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Abstract: Acute lymphoblastic leukemia (ALL) is a life-threatening hematological malignancy that
requires early and accurate diagnosis for effective treatment. However, the manual diagnosis of ALL
is time-consuming and can delay critical treatment decisions. To address this challenge, researchers
have turned to advanced technologies such as deep learning (DL) models. These models leverage the
power of artificial intelligence to analyze complex patterns and features in medical images and data,
enabling faster and more accurate diagnosis of ALL. However, the existing DL-based ALL diagnosis
suffers from various challenges, such as computational complexity, sensitivity to hyperparameters,
and difficulties with noisy or low-quality input images. To address these issues, in this paper, we
propose a novel Deep Skip Connections-Based Dense Network (DSCNet) tailored for ALL diagnosis
using peripheral blood smear images. The DSCNet architecture integrates skip connections, custom
image filtering, Kullback–Leibler (KL) divergence loss, and dropout regularization to enhance its
performance and generalization abilities. DSCNet leverages skip connections to address the vanishing
gradient problem and capture long-range dependencies, while custom image filtering enhances
relevant features in the input data. KL divergence loss serves as the optimization objective, enabling
accurate predictions. Dropout regularization is employed to prevent overfitting during training,
promoting robust feature representations. The experiments conducted on an augmented dataset for
ALL highlight the effectiveness of DSCNet. The proposed DSCNet outperforms competing methods,
showcasing significant enhancements in accuracy, sensitivity, specificity, F-score, and area under
the curve (AUC), achieving increases of 1.25%, 1.32%, 1.12%, 1.24%, and 1.23%, respectively. The
proposed approach demonstrates the potential of DSCNet as an effective tool for early and accurate
ALL diagnosis, with potential applications in clinical settings to improve patient outcomes and
advance leukemia detection research.

Keywords: acute lymphoblastic leukemia; deep learning; skip connections; dense network;
peripheral blood smear images; KL divergence loss; dropout regularization; data augmentation;
diagnosis, medical imaging

1. Introduction

Acute lymphoblastic leukemia (ALL) is a devastating hematologic malignancy char-
acterized by the abnormal proliferation of immature lymphocytes in the blood or bone
marrow [1]. Early and accurate diagnosis of ALL is crucial for effective treatment and
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improved patient outcomes. Conventional diagnostic methods involve labor-intensive and
error-prone manual examination of stained blood smear microscopic images, which can
lead to delays in diagnosis and treatment initiation. As a result, researchers have turned
to DL-based computer-aided diagnosis (CAD) systems to automate and enhance ALL
diagnosis using peripheral blood smear (PBS) images. PBS images are routinely collected
in clinical settings for the initial screening of patients suspected of having leukemia. These
images contain valuable information about the morphology and distribution of blood cells,
which can aid in the diagnosis of ALL.

Certainly, deep learning models have gained significant popularity and utility across
a wide range of domains in recent years [2–4]. By leveraging the power of DL, it becomes
possible to automate and enhance the accuracy of ALL diagnosis using PBS images, making
it a valuable tool for hematologists and oncologists. Several studies have emerged that
present innovative approaches that harness the power of DL models to aid in ALL diagnosis.
Notably, Atteia proposed a hybrid DL system combining autoencoder networks for feature
representation learning in the latent space with the feature extraction abilities of standard
pre-trained convolutional neural networks (CNNs) [1]. Chand and Vishwakarma proposed
a novel DL framework (DLF) based on convolutional neural networks for the classification
of ALL, avoiding the need for feature extraction and pre-training on other databases [5].
Additionally, Masoudi presented the VKCS model, a three-stage transfer learning-based
model with attention mechanisms, demonstrating promising results in diagnosing ALL [6].
Moreover, Das and Meher proposed an efficient deep CNN framework utilizing depth-wise
separable convolutions and hybridizing MobileNetV2 and ResNet18 for accurate ALL
detection [7].

Existing DL models for ALL diagnosis encounter various obstacles that limit their ef-
fectiveness in clinical practice. These challenges include the scarcity of comprehensive and
diverse datasets, demanding the acquisition of large and representative data for training.
Ensuring the generalizability of models across diverse patient populations and real-time
applicability necessitates rigorous validation and performance assessment [8–10]. Addi-
tionally, handling data augmentation, pre-processing, and class imbalance significantly
influences the model’s reliability and accuracy. To fully exploit the potential of DL in en-
hancing ALL diagnosis and patient outcomes, collaborative efforts are crucial to overcome
these hurdles and improve the models’ practicality and clinical utility.

Despite their benefits, DL-based ALL diagnosis models have challenges, including
computational complexity, sensitivity to hyperparameters, and difficulties with noisy or
low-quality input images. To ensure their practical implementation in medical diagnosis,
further validation in clinical settings and attempts to address these limitations are crucial.
The key contributions of this paper are as follows:

1. Deep Skip Connections-Based Dense Network (DSCNet) : This paper proposes
a novel architecture, DSCNet, specifically tailored for the diagnosis of ALL using
peripheral blood smear images. DSCNet utilizes skip connections, custom image
filtering, and dense blocks to capture long-range dependencies and enhance feature
extraction.

2. Custom Image Filtering: A custom image filter is used as a pre-processing step to
enhance input images and highlight relevant features. This filtering process is used to
improve the quality of input data and aids the model in detecting intricate patterns
associated with different stages of ALL.

3. KL Divergence Loss Optimization: KL divergence loss is used as an objective func-
tion for model optimization. By minimizing KL divergence between predicted and
ground truth distributions, the model learns to make accurate predictions, enhancing
its diagnostic accuracy.

4. Dropout Regularization: Dropout regularization is used to prevent overfitting dur-
ing model training. This technique is used to enhance the robustness of feature
representations and improve the way DSCNet generalizes unseen data.
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The paper’s remaining structure is as follows: Section 2 reviews prior research. In
Section 3, the proposed Deep Skip Connections-Based Dense Network (DSCNet) for ALL
diagnosis is discussed. Section 4 presents analysis and experimental results. Finally,
Section 5 concludes the paper and explores potential future directions.

2. Related Work

Genovese et al. proposed an adaptive unsharpening method combined with DL
for ALL detection. The method enhanced blood sample images by improving sharpness
through image processing techniques and DL. They evaluated the approach on a public
database of ALL images using state-of-the-art CNNs, demonstrating the validity of their
approach [11]. Rezayi et al. explored the use of artificial intelligence-oriented DL methods
for timely diagnosis of ALL. They employed two famous DL networks, ResNet-50 and
VGG-16, to classify leukemic cells from normal cells in microscopic images. The proposed
convolutional network and various machine learning techniques achieved promising results
for ALL classification, proving the potential for clinical usage in leukemia diagnosis [12].
Abunadi and Senan developed multi-method diagnostic systems for early ALL detection
using DL and hybrid techniques. They proposed CNN models such as AlexNet, GoogleNet,
and ResNet18, along with SVM, and achieved high accuracies in classifying ALL images.
The study contributes to the development of efficient diagnostic systems for leukemia
detection [13].

Ahmed and Nayak proposed the use of the VGG-19 model for the detection of lym-
phoblastic leukemia. By employing DL and image processing techniques, the study aimed
to improve the accuracy and speed of diagnosis. The VGG-19 model with transfer learning
demonstrated promising results in classifying leukemia images [14]. Ansari et al. designed
a customized DL model for acute leukemia diagnosis using images of lymphocytes and
monocytes. The study’s dataset, generated using GAN, contributes to the research com-
munity in developing machine learning techniques in medical research [15]. Das and
Meher introduced a transfer learning-based automatic ALL detection method using the
SqueezeNet model. The highly computationally efficient approach outperformed other DL
models, including Xception, NasNetMobile, VGG-19, and ResNet-50, in terms of classifica-
tion performance on the ALLIDB1 and ALLIDB2 databases [16].

Genovese et al. proposed a method for ALL detection using histopathological transfer
learning. They trained a CNN on a histopathology database for tissue type classification and
then fine-tuned it on the ALL database, achieving promising results [17]. Jawahar et al. in-
troduced ALNett, a cluster layer deep CNN, for the classification of microscopic white
blood cell images. Through its depth-wise convolution with different dilation rates and clus-
ter layers, ALNett extracted robust local and global features, enabling accurate prediction
of ALL [18]. Das et al. presented a transfer learning-based acute leukemia diagnosis model
using an orthogonal softmax layer. The model, based on ResNet18, achieved superior
performance compared to other models trained on small medical datasets [19].

Ghosh et al. proposed a deep CNN with an average pooling layer for simultaneous
localization and classification of ALL in peripheral blood smear images. Although it had
some limitations in detecting all ALL lymphocytes, it performed well in predicting whether
a blood smear image belonged to an ALL patient or not [20]. Atteia et al. introduced
BO-ALLCNN, a Bayesian-based optimized CNN for ALL detection in microscopic blood
smear images. The CNN, optimized through Bayesian optimization, outperformed other
optimized DL models in classifying ALL images [21]. Ghaderzadeh et al. developed a fast
and efficient CNN model for B-ALL diagnosis and subtype classification using peripheral
blood smear images. The DenseNet201-based model achieved high accuracy, sensitivity,
and specificity in distinguishing ALL from benign cases and identifying ALL subtypes [22].
Gehlot et al. proposed SDCT-AuxNetθ , a stain deconvolutional CNN with an auxiliary
classifier for cancer diagnosis. Their novel architecture utilized stain deconvolved quantity
images and a dual-classifier approach to achieve better performance [23]. Hassanien
and Afify presented an ensemble strategy for detecting ALL cells versus normal WBCs
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using three stages: image pre-processing, deep feature extraction with a CNN–GRU–
BiLSTM architecture, and classification using a softmax function and the multiclass support
vector machine (MSVM) classifier [24].

Hui et al. developed an intelligent classification system for acute leukemia based on
Wright–Giemsa stain blood slides. Their procedure involved image pre-processing, image
segmentation using color thresholding and morphological operations, and classification
of white blood cells using DL classifiers (AlexNet and GoogLeNet) [25]. Billah and Javed
demonstrated the successful implementation of Bayesian convolution neural networks
(BCNNs) for classifying microscopic images of blood samples (lymphocyte cells). Their
BCNN-based classification procedure avoided manual feature extraction and provided use-
ful information regarding uncertainty in predictions. The models produced high accuracy
in classifying cancerous and noncancerous lymphocyte cells [26].

Jha and Dutta [27] proposed a hybrid model based on mutual information (MI) and
a deep CNN classifier. This model utilized a combination of fuzzy C-means algorithms
and active contour model segmentation results. After segmentation, feature extraction
(statistical and the local directional pattern) was performed. Finally, the extracted features
were input to a deep CNN classifier that was designed using the chronological sine co-
sine algorithm. Genovese et al. [28] proposed DL4ALL for the detection of ALL, which
was trained using cross-dataset transfer learning. The proposed model was a multi-task
learning model that transformed the given model into a multi-task classification problem.
The transformed model was then trained with transfer learning, taking into account both
the source and target databases simultaneously. This approach incorporated batches from
the two domains, even when they were quite different.

Ullah et al. [29] provided a safe, CNN-based method for performing the diagnosis
process using medical images. The proposed approach consisted of a CNN-based model,
which used VGG-16 and the Efficient Channel Attention (ECA) module for better feature
extraction, thereby improving feature representation and classification. The quantity and
quality of training data were increased using several augmentation techniques. Mirmo-
hammadi et al. [30] proposed a multi-phase approach for leukemia detection. The first
phase involved image enhancement by converting RGB to HSV and equalizing grayscale
luminance. The second phase included nuclei segmentation using fuzzy C-means clus-
tering and noise reduction. Subsequently, features were extracted and selected, and the
classification was performed using random forest. Abhishek et al. [31] proposed a novel
dataset containing 500 images. This novel dataset was combined with a publicly available
dataset to create a heterogeneous dataset. The dataset was used for binary and three-class
classification for various CNN models.

Devi et al. [32] utilized Gaussian blurring (GB) and hue saturation value (HSV) tech-
niques in their model, GBHSV-Leuk. They conducted a two-phase classification, blurring
reflection and noise in the first phase using GB, followed by HSV-based segmentation in
the second phase. Morphological methods were introduced in the second phase to enhance
accuracy by separating foreground and background colors. Khandekar et al. [33] utilized
artificial intelligence to automate blast cell detection through the YOLOv4 algorithm. This
algorithm ensured accurate cell identification and categorization in their dataset. Addition-
ally, they integrated a novel object detection technique, significantly boosting the precision
and dependability of their proposed system. Sampathila et al. [34] introduced ALL-NET,
an advanced deep learning solution for white blood cell screening using microscopic
blood smear images. Unlike traditional methods relying on isolated features, ALL-NET
utilized the entire dataset, resulting in more accurate identification and screening of white
blood cells.

Ahmed et al. [35] introduced hybrid techniques for classifying ALL images. They
extracted WBC regions using the active contour algorithm and fed these regions to CNN
models. Feature selection was carried out using PCA, and deep feature maps of hybrid
CNNs were employed for classification, with the assistance of classifiers like RF and XG-
Boost. Jiang et al. [36] combined CNN and ViT models for better image classification. Their
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new ViT-CNN model used both methods to understand images, resulting in improved
performance. They also introduced “difference enhancement random sampling” for bal-
anced data and noise reduction. Saeed and colleagues [37] improved EfficientNetV2S
and EfficientNetB3 by adding a multi-attention layer to the final block. This made the
models work better on various tasks and become less complex. They named the enhanced
models Multi-Attention EfficientNetV2S and EfficientNetB3. They also used cropping and
data augmentation to improve image quality and balance the dataset. Hamza et al. [38]
proposed the OOLHBD-ALLD model for medical diagnosis. They used Gabor filtering to
reduce noise, modified fuzzy C-means for segmentation, and EfficientNetB0 with swarm
optimization for feature extraction. Class labeling was done using an attention-based long
short-term memory model.

In Table 1, some recently proposed DL models are studied. These models include
Deep CNN with average pooling for ALL prediction (DCNN), Bayesian-based optimized
CNN (BO-ALLCNN), histopathological transfer learning (HTL), transfer learning and
orthogonal softmax layer-based network (TLOS-Net), fast and efficient CNN (FCNN),
adaptive unsharpening with CNN (AU-CNN), and customized DL (CDL). Each model
offers specific benefits, such as high accuracy, sensitivity, and efficiency. However, they
also come with their own set of challenges, including computational complexity, sensitivity
to hyperparameters, and difficulties with noisy or low-quality input images. Further
validation in clinical settings and attempts to address these limitations are essential for
their practical implementation in medical diagnosis.

Table 1. Comparative analysis of the DL-based ALL diagnosis models.

Ref. Year Model Name Benefits Unsolved Challenges

[20] 2017 DCNN Simultaneous localization and classification of
ALL in peripheral blood smear images Limitations in detecting all ALL lymphocytes

[21] 2020 BO-ALLCNN Improved performance in ALL image
classification

Limitations or trade-offs in employing BO not
mentioned

[23] 2020 SDCT-
AuxNetθ

Improved performance with stain deconvolved
quantity images and dual-classifier approach

Generalizability to other cancer types or
datasets not addressed

[16] 2021 SqueezeNet Highly computationally efficient approach with
superior performance Limited depth and sensitivity to noisy data

[17] 2021 HTL Promising results in ALL detection after fine-
tuning on ALL database

May perform poorly for images with poor
visibility

[19] 2021 TLOS-Net Efficient ALL detection on small medical
datasets using ResNet18

Potential computational overhead, requirement
of optimal tuning, and sensitivity to certain hy-
perparameters

[14] 2021 VGG-19 Improved accuracy and speed of leukemia im-
age classification

High computational complexity and memory
requirements

[12] 2021 ResNet-50 &
VGG-16

Promising results for ALL classification and po-
tential clinical usage in leukemia diagnosis

Need for further validation in clinical settings
not addressed, high computational complexity
and memory requirements

[22] 2022 FCNN High accuracy, sensitivity, and specificity in dis-
tinguishing ALL from benign cases

Potential computational overhead, requirement
of optimal tuning, and sensitivity to certain hy-
perparameters

[39] 2022 CNN High accuracy and specificity in distinguishing
ALL from benign cases

May lead to overfitting, requirement of
optimal tuning, and sensitivity to certain
hyperparameters

[11] 2021 AU-CNN
Enhancement of blood sample images, im-
proved sharpness, and potential for accurate
ALL detection

Need for further validation in clinical settings
not addressed, high computational complexity
and memory requirements

[26] 2022 BCNN High accuracy in classifying cancerous and non-
cancerous lymphocyte cells

Requirement of optimal tuning and sensitivity
to certain hyperparameters
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Table 1. Cont.

Ref. Year Model Name Benefits Unsolved Challenges

[13] 2022
AlexNet,
GoogLeNet, &
ResNet18

High accuracies in ALL image classification,
contributing to efficient diagnostic systems

High computational complexity, memory re-
quirements, and challenges with noisy or low-
quality input images

[15] 2023 CDL Contribution to medical research with GAN-
generated dataset

Biases in the generated data and potential lack
of diversity in samples

[24] 2023 CNN–GRU–
BiLSTM

High accuracy and sensitivity in ALL cell
detection

Sensitivity to specific hyperparameters and the
need for careful tuning

[18] 2023 ALNett Robust local and global feature extraction for
accurate ALL prediction

Challenges with noisy or low-quality input
images

[25] 2023 AlexNet &
GoogLeNet

High accuracy in classifying white blood cells
for ALL detection

GoogLeNet’s complex architecture leads to
high memory consumption and makes fine-
tuning challenging

[29] 2021 VGG-16 Provides better robustness and adaptability High computational complexity and memory
requirements

[36] 2021 ViT-CNN Improved accuracy by using two different fea-
ture extraction methods simultaneously

High computational complexity and memory
requirements

[34] 2022 ALLNET Can be used during peripheral or complete
blood count test

High computational complexity and memory
requirements

[31] 2022 CNN model Heterogeneous dataset utilized for binary and
three-class classification Potential lack of diversity in data

[38] 2022 ODLHBD-
ALLD

Better accuracy by incorporating several state-
of-the-art techniques

Potential computational overhead, trained &
tested on a small dataset

[35] 2023 Hybrid CNN Improved accuracy and fusion of different CNN
models

Potential computational overhead, requirement
of optimal tuning

[32] 2023 GBHSV-Leuk Improved prediction accuracy May lead to overfitting and sensitivity to certain
hyperparameters

[28] 2023 DL4ALL Detects ALL even if manual labels are not used
for the source domain Computationally expensive

To address these issues, in this paper, we propose a DSCNet tailored for ALL diagnosis
using peripheral blood smear images. The DSCNet architecture integrates skip connec-
tions, custom image filtering, KL divergence loss, and dropout regularization to enhance
its performance and generalization abilities. DSCNet leverages skip connections to ad-
dress the vanishing gradient problem and capture long-range dependencies, while custom
image filtering enhances relevant features in the input data. KL divergence loss serves
as the optimization objective, enabling accurate predictions. Dropout regularization is
employed to prevent overfitting during training, promoting robust feature representations.
Thus, the proposed DSCNet can efficiently handle various challenges in the existing ALL
diagnosis models.

3. Deep Skip Connections-Based Dense Network (DSCNet) for ALL Diagnosis

Algorithm 1 outlines a comprehensive Deep Skip Connections-Based Dense Network
(DSCNet) with several advanced techniques for ALL diagnosis using peripheral blood
smear images. The model architecture incorporates skip connections, custom image fil-
tering, KL divergence loss, and dropout regularization to improve its performance and
generalization. The first step involves the image filtering layer, where a custom image
filtering operation is applied to enhance the input images. This pre-processing step helps
to highlight relevant features and improve the quality of the input data. The model
then proceeds through multiple layers, including convolutional blocks and dense blocks.
The convolutional blocks perform convolution operations on the filtered images, followed
by activation with a non-linear function (e.g., ReLU). The dense blocks utilize dense con-
nections, combining the feature maps from previous layers with the filtered input images
through concatenation.
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Skip connections are employed to enable information flow across different layers of
the network. This technique helps mitigate the vanishing gradient problem and allows the
model to capture long-range dependencies, leading to improved performance. To optimize
the model, the KL divergence loss is defined as the objective function. This loss function
measures the difference between the predicted probability distribution and the ground
truth distribution of ALL subtypes. By minimizing the KL divergence, the model learns to
make accurate predictions. To prevent overfitting during training, dropout regularization is
introduced. This technique randomly deactivates a fraction of neurons during each training
iteration, which promotes more robust feature representations and enhances generalization
to unseen data. The model culminates with a final softmax [40–42] classifier, producing a
probability distribution over different ALL subtypes for each input image. This enables the
model to classify the images into specific diagnostic categories with associated probabilities.

The integration of these techniques makes the deep dense model more robust, accurate,
and efficient in diagnosing ALL based on peripheral blood smear images. By leveraging
skip connections, custom image filtering, KL divergence loss, and dropout regularization,
the model can better handle challenges such as noisy data, complex feature interactions,
and overfitting. The goal is to provide an effective tool for early and accurate ALL diagnosis,
contributing to improved patient outcomes and facilitating medical research in the field of
leukemia detection.

Algorithm 1 Deep Skip Connections-Based Dense Network (DSCNet) for ALL diagnosis

1: Input : X ∈ Rn×m×c, where n, m are image dimensions and c is the number of channels

2: Image Filtering Layer: Xfiltered = filter(X), where filter is a custom image filtering
operation to enhance the images

3: Layer 1 (Convolutional Block): Z(1) = σ(W(1) ∗ Xfiltered + b(1)), where ∗ denotes the
convolution operation and σ is the activation function

4: Layer 2 (Dense Block): Z(2) = σ([Z(1), Xfiltered]), where [Z(1), Xfiltered] denotes con-
catenation of feature maps from Layer 1 and filtered input image

5: Layer 3 (Convolutional Block): Z(3) = σ(W(3) ∗ Z(2) + b(3))
6: Layer 4 (Dense Block): Z(4) = σ([Z(3), Z(2)])

7: Layer 5 (Convolutional Block): Z(5) = σ(W(5) ∗ Z(4) + b(5))
8: Layer 6 (Dense Block): Z(6) = σ([Z(5), Z(4)])

9: Layer 7 (Convolutional Block): Z(7) = σ(W(7) ∗ Z(6) + b(7))
10: Layer 8 (Dense Block): Z(8) = σ([Z(7), Z(6)])

11: Layer 9 (Convolutional Block): Z(9) = σ(W(9) ∗ Z(8) + b(9))
12: Layer 10 (Dense Block): Z(10) = σ([Z(9), Z(8)])

13: Layer 11 (Convolutional Block): Z(L) = σ(W(L) ∗ Z(L−1) + b(L))

14: Layer 12 Flatten Layer: Zflatten = flatten(Z(L)), which reshapes the feature maps into a
vector

15: Layer 13 Fully Connected with Dropout: Z(13) = σ(W(L+1)Zflatten + b(L+1)),
with dropout regularization applied during training

16: Layer 14 Fully Connected with Dropout: Z(14) = σ(W(L+2)Z(13) + b(L+2)),
with dropout regularization applied during training

17: Final Layer (Softmax Classifier): Ŷ = softmax(Z(14))

3.1. Training Process of DSCNet

In the training process, the model uses the Kullback–Leibler (KL) divergence loss
LKL(Y, Ŷ) as the objective function to optimize the parameters (weights and biases) of the
model. The KL divergence loss measures the divergence between the predicted probability
distribution Ŷ and the ground truth distribution Y.
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The overall training objective becomes:

Ltotal(Y, Ŷ) = LKL(Y, Ŷ) + λ · Lreg(W),

where Lreg(W) represents a regularization term on the model weights W to prevent over-
fitting, and λ is the regularization parameter.

By minimizing the KL divergence loss and the regularization term, the model can
learn to classify ALL images accurately while avoiding overfitting. The trained model can
then be used to predict the class label of new peripheral blood smear images and aid in the
diagnosis of ALL.

Algorithm 2 outlines the training process for a DSCNet designed for ALL diagnosis.
The model takes as input a set of training data consisting of image–label pairs, where each
image represents a peripheral blood smear image for ALL diagnosis. The algorithm starts
by randomly initializing the model parameters, including weights and biases, and defin-
ing the KL divergence loss as the optimization objective. The training process involves
multiple epochs, and within each epoch, the data are divided into mini-batches to reduce
memory usage and accelerate convergence. The forward pass is performed through the
model architecture, which includes image filtering to enhance input images, followed by
convolutional and dense blocks with skip connections. This process generates predicted
probabilities for the mini-batch. The KL divergence loss is then computed between the
predicted and true label distributions, and the gradients are calculated during the backward
pass through back-propagation. An optimizer is utilized to update the model parameters,
aiming to minimize the loss and improve the model’s ability to accurately diagnose ALL.
This training loop is repeated for the specified number of epochs, ultimately fine-tuning
the deep dense model to effectively detect ALL in peripheral blood smear images.

Algorithm 2 Training the Deep Skip Connections-Based Dense Network (DSCNet)

1: Input: Training data {(Xi, Yi)}N
i=1, where Xi ∈ Rn×m×c is the input image, Yi is the

corresponding label, and N is the number of training samples
2: Initialize: Randomly initialize model parameters W(l) and b(l) for each layer l, includ-

ing filters for the image filtering layer
3: Define Loss Function: KL divergence loss L = 1

N ∑N
i=1 KL(Yi, Ŷi), where KL is the

Kullback–Leibler divergence between ground truth label distribution Yi and predicted
label distribution Ŷi

4: Define Optimizer: Initialize optimizer parameters (e.g., learning rate, momentum, etc.)
5: Training Loop:
6: for epoch← 1 to Nepochs do
7: for batch← 1 to Nbatches do
8: Mini-batch Data: Sample a mini-batch of training data {(Xbatch, Ybatch)}
9: Forward Pass:

10: Perform image filtering to obtain Xfiltered
11: Perform forward pass through all layers until the final softmax classifier to

obtain predicted probabilities Ŷbatch
12: Compute Loss:
13: Compute KL divergence loss using Ŷbatch and Ybatch
14: Backward Pass:
15: Compute gradients of the loss with respect to all model parameters using

back-propagation
16: Update Model Parameters:
17: Use the optimizer to update the model parameters W(l) and b(l) for each layer l
18: end for
19: end for
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3.2. Hyperparameters of DSCNet

To specify the hyperparameters of DSCNet for ALL diagnosis, we need to define
the values for various parameters that influence the model’s training and performance.
The choice of hyperparameters depends on the dataset, model complexity, and compu-
tational resources. In this paper, we have defined the hyperparameter values using a
trial-and-error method as follows:

1. Learning Rate : The learning rate controls the step size during model parameter
updates. An appropriate learning rate is crucial for successful training without
overshooting or becoming stuck in local minima. Learning Rate = 0.001.

2. Number of Epochs: The number of epochs determines how many times the entire
dataset is passed through the model during training. Number of Epochs = 50.

3. Batch Size: The batch size specifies the number of training examples in each mini-
batch. Larger batch sizes may increase training speed, but too large a batch can lead
to memory issues. Batch Size = 32.

4. Regularization Parameter (λ): The regularization parameter controls the strength of
regularization, preventing overfitting by penalizing large weights. λ = 0.01.

5. Dropout Rate: The dropout rate determines the fraction of neurons dropped dur-
ing training, promoting robustness. We have used two dropout rates—0.3 and 0.2,
respectively.

4. Performance Analysis

The experiments were performed on MATLAB 2022a, utilizing the DL toolbox, on a
high-performance ThinkStation P360 Tower Workstation. The workstation is equipped
with an Intel® Core™ i9-12900 vPro® Processor, an NVIDIA® RTX™ A2000 12 GB GPU,
and 64 GB of DDR5 4400 MHz RAM. This powerful hardware setup enabled faster training
and inference times, making it suitable for running complex DL models like the DSCNet for
ALL diagnosis on peripheral blood smear images. To evaluate the performance of DSCNet,
other loss functions, i.e., multi-class cross-entropy loss (MCELoss) and sparse multi-class
cross-entropy loss (SMLoss) were also used.

4.1. Dataset

The dataset for ALL [43] consists of 20,000 images, divided into four classes. Each
class has 5000 images, making the dataset balanced with an equal number of samples for
each class. The class labels and their corresponding descriptions are as follows:

1. ALL_benign: Benign—Represents images of peripheral blood smears that are classi-
fied as benign, meaning there are no signs of leukemia.

2. ALL_early: Early—Contains images representing the early stages of ALL.
3. ALL_pre: Pre—Includes images of peripheral blood smears from patients in the

pre-ALL stage, indicating a progression towards leukemia.
4. ALL_pro: Pro—Comprises images from patients in the pro-ALL stage, representing a

more advanced state of ALL.

Figure 1 showcases sample images from the ALL dataset, representing different stages
of the disease: benign, early, pre, and pro. Despite having distinct complex features,
the images appear inherently similar, making the diagnostic process challenging. Ac-
curate differentiation between normal cells and various stages of cancer is crucial for
effective treatment.
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(a) (b) (c) (d)

Figure 1. Sample images in the ALL dataset: (a) ALL_benign, (b) ALL_early, (c) ALL_pre,
and (d) ALL_pro.

4.2. Data Augmentation

Data augmentation is a powerful technique used to increase the diversity and size of a
training dataset by applying various transformations to the original images. This helps the
model generalize better and improves its performance. In this paper, the following data
augmentation approaches are used.

1. Horizontal and Vertical Flips: This data augmentation technique involves flipping
the image horizontally or vertically. By doing so, the model is exposed to different
orientations of objects in the image, which enhances its robustness to variations in
object direction.

2. Random Rotations: Random rotations are applied to the image by rotating it by a
random angle. This approach allows the model to learn from images with various
angles, making it more capable of handling rotated images during inference. By aug-
menting the dataset with rotated versions of the original images, the model gains the
ability to recognize objects and patterns from different perspectives.

3. Random Crop and Resize: With random crop and resize, a portion of the image is
randomly cropped and then resized back to the original size. This technique enables
the model to focus on different regions of the image during training, promoting
robustness and reducing sensitivity to the precise object location. By training on
diverse crops, DSCNet learns to recognize important features that may appear in
different parts of the image, improving its generalization performance on unseen data.

4. Color Jittering: Color jittering involves randomly modifying the color channels of
the image, including altering the hue, saturation, and brightness. This augmentation
introduces variations in color, making the model more resilient to changes in lighting
conditions and color distributions in the dataset. By simulating different lighting
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conditions and color shifts, the model becomes more adaptable to real-world scenarios
where images may have varying color casts or brightness levels.

These data augmentation techniques effectively augment the training dataset, enabling
the DSCNet to learn more generalized and discriminative features, ultimately leading to
improved accuracy in ALL diagnosis from peripheral blood smear images. By combining
these data augmentation techniques, a larger and more diverse dataset is obtained. This
augmented dataset can be used for training DSCNet, enhancing its ability to recognize
different patterns and generalize well to unseen data.

4.3. Training and Validation Loss Analysis

Figure 2 illustrates the training and validation analysis of DSCNet using MCELoss.
It demonstrates the difference between training and validation loss. The presence of
a significant gap between the two curves indicates overfitting, meaning the model is
performing well on the training data but struggling to generalize to new, unseen data
represented by the validation set. Additionally, the slow convergence of the curves suggests
that the model’s learning process is taking a considerable amount of time.

0 100 200 300 400 500 600
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0

0.5

1

1.5

2

2.5

Lo
ss

Training loss
Validation loss

Figure 2. Training and validation analysis of DSCNet with multi-class cross-entropy loss (MCELoss).

Figure 3 shows the training and validation analysis of DSCNet utilizing SMLoss.
Compared to Figure 2, it shows a reduced overfitting impact. This improvement suggests
that the model’s performance on the validation set is closer to its performance on the
training set, indicating better generalization. However, despite the progress made, there is
still room for further improvement to achieve better training results. This implies that the
model’s performance can be enhanced by using KLLoss.

Figure 4 demonstrates the training and validation analysis of DSCNet using KLLoss.
Comparing this to Figures 2 and 3, it becomes evident that the model achieves remarkable
performance improvements. Convergence of the training and validation curves appears to
be much better, indicating that the model is learning more efficiently. Moreover, there is a
significant reduction in the impact of overfitting, suggesting that the model is generalizing
well to unseen data. The use of KLLoss seems to have resulted in substantial enhancements
in the model’s overall performance and training stability. This indicates that KLLoss is a
promising choice for optimizing DSCNet and achieving better results.
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Figure 3. Training and validation analysis of DSCNet with sparse multi-class cross-entropy loss
(SMLoss).
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Figure 4. Training and validation analysis of DSCNet with Kullback–Leibler divergence loss (KLLoss).

4.4. Comparative Analysis
4.4.1. Without Augmented Dataset

Figure 5 presents the quantitative performance metrics for different models evaluated
using various loss functions on the ALL dataset without data augmentation. The metrics
measured are accuracy, sensitivity (also known as true positive rate or recall), specificity
(true negative rate), F-score (harmonic mean of precision and recall), and area under the
curve (AUC) for each model. It is found that VGG-16 with MCELoss achieved an average
accuracy of 97.18%, sensitivity of 98.48%, specificity of 96.01%, F-score of 97.23%, and an
AUC of 97.23%. VGG-16 with SMLoss showed an average accuracy of 96.59%, sensitivity
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of 98.14%, specificity of 95.22%, F-score of 96.66%, and an AUC of 96.65%. VGG-16 with
KLLoss yielded an average accuracy of 95.91%, sensitivity of 98.34%, specificity of 93.82%,
F-score of 96.02%, and an AUC of 96.02%. ResNet-50 with MCELoss achieved an average
accuracy of 96.29%, sensitivity of 98.42%, specificity of 94.43%, F-score of 96.38%, and an
AUC of 96.38%. ResNet-50 with SMLoss demonstrated an average accuracy of 97.31%,
sensitivity of 98.74%, specificity of 96.01%, F-score of 97.36%, and an AUC of 97.36%.
ResNet-50 with KLLoss achieved an average accuracy of 97.66%, sensitivity of 98.71%,
specificity of 96.69%, F-score of 97.69%, and an AUC of 97.69%.

AlexNet with MCELoss yielded an average accuracy of 97.30%, sensitivity of 98.90%,
specificity of 95.85%, F-score of 97.35%, and an AUC of 97.35%. AlexNet with SMLoss
showed an average accuracy of 98.70%, sensitivity of 98.98%, specificity of 98.43%, F-score
of 98.71%, and an AUC of 98.70%. AlexNet with KLLoss achieved an average accuracy
of 98.63%, sensitivity of 98.99%, specificity of 98.30%, F-score of 98.64%, and an AUC
of 98.64%. DSCNet with MCELoss demonstrated an average accuracy of 98.67%, sensitivity
of 99.07%, specificity of 98.29%, F-score of 98.68%, and an AUC of 98.68%. DSCNet with
SMLoss yielded an average accuracy of 98.73%, sensitivity of 99.09%, specificity of 98.39%,
F-score of 98.74%, and an AUC of 98.74%. DSCNet with KLLoss achieved an average
accuracy of 98.84%, sensitivity of 99.18%, specificity of 98.51%, F-score of 98.85%, and an
AUC of 98.84%.

Overall, the models trained with KLLoss show promising performance, with high
accuracy, sensitivity, specificity, F-score, and AUC. DSCNet with KLLoss achieves remark-
able performance compared to the other competitive models. It demonstrates the highest
median accuracy, sensitivity, specificity, F-score, and AUC among all evaluated models.

4.4.2. With Augmented Dataset

Figure 6 presents the quantitative performance metrics for different models evaluated
using various loss functions on the ALL dataset with data augmentation. It is found that
VGG-16 with MCELoss achieved an average accuracy of 95.59%, sensitivity of 97.96%,
specificity of 93.57%, F-score of 95.71%, and an AUC of 95.71%. VGG-16 with SMLoss
showed an average accuracy of 97.39%, sensitivity of 98.04%, specificity of 96.81%, F-score
of 97.42%, and an AUC of 97.42%. VGG-16 with KLLoss yielded an average accuracy of
95.51%, sensitivity of 98.03%, specificity of 93.38%, F-score of 95.65%, and an AUC of 95.64%.
ResNet-50 with MCELoss achieved an average accuracy of 96.93%, sensitivity of 97.98%,
specificity of 95.99%, F-score of 96.98%, and an AUC of 96.97%. ResNet-50 with SMLoss
demonstrated an average accuracy of 97.77%, sensitivity of 98.96%, specificity of 96.68%,
F-score of 97.81%, and an AUC of 97.80%. ResNet-50 with KLLoss achieved an average
accuracy of 97.89%, sensitivity of 99.13%, specificity of 96.76%, F-score of 97.93%, and an
AUC of 97.93%.

AlexNet with MCELoss yielded an average accuracy of 98.06%, sensitivity of 98.90%,
specificity of 97.28%, F-score of 98.08%, and an AUC of 98.08%. AlexNet with SMLoss
showed an average accuracy of 98.94%, sensitivity of 99.13%, specificity of 98.76%, F-score
of 98.95%, and an AUC of 98.94%. AlexNet with KLLoss achieved an average accuracy
of 98.91%, sensitivity of 99.30%, specificity of 98.55%, F-score of 98.93%, and an AUC
of 98.92%. DSCNet with MCELoss demonstrated an average accuracy of 98.98%, sensitivity
of 99.14%, specificity of 98.84%, F-score of 98.99%, and an AUC of 98.99%. DSCNet with
SMLoss yielded an average accuracy of 99.06%, sensitivity of 99.29%, specificity of 98.85%,
F-score of 99.07%, and an AUC of 99.07%. DSCNet with KLLoss achieved an average
accuracy of 99.37%, sensitivity of 99.71%, specificity of 99.03%, F-score of 99.37%, and an
AUC of 99.37%. Overall, DSCNet with KLLoss appears to exhibit the highest performance,
with excellent convergence, minimal overfitting, and superior accuracy in comparison to
the other models and loss functions.
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(a) VGG-16 with MCELoss
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(c) VGG-16 with KLLoss
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(d) ResNet-50 with MCELoss
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(e) ResNet-50 with SMLoss
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(h) AlexNet with SMLoss
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(i) AlexNet with KLLoss
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(j) DSCNet with MCELoss

Acc
ur

ac
y

Sen
sit

ivi
ty

Spe
cif

ici
ty

F-s
co

re

AUC

Categories

80

85

90

95

100

105

V
al

ue
s

Median
Standard Deviation

(k) DSCNet with SMLoss
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(l) DSCNet with KLLoss

Figure 5. Comparative analysis of DSCNet with other models with various loss functions on the
augmented ALL dataset.
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(a) VGG-16 with MCELoss
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(b) VGG-16 with SMLoss
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(c) VGG-16 with KLLoss
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Acc
ur

ac
y

Sen
sit

ivi
ty

Spe
cif

ici
ty

F-s
co

re

AUC

Categories

80

85

90

95

100

105

V
al

ue
s

Median
Standard Deviation

(l) DSCNet with KLLoss

Figure 6. Performance analysis of competitive models with different loss functions on the ALL
dataset without data augmentation.
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4.5. Discussion

In this study, we conducted a comparative analysis of various deep learning (DL) mod-
els for the diagnosis of ALL using peripheral blood smear images. The models considered
for comparison included DCNN, BO-ALLCNN, SqueezeNet, HTL, TLOS-Net, VGG-19,
ResNet-50, VGG-16, FCNN, CNN, AU-CNN, BCNN, AlexNet, GoogLeNet, CDL, CNN–
GRU–BiLSTM, ALNett, and SDCT-AuxNetθ . Each model had its strengths and limitations
in terms of accuracy, computational efficiency, sensitivity to hyperparameters, and ability
to handle noisy or low-quality input images.

Among the models, DSCNet stood out, with its novel architecture specifically designed
for ALL diagnosis. By incorporating skip connections, custom image filtering, and dense
blocks, DSCNet achieved improved performance in detecting ALL stages from peripheral
blood smear images. The custom image filtering operation enhanced the quality of input
data, while the KL divergence loss optimization enabled accurate predictions, contributing
to better diagnostic accuracy.

Table 2 presents a comprehensive comparison of different leukemia detection methods
along with their performance metrics. The methods are evaluated in terms of accuracy, sen-
sitivity, specificity, and F-score. Jha and Dutta’s method [27] achieved an accuracy of 98.7%
using a chronological SCA-based deep CNN on the ALL-IDB2 dataset. Genovese et al.’s
DL4ALL [28] achieved an accuracy of 97.85% with high sensitivity and specificity, using
a multi-task learning model trained on ADP and C_NMC_2019 datasets. Ullah et al.’s
VGG-16 [29] attained an accuracy of 91.1% with good sensitivity and specificity on the
C_NMC_2019 dataset. Mirmohammadi et al.’s RF classifier [30] achieved an accuracy
of 98.22% on the Isfahan University of Medical Sciences dataset. Abhishek et al.’s CNN
model [31] reached an accuracy of 97% on a novel dataset and ALL-IDB. Devi et al.’s
GBHSV-Leuk [32] obtained an accuracy of 95.41% with balanced sensitivity and specificity
on a private dataset and ALL-IDB1. Khandekar et al.’s YOLOv4 [33] achieved an accuracy
of 92% with high sensitivity and specificity on the ALL_IDB1 and C_NMC_2019 datasets.
Sampathila et al.’s ALL-NET [34] reached an accuracy of 95.54% with balanced sensitivity
and specificity on the ALL challenge dataset and C_NMC_2019. Hamza et al.’s ODLHBD-
ALLD [38] attained an accuracy of 96.97% with balanced sensitivity and specificity on
the ALL_IDB1 dataset. Additionally, the proposed DSCNet with KLLoss achieved excep-
tional performance, with an accuracy of 99.37%, very high sensitivity and specificity, and a
remarkable F-score of 99.37%, showcasing its effectiveness on the ALL dataset.

Table 2. Performance comparison of ALL diagnosis models.

Ref. Method Accuracy Sensitivity Specificity F-Score Dataset

[27] SCA-based deep CNN 98.7 - - - ALL-IDB2
[28] DL4ALL 97.85 95.81 98.79 - ADP and C_NMC_2019
[29] VGG-16 91.1 92.31 90.25 90.65 C_NMC_2019
[30] RF Classifier 98.22 - - - Isfahan Univ. of Med. Sci.
[31] VGG-16 DenseNet & SVM 97 - - - Novel dataset and ALL-IDB
[32] GBHSV-Leuk 95.41 87.75 95.81 91.61 Private dataset and ALL-IDB1
[33] YOLOv4 92 96 91 92 ALL_IDB1 and C_NMC_2019
[34] ALL-NET 95.54 95.91 95.81 95.43 ALL and C_NMC_2019
[38] ODLHBD-ALLD 96.97 96.88 96.88 96.96 ALL_IDB1

Proposed DSCNet 99.37 ± 0.40 99.71 ± 0.21 99.03 ± 0.55 99.37 ± 0.43 ALL dataset

The comparison with other models reveals that DSCNet offers a competitive edge
in ALL diagnosis, outperforming several existing models. While various DL models
show promising results in ALL classification, DSCNet’s unique architecture and advanced
techniques allows it to handle challenges like noisy data and overfitting more effectively.
Overall, the proposed DSCNet demonstrated its potential as a robust and accurate tool
for ALL diagnosis from peripheral blood smear images. The model’s enhanced feature
extraction, optimization, regularization, and data augmentation techniques contributed
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to its superior performance, providing valuable insights for medical research in the field
of leukemia detection and potentially improving patient outcomes through early and
accurate diagnosis.

5. Conclusions

This paper presented a Deep Skip Connections-Based Dense Network (DSCNet) for
the diagnosis of ALL using peripheral blood smear images. The DSCNet architecture
incorporated skip connections, custom image filtering, KL divergence loss, and dropout
regularization to enhance its performance and generalization abilities. Through the integra-
tion of skip connections, the model effectively mitigated the vanishing gradient problem
and captured long-range dependencies, resulting in improved performance compared
to traditional architectures. The custom image filtering operation in the pre-processing
step highlighted relevant features, enhancing the quality of input data and facilitating the
model’s ability to detect intricate patterns.

Utilizing KL divergence loss for optimization, the proposed DSCNet accurately pre-
dicted probability distributions of ALL subtypes, thereby enhancing diagnostic accuracy.
Overfitting was effectively countered through dropout regularization, yielding a robust
model. Generalization of DSCNet was further improved via data augmentation. Experi-
mental findings underscored DSCNet’s superiority over competing models, resulting in
substantial improvements in accuracy, sensitivity, specificity, F-score, and AUC by 1.25%,
1.32%, 1.12%, 1.24%, and 1.23%, respectively.

The proposed DSCNet serves as a powerful tool for early and accurate diagnosis of
ALL based on peripheral blood smear images, supporting medical professionals in making
informed decisions. Its robustness, accuracy, and efficiency make it a valuable asset in the
field of leukemia detection, contributing to improved patient outcomes and facilitating
medical research. Future work may explore the potential of DSCNet in other medical image
classification tasks and investigate ways to adapt and optimize the model for different
types of leukemia and blood-related disorders.

The efficacy of DSCNet is intricately linked to caliber and diversity of the training
dataset, while the intricate architecture could pose challenges in terms of interpretabil-
ity. Furthermore, resource-intensive demands for training and inference might hinder
widespread accessibility, and its current scope is confined to ALL diagnosis. In the future,
there are important directions we can explore to make DSCNet even better. We could work
on making it easier to understand how the model makes decisions, combining different
kinds of medical information to improve its accuracy, using it for more types of diagnoses,
making it work faster for quick results, reducing any unfair influences in its results, and test-
ing it in real medical settings to prove how well it works. By doing this, we can make
DSCNet stronger and contribute to making medical tests better for people’s health.
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