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Abstract: Human microbiota refers to the trillions of microorganisms that inhabit our bodies and
have been discovered to have a substantial impact on human health and disease. By sampling the
microbiota, it is possible to generate massive quantities of data for analysis using Machine Learning
algorithms. In this study, we employed several modern Machine Learning techniques to predict
Inflammatory Bowel Disease using raw sequence data. The dataset was obtained from NCBI pre-
processed graph representations and converted into a structured form. Seven well-known Machine
Learning frameworks, including Random Forest, Support Vector Machines, Extreme Gradient Boost-
ing, Light Gradient Boosting Machine, Gaussian Naïve Bayes, Logistic Regression, and k-Nearest
Neighbor, were used. Grid Search was employed for hyperparameter optimization. The performance
of the Machine Learning models was evaluated using various metrics such as accuracy, precision,
fscore, kappa, and area under the receiver operating characteristic curve. Additionally, Mc Nemar’s
test was conducted to assess the statistical significance of the experiment. The data was constructed
using k-mer lengths of 3, 4 and 5. The Light Gradient Boosting Machine model overperformed over
other models with 67.24%, 74.63% and 76.47% accuracy for k-mer lengths of 3, 4 and 5, respectively.
The LightGBM model also demonstrated the best performance in each metric. The study showed
promising results predicting disease from raw sequence data. Finally, Mc Nemar’s test results found
statistically significant differences between different Machine Learning approaches.

Keywords: microbiota; Machine Learning; bowel disease; bioinformatics

1. Introduction

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that focuses on
developing algorithms and statistical models that enable computer systems to learn and
improve from experience, without being explicitly programmed. ML algorithms can be
trained on large datasets to identify patterns and relationships that can be used to make
predictions or decisions about previously unseen data.

In the context of disease detection, ML can be used to analyze medical data, such as
medical images, electronic health records, or genetic data, to identify early signs of disease
or predict the likelihood of developing a particular disease. ML algorithms can also be
used to develop diagnostic tools that can accurately detect diseases in patients.

In the last 30 years, genetic sequences of numerous living organisms have been
discovered and uploaded to online databases. Therefore, it is now easier to analyze and
evaluate these organisms based on their sequences.
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The human microbiota, which consists of trillions of microorganisms that live in our
bodies, has been found to play an important role in human health and disease. Metage-
nomics and microbiome sciences have undergone a revolution thanks to high-throughput
sequencing. Moreover, analyzing microbiome data using ML algorithms can provide new
insights into the role of microbiomes in health and disease.

In this study, modern ML models were trained with genetic sequences obtained from
the human microbiota to predict whether individuals are healthy or not. For this purpose,
the sequence dataset of Gevers et al.’s [1] study which includes 16S rRNA amplicon
sequence of individuals with Inflammatory Bowel Disease (IBD) was downloaded from
the National Center for Biotechnology Information (NCBI) [2] database.

Firstly, De Bruijn graph representations were generated using the sequence dataset.
Secondly, these representations were converted to a structured form which is one of the
novel parts of this study. Afterwards, this structured data was used to train 7 widely-known
ML frameworks namely, Random Forest, Support Vector Machines, Extreme Gradient
Boosting, Light Gradient Boosting Machine, Gaussian Naïve Bayes, Logistic Regression
and k-Nearest Neighbor. The hyperparameters of these models were optimized using
the Grid Search algorithm. The results were evaluated using accuracy, precision, fscore,
kappa and area under the receiver operating characteristic curve (AUC) metrics for each
model. Finally, Mc Nemar’s test was employed to assess the statistical significance of
the experiment.

In this study, we designed a novel way to represent the sequences in graph based
structured form and used this structured data to train state-of-the-art ML models like
Light GBM, XGBoost etc. We also evaluated the results with popular metrics and tested
the statistical significance with Mc Nemar’s test. This study also demonstrated that
raw sequences can be used without extracting OTUs (Operational Taxonomic Units) to
classify diseases.

The rest of the paper is constructed as follows. Section 2 demonstrates the literature of
ML algorithms and how they are used in sequence-based analysis of diseases. Section 3
presents the material and method of the study which includes a detailed examination of the
dataset, the data preprocessing phase and ML models and optimization method used in
the study. The prediction results of the ML models are presented and discussed in Section 4.
In Section 5, the study is concluded and future work is presented.

2. Literature Review

Microbiota refers to the community of numerous microorganisms, including viruses,
bacteria, and fungi, that use the human body as a host [3]. Because it affects metabolism
and immunity, microbiota is crucial for human development [4]. To provide and maintain
homeostasis within the human body, humans and their microbial community have evolved
together to be in constant communication and partnership [5]. The human microbiota is
in perpetual competition with pathogens to maintain a colonization resistance and help
regulate the immune response [6]. However, the issue of what ensures the longevity of a
healthy microbiota remains controversial.

Recently, many studies suggest that the risk of various disease like cancer [7],
diabetes [8], obesity [9], and autism [10] may be caused by imbalances in the gut mi-
crobiota. This imbalance in the gut microbiota is defined as dysbiosis [11]. As the human
microbiota play an essential role in disease and health, they can be used as biomarkers
and provide insight into the pathology of certain diseases [12]. Therefore, it is a significant
problem to predict diseases that may occur in the host with the data obtained from the
microbiota [13]. Machine Learning algorithms have proven to be effective in solving such
prediction problems [14].

Inflammatory Bowel Disease (IBD) is a group of disorders that are characterized by
chronic inflammation of the gut. Ulcerative Colitis (UC) and Crohn’s Disease (CD) are
the two main types of IBD. The imbalance in the gut microbiota may lead host-mediated
inflammatory responses and promote IBD development [15]. As differential diagnosis of
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IBD is challenging, ML models using microbiome data may be a promising approach for
the diagnosis.

It is also worth mentioning genetic sequences and next-generation sequencing. With
the development of next-generation sequencing technologies and the completion of the
Human Microbiome Project, a lot of new information has been gained regarding the
microbiota and its functional properties [16].

Due to little evolutionary change, 16s ribosomal RNA (rRNA) has become the most im-
portant DNA region for identifying microorganisms [17]. The 16S rRNA gene is comprised
of nine hypervariable regions (V1–V9) [18]. Targeting one to two hypervariable regions for
next-generation sequencing is a widely used approach in microbial community profiling.

The 16S rRNA gene sequences from microbiome studies are usually publicly available
in online databases such as the NCBI Sequence Database [19]. The NCBI database contains
millions of short sequences for many species in different formats [20].

In recent years, ML has been increasingly used to analyze amplicon-based and whole
genome shotgun sequencing microbiome data [21]. The first example of how sequences
from microbiota are used in ML includes microbial identification [22]. ML algorithms can
be trained on microbial DNA sequences to accurately identify the bacterial species present
in a given sample. This can help to understand the diversity and composition of bacterial
communities, and to identify potentially pathogenic bacteria [14].

Another example is treatment response which includes ML algorithms to analyze mi-
crobiota data to predict how patients will respond to certain treatments, such as antibiotics
or probiotics [23]. This can help to personalize treatment plans for patients and to optimize
therapeutic outcomes [24].

One of the most important usages of ML algorithm on sequence data is disease
prediction [25]. ML algorithms can be trained on microbiome data to predict the likelihood
of developing certain diseases or conditions, such as inflammatory bowel disease [25],
diabetes [26], or cancer [27]. These predictive models can be used to identify patients
who are at high risk for developing these diseases and to provide targeted preventive
interventions [28].

Literature presents different usage of 16s rRNA sequences with ML algorithms. Chaud-
hary et al. [29] developed a tool using the RF model for taxonomic classification of 16S
rRNA sequence. The tool achieved over 99% accuracy for taxonomic prediction on both
the genus and phylum models.

Solis-Reyes et al. [30] developed an open-source k-mer based ML tool for subtyping of
HIV-1 sequences. The tool uses k-mer frequencies of the sequence reads without alignment
with Support Vector Machine, Multilayer Perceptron and Logistic Regression models to
determine the subtypes of HIV-1.

Nakano et al. [31] used samples obtained from oral mucosa to predict oral malodour
employing Deep Learning (DL) and SVM. These samples include Operational Taxonomic
Units (OTUs) of 16s rRNA sequences rather than raw sequences. The study uses samples
from only 90 individuals (45 of them marked oral malodour) which can be considered as
not enough data for DL models learn.

One of the first examples of using raw sequences rather than OTUs is Asgari et al.’s [32]
study. In this study, 16s rRNA sequences and OTUs were used to train ML models and
predict different diseases. The study proposed an alignment-free method for genetic
sequences to use in ML models. This k-mer based method utilized shallow sub-samples to
generate features which were later applied to train a Random Forest (RF) model. This study
also used Gevers et al.’s [1] Crohn’s Disease dataset and obtained 75% and 76% precision
for k-mer lengths of 5 and 6, respectively.

Topçuoğlu et al. [33] designed a framework including RF, SVM, LR and XGBoost to
predict the presence of neoplasias. The study employed area under the receiver operating
characteristic curve (AUC) as the evaluation metric and RF demonstrated the best perfor-
mance regarding the 0.695 AUC score. The tool developed here also provided a pipeline to
train, test and interpret the results.
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Although literature presents many applications of ML based on OTUs, the studies
that use raw sequences based on k-mer representations are very rare.

3. Materials and Methods

In this study, we designed an ML system to detect IBD using genetic sequence data.
Firstly, the sequence dataset was downloaded from an open access NCBI database. The
fastq files were cleaned to obtain raw sequence files. These files contain thousands of raw
genetic sequences. In the third stage, these sequence reads were converted to the k-mer
based structured graph representation form. In the next stage, this structured dataset was
divided into train and test subsets. The Grid Search algorithm was used to optimize the
hyperparameters of the ML models. Then, ML models with optimized hyperparameters
were trained with a train subset of the dataset. Finally, the test subset was used to measure
the performance of the ML models.

This section contains detailed examination of the dataset, preprocessing stage and
employed ML models. The general framework of the study can be seen in Figure 1.
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3.1. Sequence Dataset

The dataset used in this paper is the dataset of Gevers et al.’s [1] study which is
obtained from the NCBI database (Bioproject PRJEB13679 [1]). This dataset consists of V4
hypervariable region sequencing data from a total of 1359 samples. Each sample is stored in
this database in sra or fastq formats. The fastq format, which is easier to read and process,
is preferred.

The sequences in the dataset were obtained from biopsy and stool samples. The
distribution can be seen in Figure 2. Accordingly, 1075 (79%) of 1359 samples in the
dataset were obtained by biopsy and 284 (21%) were obtained from stool samples. IBD was
diagnosed in 746 (69%) of the people from whom biopsy samples were taken, while the
remaining 329 (31%) did not have this disease. In addition, 277 (97.5%) of the participants
whose stool samples were collected were diagnosed with IBD, while the number of those
who did not have the disease was limited to 7 (2.5%).
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The distribution of this dataset according to the diagnosis status can be seen in Figure 3.
Accordingly, 1023 (75%) out of 1359 people were diagnosed with IBD, while 336 (25%) were
healthy. Here, CD, UC, and IC are various forms of IBD. It should be mentioned here that
two of the 16S rRNA sequence files were not used in this study because they contain very
few reads.
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As mentioned earlier, each file in the dataset is in fastq format. A fastq file contains
4 lines of information for each sequence. The first line is the sequence identifier and starts
with the “@” symbol, the second line contains the raw sequence data, the third line starts
with the “+” symbol following same sequence identifier, and the quality scores is located in
the last line. The contents of a sample fastq file can be seen in Figure 4. Each of the 4 lines
contains information of one sequence read.
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3.2. Data Preprocessing

As can be seen in Figure 4, a fastq file contains not only raw sequence but also extra
information about the read. This study only uses the raw sequences, therefore the extra
information of each sequence in each file was removed and the file converted to a standard
text file. The final state of the raw sequence file can be seen in Figure 5.
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In the second stage of the data processing, the raw data sequences in each file were
converted to the graph representations. This stage includes 2 sub-stages which convert
sequences to De Bruijn graphs by selecting k-mer lengths and converting these graphs to
our graph representation.

Here, it is useful to mention De Bruijn graphs. In a De Bruijn graph, the nodes
represented by subsequences of length k, called k-mers, are taken from the original se-
quence [34]. The edges in the graph connect two nodes if there is a k-1 overlap between the
corresponding k-mers.

To generate De Bruijn graph representations, k values 3, 4, and 5 have been selected.
Each file is converted to a single graph which is represented by source and destination
nodes with edge weight. The weight parameter corresponds to the number of times each
edge exists in a file.

For the next step, the separate graph representation is combined to generate a single
file for each k value. These new files contain four features namely, graph id, source id,
destination id, and weight. The first feature graph id corresponds to the id of the sequence
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file of an individual on the dataset. The source id and destination id represent the k-mer
nodes in related edge.

ML and DL models require structured files to be trained. For this purpose, the dataset
has to be converted to standardized structure. We designed a novel way to represent
sequence files in De Bruijn graphs. Due to the nature of the De Bruijn graph, there is only
one character change between its two edges. It is also worth remembering that there are
only 4 different characters in a sequence. Hence, there are only 4 different nodes to go after
each edge, and the last character added in these nodes can be one of the 4 bases (A, C, G, T).
Therefore, a structure with all possible nodes and 4 bases to represent the next node can be
used for training ML and DL models. This structure of the dataset can be seen in (3) and (4)
of Figure 6.
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This structure is also enhanced by flattening the sequence data of each individual and
combining all individuals’ data in one file for each k value ((5) of Figure 6).

In the final phase, the dataset was divided into training (80%) and test (20%) sets. The
training set will be used to train, and optimization of the ML models and the test set will
be used to demonstrate the performance of ML models on previously unseen data.

3.3. Machine Learning Analysis
3.3.1. Machine Learning Models

In this study, seven different ML methods were employed namely, Random Forest,
XGBoost, LightGBM, Support Vector Machine, Gaussian Naïve Bayes, Logistic Regression,
and k Nearest Neighbor.

Random Forest (RF) [35] is a Machine Learning algorithm that belongs to the family of
ensemble learning methods, which combine the predictions of multiple individual models
to make more accurate predictions. RF creates an ensemble of decision trees, and each
decision tree is built using a random subset of the original features and a bootstrapped
sample from the training data. This random feature selection and sampling help introduce
diversity among the trees in the forest.
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XGBoost (Extreme Gradient Boosting) [36] is an advanced Machine Learning algo-
rithm that is based on the gradient boosting framework. The algorithm is known for
its exceptional performance and interpretability. XGBoost builds an ensemble model by
combining multiple weak learners, which are decision trees in the case of XGBoost. Initially,
the ensemble is empty, and it starts by creating the first decision tree. This tree is often a
simple shallow tree with a small number of levels. After the first tree is built, the residuals
are calculated. These residuals represent the errors made by the current ensemble model.
XGBoost is known for its exceptional performance due to its optimization techniques,
regularization methods, and ensemble learning approach.

LightGBM [37] is a gradient boosting framework that is specifically designed for
efficient and accurate classification tasks. It is known for its high speed and scalability,
making it a popular choice for handling large-scale datasets. Like the above algorithms,
LightGBM also builds an ensemble model by combining multiple decision trees. However,
it uses a different approach called gradient-based one-side sampling to select and train the
decision trees in a more efficient manner. LightGBM’s efficiency and scalability make it
particularly suitable for handling large datasets with a high number of features.

Support Vector Machine (SVM) [38] is powerful Machine Learning models that aim
to find an optimal hyperplane which separates the two classes in the feature space. SVMs
are known for their ability to handle high-dimensional data, handle non-linearly separable
cases through kernel functions, and have good generalization properties.

Gaussian Naïve Bayes (GNB) [39] is a simple yet effective algorithm that is based on
the Bayes’ theorem and assumes that the features follow a Gaussian (normal) distribution.
GNB is known for its simplicity, speed, and ability to handle high-dimensional datasets.
However, it makes the strong assumption of feature independence, which may not hold in
all cases. Despite this limitation, GNB can still perform well in many practical scenarios.

Logistic Regression (LR) [40] is a popular Machine Learning algorithm which models
the relationship between the features and the binary outcome using a logistic function.
This function allows for the estimation of the probability of belonging to a particular class.
Logistic Regression is known for its simplicity and ability to handle both numerical and
categorical features.

k-Nearest Neighbors (kNN) [41] is a simple yet effective Machine Learning algorithm
which classifies new data points based on the majority vote of their k nearest neighbors
in the feature space. kNN is known for its simplicity, ease of implementation, and ability
to handle non-linear decision boundaries. However, it can be computationally expensive,
especially when dealing with large datasets, as it requires computing distances for each
new instance.

3.3.2. Hyperparameter Optimization

Each of the above-mentioned models has a different number and variety of hyperpa-
rameters. In order to produce results with higher accuracy, the best hyperparameters must
be found. For this purpose, hyperparameter optimization was performed using the Grid
Search algorithm.

Grid Search [42] is a technique used in Machine Learning to systematically search
for the best combination of hyperparameters for a given algorithm. Grid Search involves
defining a grid of hyperparameter values and then evaluating the performance of the
model for each combination of these values. The performance is typically measured using
a specific evaluation metric, such as accuracy, precision, recall, or F1-score, depending on
the nature of the problem.

4. Results and Discussion

In this section, the results of the ML analysis of this study will be presented. Seven ML
models are employed, and Grid Search is used to optimize these models. For evaluation
purposes, five metrics are used namely, accuracy, precision, fscore, kappa and Area Under
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the ROC (receiver operating characteristic). All metrics mentioned here are grouped based
on the k value of k-mers.

Firstly, the k-mer length is selected as 3 and the dataset has been processed using the
above-mentioned methods. When the k-mer length is 3 and 4 available bases (A, C, G, T), it
is clear that 64 different k-mers can be found in a sequence file. According to the processing
method in Figure 6, the length of the sequence representation of one individual is 256
(64× 4). After the preprocessing stage, the dataset contains the data of 1357 individuals
with 256 features for a k-mer length of 3. From this it can be easily understood that the
number of features for k-mer lengths of 4 and 5 are 1024 and 4096, respectively.

The evaluation results of a k-mer length of 3 can be seen in Figure 7. Regarding
accuracy, the most successful result was obtained from the LightGBM model with 67%,
followed by RF model with 65%. These two models outperformed others in each metric.
Also, the AUC score of these two models is quite close. While the difference between the
success of the models in accuracy, precision and fscore metrics is small, the difference is
more clearly seen in the Kappa metric. On the other hand, the least successful result was
obtained from the SVM model with 57% which also shows worst performance regarding
other metrics.

In the second phase, the k-mer length set as 4 and the dataset is used to evaluate
the models all over again. As can be seen in Figure 8, The LightGBM model achieved
74.63% accuracy which is the best score amongst the chosen models. The accuracy score of
LightGBM is improved by approximately 7% regarding the k-mer length of 3. Also, the RF
is another model that exceeds 70% regarding accuracy. It can be seen that the model with
the most performance increase is SVM considering accuracy which increased from 57% to
68%. It should also be noted that the AUC score of LightGBM is over the 80%. On the other
hand, the Gaussian NB is the only model that decreased in every metric, especially in the
kappa score.

In the third phase, the above-mentioned process is completed for a k-mer length of 5.
The result can be seen in Figure 9. The LightGBM is the overachieving model regarding
every metric, again. The accuracy of the LightGBM model exceeds 76% which is the best
result among the all k-mer lengths. The RF model is also achieved over 75% accuracy.
LightGBM and RF show similar results on every metric including kappa and AUC scores.
Also, it can be seen that the XGB is the model whose performance has improved the most
in terms of accuracy, which is above 72%. On the other hand, GaussianNB demonstrates
the weakest performance on every metric including accuracy.

To sum up, increasing the k-mer length enhanced the accuracy on all models except
the GNB (Figure 10). While the LightGBM model outperformed other models for each
k-mer length with over 76% accuracy, RF, also provided similar results. As the k-mer length
was increased, the performance of XGBoost also showed a significant increase, reaching
above 72% accuracy.

Here, it is worth mentioning and comparing the results with OTU-based methods
because the majority of the IBD and other pathologies used OTU-based ML approaches.
In the literature, Gevers et al.’s [1] dataset is used in different OTU-based studies. Asgari
et al. [32] used 9511 OTU features to train RF and SVM to predict Crohn’s Disease. The
study demonstrated 0.74 ± 0.04 and 0.68 ± 0.04 precision from RF and SVM models,
respectively. In our study, the RF model presented 0.7548 precision for a k-mer length of 5
which is similar to the results of Asgari et al.’s study.
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Manandhar et al. [43] used two datasets including Gevers et al.’s dataset and the
RF model to predict IBD. This study not only employs OTU-based features but also
50 differential bacterial taxa for this task. The RF model demonstrated 74 ± 2% for IBD
prediction task using the OTU-based approach which is again similar to our results.

Linares-Blanco et al. [44] used only fecal samples to generate metagenomic signatures
and tested ML models with two datasets. The RF model presented a 0.76 AUC score which
is below our RF and LGBM AUC scores.

In order to examine the results in more detail, Mc Nemar’s test is used. Mc Nemar’s
test is a statistical test used to analyze paired categorical data which can also be adopted
to evaluate binary classification results [45]. The test is commonly applied to determine
whether there is a significant difference in the proportions of a particular attribute be-
tween two conditions. This difference is named as the z score and is calculated using
Equation (1) below:

z =

(∣∣∣Ns f − N f s

∣∣∣−1
)

√
Ns f + N f s

(1)

Here, Ns f and N f s correspond to the number of paired observations where one ML
model succeeds and the other one fails. If two ML models output the same prediction, the
z score will be zero which means there is no significant difference between performance
of the two models. Moreover, it is interpreted that the performance of the two models is
statistically different as the z score increases. z scores and corresponding confidence levels
for one-tailed and two-tailed predictions can be seen in Table 1. Here, one-tailed prediction
value is high when one ML model is overperforming than other, and two-tailed prediction
value shows the difference between two ML models.
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Table 1. Some z scores and corresponding confidence levels [46].

Z Score One-Tailed Prediction Two-Tailed Prediction

1.645 95% 90%
1.960 97.5% 95%
2.326 99% 98%
2.576 99.5% 99%

In Table 2, Mc Nemar’s test results can be seen in which the ML model performed better
in the provided datasets and is indicated by the arrowheads. The statistical significance
results are indicated by the z scores that are provided next to the arrowheads. By examining
this table, we can once again see the superior performance of LGBM which is represented
by arrowheads in each comparison. LGBM demonstrates over 90% confidence compared
to SVM, XGB, GNB, LR and KNN. The lowest z-score of LGBM is generated comparing
RF which is 0.4. Furthermore, RF has also produced better results compared to all models
except LGBM. This table is further proof that this study produces statistically significant
results comparing these ML models on this dataset.

Table 2. Mc Nemar’s Test results for k-mer length of 5.

SVM XGB LGBM GNB LR KNN

RF ←1.95 ←0.8571 ↑0.4 ←4.6368 ←2.7449 ←3.1386

SVM ↑1.0846 ↑2.1952 ←2.6064 0 ←1.2247

XGB ↑1.3568 ←3.6552 ←1.375 ←2.1442

LGBM ←4.6705 ←2.8062 ←3.4641

GNB ↑2.7 ↑1.5811

LR ←0.9363

To further test the performance of the models a second dataset is employed. This
dataset is obtained from Jacobs et al.’s study and includes samples from 90 individuals [46]
(Bioproject PRJNA324147 [46]). These individuals are from 21 families with pediatric
inflammatory bowel disease. The dataset contains 26 Crohn’s Disease patients, 10 Ulcerative
Colitis patients, and 54 healthy siblings/parents. All of the data in the dataset were obtained
from stool samples. As mentioned before, the main dataset contains both stool and biopsy
samples. Moreover, the second dataset includes not only child samples, but also their
parents’ while the main dataset only includes child patients.

The new dataset was used to test the previously trained and optimized ML models. It
is important to note that the hyperparameters are optimized with the main dataset. The
accuracy of the results can be seen in Figure 11. As can be seen in the figure, the best result
was obtained as 64.44% accuracy using the RF algorithm with a k-mer length of 4. The
GNB algorithm demonstrated the second best results with 61.11% accuracy. The results
demonstrated that there is no correlation between k-mer length and accuracy for the second
database. There could be several reasons for these results. First, the second dataset contains
not only child patients but also adult patients. Also, two datasets consist of samples from
different geographical regions which can cause diversity in the microbiota. Lastly, the
dataset contains samples from only 21 family which can cause bias. For now, it is hard to
find samples of the V4 region of the 16S rRNA gene for IBD. The literature does not have
large datasets which are required for ML models to learn and to consistently distinguish
between diseased and healthy individuals.
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5. Conclusions

The use of microbiota data in ML has the potential to revolutionize our understanding
of the human microbiome and its role in health and disease. By enabling more accurate and
personalized care for patients, this approach could lead to improved health outcomes and
a better understanding of the complex interplay between microbiota and human health.

In this study, popular ML models were utilized to predict IBD from k-mer represen-
tations of 16S rRNA sequence data of patients. The dataset used in the study contains
microbiota samples taken from 1359 individuals. When compared with other ML ap-
proaches mainly based on OTU/ASV features, k-mer based ML tools are alignment-free
approaches which minimize the bioinformatics analysis steps including clustering and
taxa assignment. Moreover, unknown taxa or annotation errors may limit performance of
feature-based ML classification approaches.

In the preprocessing stage, sequence identifiers and quality scores were removed from
the fastq file so that only nucleotide sequences remain. Secondly, these raw sequences were
converted in De Bruijn graph representation form with k-mer lengths of 3, 4 and 5. Later,
these representations were converted into a structured form to train ML models.

Seven ML models including Random Forest, Support Vector Machines, XGBoost, Light
Gradient Boosting Machine, Gaussian Naïve Bayes, Logistic Regression and k-Nearest
Neighbor were employed. The hyperparameter optimization was achieved using the Grid
Search algorithm. The evaluation metrics of accuracy, precision, fscore, kappa and area
under the receiver operating characteristic curve (AUC) were chosen.

The ML models were trained and tested with three sets of data. The best model was
LightGBM with 76.47% accuracy for a k-mer length of 5. Also, results were statistically
significant regarding Mc Nemar’s test results. In future work, larger k-mer lengths will be
chosen and Deep Learning models will be employed.

Analyzing microbiome data using ML techniques offers promising ways for enhancing
the diagnosis and treatment of IBD. The human microbiome plays a crucial role in maintain-
ing body health and changes in microbiome can be linked with various diseases. ML can
help resolve complex relationships within microbiome data to help the diagnosis of IBD.
By using different ML models forecasting disease progression, response to treatment based
on microbiome data can be possible. ML algorithms require large datasets to accurately
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predict the diseases. By using next generation sequencing techniques, more and more
sequence data will be uploaded to the open access databases, and using these large datasets
can elevate the performance of ML models.
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