model. In this
study, flip and rotation functions were used in data augmentation, and the same is detailed
in the Methods section.

For the interpretation of the deep learning model, previous studies have shown
promising results [48–50]. The class activation map (CAM), for example, provides the
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location information of contributing pixels within the images, allowing the CNN to predict
the class of an image [50]. Using the CAM, we could understand which parts of the image
had more of an effect on the final output of the deep learning model. In this study, however,
we could not apply the CAM into our modified VGG 16 model, due to the limited deep
learning architecture and transfer learning strategies.

5. Conclusions

In conclusion, deep learning may play a role in the survival prediction of lung cancer.
The accuracy of results produced by the deep learning model can be enhanced by inputting
precedented, proven, functional parameters of the ADC, including the raw data of DWI in
survival prediction. The novelty of this paper lies not only in creating a new deep learning
model, but also in our use of diffusion MRI data to predict survival in non-small-cell lung
cancer patients—a clinical application that has not been attempted before in lung cancer
survival prediction research.

Author Contributions: Conceptualization, J.W.M., E.Y., J.-H.K. and C.A.Y.; Methodology, J.W.M.,
E.Y., J.-H.K. and C.A.Y.; Software, E.Y. and J.-H.K.; Validation, E.Y. and J.-H.K.; Formal Analysis,
M.P.; Investigation, J.W.M., E.Y., J.-H.K. and C.A.Y.; Data Curation, O.J.K.; Writing—Original Draft
Preparation, J.W.M. and E.Y.; Writing—Review and Editing, J.-H.K. and C.A.Y.; Visualization, J.W.M.
and E.Y.; Supervision, J.-H.K. and C.A.Y.; Project Administration, C.A.Y. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korean government (MSIT) (NRF-2022R1A2C1004516).

Institutional Review Board Statement: The institutional review board of our institution approved
this study (approval code: NCT01065415; approval date: 2010-02) as part of a clinical trial for the
staging of lung cancer, which was registered as a randomized clinical trial with ClinicalTrials.gov
number NCT01065415.

Informed Consent Statement: Written informed consent was obtained from all of the patients in the
single tertiary referral hospital.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korean government (MSIT) (NRF-2022R1A2C1004516). This study was sup-
ported by the Future Medicine 2030 Project of the Samsung Medical Center [#SMX1230031].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M.

Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015:
A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1459–1544.

2. Bethesda. Surveillance, Epidemiology, and End Results (SEER) Program 18 2010–2016, All Races, Both Sexes by SEER Summary Stage
2000. SEER Cancer Stat Facts: Lung and Bronchus Cancer; National Cancer Institute: Bethesda, MD, USA, 2017.

3. Quint, L.E. Staging non-small cell lung cancer. Cancer Imaging 2007, 7, 148. [CrossRef] [PubMed]
4. Koyama, H.; Ohno, Y.; Seki, S.; Nishio, M.; Yoshikawa, T.; Matsumoto, S.; Sugimura, K. Magnetic resonance imaging for lung

cancer. J. Thorac. Imaging 2013, 28, 138–150. [CrossRef] [PubMed]
5. El Kady, R.M.; Choudhary, A.K.; Tappouni, R.J.A.J.o.R. Accuracy of apparent diffusion coefficient value measurement on PACS

workstation: A comparative analysis. Am. J. Roentgenol. 2011, 196, W280–W284. [CrossRef]
6. Woodhams, R.; Ramadan, S.; Stanwell, P.; Sakamoto, S.; Hata, H.; Ozaki, M.; Kan, S.; Inoue, Y.J.R. Diffusion-weighted imaging of

the breast: Principles and clinical applications. RadioGraphics 2011, 31, 1059–1084. [CrossRef]
7. Usuda, K.; Ishikawa, M.; Iwai, S.; Iijima, Y.; Motono, N.; Matoba, M.; Doai, M.; Hirata, K.; Uramoto, H. Combination Assessment

of Diffusion-Weighted Imaging and T2-Weighted Imaging Is Acceptable for the Differential Diagnosis of Lung Cancer from
Benign Pulmonary Nodules and Masses. Cancers 2021, 13, 1551. [CrossRef]

8. Wang, H.; Cheng, L.; Zhang, X.; Wang, D.; Guo, A.; Gao, Y.; Ye, H. Renal cell carcinoma: Diffusion-weighted MR imaging for
subtype differentiation at 3.0 T. Radiology 2010, 257, 135–143.

https://doi.org/10.1102/1470-7330.2007.0026
https://www.ncbi.nlm.nih.gov/pubmed/17964957
https://doi.org/10.1097/RTI.0b013e31828d4234
https://www.ncbi.nlm.nih.gov/pubmed/23549390
https://doi.org/10.2214/AJR.10.4706
https://doi.org/10.1148/rg.314105160
https://doi.org/10.3390/cancers13071551


Diagnostics 2023, 13, 2555 11 of 12

9. Theilmann, R.J.; Borders, R.; Trouard, T.P.; Xia, G.; Outwater, E.; Ranger-Moore, J.; Gillies, R.J.; Stopeck, A. Changes in water
mobility measured by diffusion MRI predict response of metastatic breast cancer to chemotherapy. Neoplasia 2004, 6, 831–837.
[CrossRef]

10. Dzik-Jurasz, A.; Domenig, C.; George, M.; Wolber, J.; Padhani, A.; Brown, G.; Doran, S. Diffusion MRI for prediction of response
of rectal cancer to chemoradiation. Lancet 2002, 360, 307–308. [CrossRef]

11. Hayashida, Y.; Yakushiji, T.; Awai, K.; Katahira, K.; Nakayama, Y.; Shimomura, O.; Kitajima, M.; Hirai, T.; Yamashita, Y.; Mizuta,
H. Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: Initial results. Eur. Radiol. 2006, 16,
2637–2643. [CrossRef]

12. Koh, D.-M.; Scurr, E.; Collins, D.; Kanber, B.; Norman, A.; Leach, M.O.; Husband, J.E. Predicting response of colorectal hepatic
metastasis: Value of pretreatment apparent diffusion coefficients. Am. J. Roentgenol. 2007, 188, 1001–1008. [CrossRef] [PubMed]

13. Matoba, M.; Tonami, H.; Kondou, T.; Yokota, H.; Higashi, K.; Toga, H.; Sakuma, T. Lung carcinoma: Diffusion-weighted MR
imaging—Preliminary evaluation with apparent diffusion coefficient. Radiology 2007, 243, 570–577. [CrossRef] [PubMed]

14. Lee, H.Y.; Jeong, J.Y.; Lee, K.S.; Yi, C.A.; Kim, B.T.; Kang, H.; Kwon, O.J.; Shim, Y.M.; Han, J. Histopathology of lung adenocarci-
noma based on new IASLC/ATS/ERS classification: Prognostic stratification with functional and metabolic imaging biomarkers.
J. Magn. Reson. Imaging 2013, 38, 905–913. [CrossRef] [PubMed]

15. Shaish, H.; Kang, S.K.; Rosenkrantz, A.B. The utility of quantitative ADC values for differentiating high-risk from low-risk
prostate cancer: A systematic review and meta-analysis. Abdom. Radiol. 2017, 42, 260–270. [CrossRef]

16. Moreira, A.S.L.; Ribeiro, V.; Aringhieri, G.; Fanni, S.C.; Tumminello, L.; Faggioni, L.; Cioni, D.; Neri, E. Endometrial Cancer
Staging: Is There Value in ADC? J. Pers. Med. 2023, 13, 728. [CrossRef]

17. Mobadersany, P.; Yousefi, S.; Amgad, M.; Gutman, D.A.; Barnholtz-Sloan, J.S.; Vega, J.E.V.; Brat, D.J.; Cooper, L.A. Predicting
cancer outcomes from histology and genomics using convolutional networks. Proc. Natl. Acad. Sci. USA 2018, 115, E2970–E2979.

18. Choi, Y.; Aum, J.; Lee, S.-H.; Kim, H.-K.; Kim, J.; Shin, S.; Jeong, J.Y.; Ock, C.-Y.; Lee, H.Y. Deep Learning Analysis of CT Images
Reveals High-Grade Pathological Features to Predict Survival in Lung Adenocarcinoma. Cancers 2021, 13, 4077. [CrossRef]

19. Al-Fatlawi, A.; Malekian, N.; García, S.; Henschel, A.; Kim, I.; Dahl, A.; Jahnke, B.; Bailey, P.; Bolz, S.N.; Poetsch, A.R. Deep
Learning Improves Pancreatic Cancer Diagnosis Using RNA-Based Variants. Cancers 2021, 13, 2654. [CrossRef] [PubMed]

20. Yoon, H.G.; Cheon, W.; Jeong, S.W.; Kim, H.S.; Kim, K.; Nam, H.; Han, Y.; Lim, D.H. Multi-parametric deep learning model for
prediction of overall survival after postoperative concurrent chemoradiotherapy in glioblastoma patients. Cancers 2020, 12, 2284.
[CrossRef]

21. Lee, H.-A.; Chen, K.-W.; Hsu, C.-Y. Prediction model for pancreatic cancer—A population-based study from NHIRD. Cancers
2022, 14, 882. [CrossRef]

22. Hunter, B.; Hindocha, S.; Lee, R.W. The Role of Artificial Intelligence in Early Cancer Diagnosis. Cancers 2022, 14, 1524. [CrossRef]
23. Foersch, S.; Eckstein, M.; Wagner, D.-C.; Gach, F.; Woerl, A.-C.; Geiger, J.; Glasner, C.; Schelbert, S.; Schulz, S.; Porubsky, S. Deep

learning for diagnosis and survival prediction in soft tissue sarcoma. Ann. Oncol. 2021, 32, 1178–1187. [CrossRef] [PubMed]
24. Cheng, N.-M.; Yao, J.; Cai, J.; Ye, X.; Zhao, S.; Zhao, K.; Zhou, W.; Nogues, I.; Huo, Y.; Liao, C.-T. Deep learning for fully

automated prediction of overall survival in patients with oropharyngeal cancer using FDG-PET imaging. Clin. Cancer Res. 2021,
27, 3948–3959. [CrossRef]

25. Vale-Silva, L.A.; Rohr, K. Long-term cancer survival prediction using multimodal deep learning. Sci. Rep. 2021, 11, 13505.
[CrossRef]

26. Arya, N.; Saha, S. Multi-modal advanced deep learning architectures for breast cancer survival prediction. Knowl. Based Syst.
2021, 221, 106965. [CrossRef]

27. Tarkhan, A.; Simon, N.; Bengtsson, T.; Nguyen, K.; Dai, J. Survival prediction using deep learning. In Proceedings of the Survival
Prediction-Algorithms, Challenges and Applications, Palo Alto, CA, USA, 22–24 March 2021; pp. 207–214.

28. Coppola, F.; Faggioni, L.; Gabelloni, M.; De Vietro, F.; Mendola, V.; Cattabriga, A.; Cocozza, M.A.; Vara, G.; Piccinino, A.; Lo
Monaco, S. Human, all too human? An all-around appraisal of the “AI revolution” in medical imaging. Front. Psychol. 2021, 12,
710982. [CrossRef]

29. Clément-Duchêne, C.; Carnin, C.; Guillemin, F.; Martinet, Y. How accurate are physicians in the prediction of patient survival in
advanced lung cancer? Oncologist 2010, 15, 782–789. [CrossRef]

30. Muers, M.F.; Shevlin, P.; Brown, J. Prognosis in lung cancer: Physicians’ opinions compared with outcome and a predictive model.
Thorax 1996, 51, 894–902. [CrossRef] [PubMed]

31. Lynch, C.M.; Abdollahi, B.; Fuqua, J.D.; Carlo, A.R.; Bartholomai, J.A.; Balgemann, R.N.; Berkel, V.H.; Frieboes, H.B. Prediction
of lung cancer patient survival via supervised machine learning classification techniques. Int. J. Med. Inform. 2017, 108, 1–8.
[CrossRef] [PubMed]

32. Bartholomai, J.A.; Frieboes, H.B. Lung cancer survival prediction via machine learning regression, classification, and statistical
techniques. In Proceedings of the IEEE International Symposium on Signal Processing and Information Technology, Louisville,
KY, USA, 6–8 December 2018; pp. 632–637.

33. Ogura, A.; Hatano, I.; Osakabe, K.; Yamaguchi, N.; Koyama, D.; Watanabe, H. Importance of fractional b value for calculating
apparent diffusion coefficient in DWI. Am. J. Roentgenol. 2016, 207, 1239–1243. [CrossRef] [PubMed]

34. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
35. Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]

https://doi.org/10.1593/neo.03343
https://doi.org/10.1016/S0140-6736(02)09520-X
https://doi.org/10.1007/s00330-006-0342-y
https://doi.org/10.2214/AJR.06.0601
https://www.ncbi.nlm.nih.gov/pubmed/17377036
https://doi.org/10.1148/radiol.2432060131
https://www.ncbi.nlm.nih.gov/pubmed/17400757
https://doi.org/10.1002/jmri.24080
https://www.ncbi.nlm.nih.gov/pubmed/23908132
https://doi.org/10.1007/s00261-016-0848-y
https://doi.org/10.3390/jpm13050728
https://doi.org/10.3390/cancers13164077
https://doi.org/10.3390/cancers13112654
https://www.ncbi.nlm.nih.gov/pubmed/34071263
https://doi.org/10.3390/cancers12082284
https://doi.org/10.3390/cancers14040882
https://doi.org/10.3390/cancers14061524
https://doi.org/10.1016/j.annonc.2021.06.007
https://www.ncbi.nlm.nih.gov/pubmed/34139273
https://doi.org/10.1158/1078-0432.CCR-20-4935
https://doi.org/10.1038/s41598-021-92799-4
https://doi.org/10.1016/j.knosys.2021.106965
https://doi.org/10.3389/fpsyg.2021.710982
https://doi.org/10.1634/theoncologist.2009-0149
https://doi.org/10.1136/thx.51.9.894
https://www.ncbi.nlm.nih.gov/pubmed/8984699
https://doi.org/10.1016/j.ijmedinf.2017.09.013
https://www.ncbi.nlm.nih.gov/pubmed/29132615
https://doi.org/10.2214/AJR.15.15945
https://www.ncbi.nlm.nih.gov/pubmed/27579994
https://doi.org/10.1177/001316446002000104


Diagnostics 2023, 13, 2555 12 of 12
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