The Impact of Edema on MRI Radiomics for the Prediction of Lung Metastasis in Soft Tissue Sarcoma
Abstract
:Highlights
- Both the model utilizing edema-related features and the model utilizing mass-related features demonstrated promising results in predicting the occurrence of lung metastases, with similar performances.
- The findings suggest that the analysis of radiomic features extracted exclusively from edema can offer valuable insights into the prediction of lung metastases.
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Segmentation and Feature Extraction
- Gross Tumoral Volume (GTV): a segmentation that encompassed only the tumor mass;
- Edema Tumoral Volume (EDV): this segmentation was derived by subtracting the tumor mass segmentation alone (GTV) from the segmentation that encompasses both the tumor mass (GTV) and the associated edema (see Figure 1).
2.3. Feature Selection
- Single Feature Evaluation: When considering single features in isolation, we observed that ‘feature_C’ exhibited the highest AUC of 0.65, outperforming all other individual features.
- Two-Feature Combinations: Expanding our investigation to pairs of features, we found that the combination of ‘feature_D’ and ‘feature_H’ produced the most favorable result, with an AUC of 0.77. This combination surpassed all other two-feature combinations.
- Three-Feature Combinations: Continuing our analysis, we explored combinations of three features. Among these, ‘feature_A’ + ‘feature_C’ + ‘feature_F’ yielded the highest AUC of 0.75, demonstrating superior performance when compared to other three-feature combinations.
- Four-Feature Combinations: Extending our search to combinations of four features, ‘feature_B’ + ‘feature_D’ + ‘feature_F’ + ‘feature_H’ achieved an AUC of 0.71. This particular combination displayed notable predictive power within the set of four-feature combinations.
- Five-Feature Combinations: Finally, in the context of five-feature combinations, ‘feature_A’ + ‘feature_C’ + ‘feature_F’ + ‘feature_H’ + ‘feature_G’ exhibited the highest AUC of 0.81, outperforming all other five-feature combinations.
2.4. Modeling and Statistical Analysis
3. Results
3.1. Dataset
3.2. Features Extraction
3.3. Features Selection
3.4. Classification Performance
- For the RF-GTV: a median accuracy of 0.71 [95% CI: 0.46–0.92], a median AUC of 0.79 [95% CI: 0.50 1.00];
- For the RF-EDV: a median accuracy of 0.69 [95% CI: 0.43–0.91], a median AUC of 0.73 [95% CI: 0.45 0.94].
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MRI | Magnetic Resonance Imaging |
AUC | Area Under the ROC Curve |
STS | Soft-Tissue Sarcoma |
T2FS | T2-weighted Fat-Saturated |
STIR | Short Tau Inversion Recovery |
GTV | Gross Tumoral Volume |
EDV | Edema Tumoral Volume |
FOF | First Order Features |
SHAPE | Shape Features |
GLCM | Gray Level Co-occurrence Matrix Features |
GLRLM | Gray Level Run Length Matrix Features |
GLSZM | Gray Level Size Zone Matrix Features |
GLDM | Gray Level Dependence Matrix Features |
NGTDM | Neighboring Gray Tone Difference Matrix Features |
RF | Random Forest |
RF-GTV | Random Forest model based on selected GTV features |
RF-EDV | Random Forest model based on selected EDV features |
IQR | interquartile range |
CI | confidence intervals |
References
- Kransdorf, M.J. Malignant soft-tissue tumors in a large referral population: Distribution of diagnoses by age, sex, and location. AJR Am. J. Roentgenol. 1995, 164, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Billingsley, K.G.; Lewis, J.J.; Leung, D.H.; Casper, E.S.; Woodruff, J.M.; Brennan, M.F. Multifactorial analysis of the survival of patients with distant metastasis arising from primary extremity sarcoma. Cancer 1999, 85, 389–395. [Google Scholar] [CrossRef]
- Brennan, M.F. Soft tissue sarcoma: Advances in understanding and management. Surgeon 2005, 3, 216–223. [Google Scholar] [CrossRef]
- Stojadinovic, A.; Leung, D.H.Y.; Hoos, A.; Jaques, D.P.; Lewis, J.J.; Brennan, M.F. Analysis of the prognostic significance of microscopic margins in 2,084 localized primary adult soft tissue sarcomas. Ann. Surg. 2002, 235, 424–434. [Google Scholar] [CrossRef]
- Lewis, J.J.; Brennan, M.F. Soft tissue sarcomas. Curr. Probl. Surg. 1996, 33, 817–872. [Google Scholar] [CrossRef] [PubMed]
- Komdeur, R.; Hoekstra, H.J.; van den Berg, E.; Molenaar, W.M.; Pras, E.; de Vries, E.G.; van der Graaf, W.T. Metastasis in soft tissue sarcomas: Prognostic criteria and treatment perspectives. Cancer Metastasis Rev. 2002, 21, 167–183. [Google Scholar] [CrossRef]
- Vallières, M.; Freeman, C.R.; Skamene, S.R.; El Naqa, I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol. 2015, 60, 5471–5496. [Google Scholar] [CrossRef]
- White, L.M.; Wunder, J.S.; Bell, R.S.; O’Sullivan, B.; Catton, C.; Ferguson, P.; Blackstein, M.; Kandel, R.A. Histologic assessment of peritumoral edema in soft tissue sarcoma. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 1439–1445. [Google Scholar] [CrossRef]
- Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.; Pringle, M.; et al. The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository. J. Digit. Imaging 2013, 26, 1045–1057. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Huang, X.; Wang, G.; Guo, J. PET/MR fusion texture analysis for the clinical outcome prediction in soft-tissue sarcoma. Cancer Imaging 2022, 22, 7. [Google Scholar] [CrossRef]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- Van Griethuysen, J.J.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H.J. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [PubMed]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Raschka, S. MLxtend: Providing machine learning and data science utilities and extensions to Python’s scientific computing stack. J. Open Source Softw. 2018, 3, 638. [Google Scholar] [CrossRef]
- Nadeau, C.; Bengio, Y. Inference for the Generalization Error. Mach. Learn. 2003, 52, 239–281. [Google Scholar] [CrossRef]
- Bouckaert, R.R.; Frank, E. Evaluating the replicability of significance tests for comparing learning algorithms. In Advances in Knowledge Discovery and Data Mining; Springer: Berlin/Heidelberg, Germany, 2004; pp. 3–12. [Google Scholar]
- Kim, H.-Y. Statistical notes for clinical researchers: Chi-squared test and Fisher’s exact test. Restor. Dent. Endod. 2017, 42, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Efron, B. Bootstrap methods: Another look at the jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Fletcher, C.D.; Unni, K.; Mertens, F. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone; IARC Press: Lyon, France, 2002. [Google Scholar]
- Fletcher, C.D.M. The evolving classification of soft tissue tumours: An update based on the new WHO classification. Histopathology 2006, 48, 3–12. [Google Scholar] [CrossRef]
- Zhao, F.; Ahlawat, S.; Farahani, S.J.; Weber, K.L.; Montgomery, E.A.; Carrino, J.A.; Fayad, L.M. Can MR imaging be used to predict tumor grade in soft-tissue sarcoma? Radiology 2014, 272, 192–201. [Google Scholar] [CrossRef]
- Lefkowitz, R.A.; Landa, J.; Hwang, S.; Zabor, E.C.; Moskowitz, C.S.; Agaram, N.P.; Panicek, D.M. Myxofibrosarcoma: Prevalence and diagnostic value of the “tail sign” on magnetic resonance imaging. Skelet. Radiol. 2013, 42, 809–818. [Google Scholar] [CrossRef]
- Yoo, H.J.; Hong, S.H.; Kang, Y.; Choi, J.Y.; Moon, K.C.; Kim, H.S.; Han, I.; Yi, M.; Kang, H.S. MR imaging of myxofibrosarcoma and undifferentiated sarcoma with emphasis on tail sign; diagnostic and prognostic value. Eur. Radiol. 2014, 24, 1749–1757. [Google Scholar] [CrossRef]
- Trojani, M.; Contesso, G.; Coindre, J.M.; Rouesse, J.; Bui, N.B.; De Mascarel, A.; Goussot, J.F.; David, M.; Bonichon, F.; Lagarde, C. Soft-tissue sarcomas of adults; study of pathological prognostic variables and definition of a histopathological grading system. Int. J. Cancer 1984, 33, 37–42. [Google Scholar] [CrossRef]
- Fernebro, J.; Wiklund, M.; Jonsson, K.; Bendahl, P.-O.; Rydholm, A.; Nilbert, M.; Engellau, J. Focus on the tumour periphery in MRI evaluation of soft tissue sarcoma: Infiltrative growth signifies poor prognosis. Sarcoma 2006, 2006, 21251. [Google Scholar] [CrossRef] [PubMed]
- Crombé, A.; Le Loarer, F.; Stoeckle, E.; Cousin, S.; Michot, A.; Italiano, A.; Buy, X.; Kind, M. MRI assessment of surrounding tissues in soft-tissue sarcoma during neoadjuvant chemotherapy can help predicting response and prognosis. Eur. J. Radiol. 2018, 109, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Matsumine, A.; Matsubara, T.; Asanuma, K.; Yada, Y.; Hagi, T.; Sudo, A. Infiltrative tumor growth patterns on magnetic resonance imaging associated with systemic inflammation and oncological outcome in patients with high-grade soft-tissue sarcoma. PLoS ONE 2017, 12, e0181787. [Google Scholar] [CrossRef] [PubMed]
- Fadli, D.; Kind, M.; Michot, A.; Le Loarer, F.; Crombé, A. Natural Changes in Radiological and Radiomics Features on MRIs of Soft-Tissue Sarcomas Naïve of Treatment: Correlations With Histology and Patients’ Outcomes. J. Magn. Reson. Imaging 2022, 56, 77–96. [Google Scholar] [CrossRef] [PubMed]
- Sedaghat, S.; Schmitz, F.; Meschede, J.; Sedaghat, M. Systematic analysis of post-treatment soft-tissue edema and seroma on MRI in 177 sarcoma patients. Surg. Oncol. 2020, 35, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Crombé, A.; Périer, C.; Kind, M.; De Senneville, B.D.; Le Loarer, F.; Italiano, A.; Buy, X.; Saut, O. T2-based MRI Delta-radiomics improve response prediction in soft-tissue sarcomas treated by neoadjuvant chemotherapy. J. Magn. Reson. Imaging 2019, 50, 497–510. [Google Scholar] [CrossRef]
- Tsagozis, P.; Brosjö, O.; Skorpil, M. Preoperative radiotherapy of soft-tissue sarcomas: Surgical and radiologic parameters associated with local control and survival. Clin. Sarcoma Res. 2018, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Pretell-Mazzini, J.; Kerr, D.A.; Chelala, L.; Yang, X.; Jose, J.; Subhawong, T.K. MRI findings associated with microscopic residual tumor following unplanned excision of soft tissue sarcomas in the extremities. Skelet. Radiol. 2018, 47, 181–190. [Google Scholar] [CrossRef]
- Bahig, H.; Roberge, D.; Bosch, W.; Levin, W.; Petersen, I.; Haddock, M.; Freeman, C.; DeLaney, T.F.; Abrams, R.A.; Indelicato, D.J.; et al. Agreement among RTOG sarcoma radiation oncologists in contouring suspicious peritumoral edema for preoperative radiation therapy of soft tissue sarcoma of the extremity. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Duy Hung, N.; Tam, N.-T.; Khanh Huyen, D.; Thi, N.-V.; Minh Duc, N. Diagnostic performance of magnetic resonance imaging in discriminating benign and malignant soft tissue tumors. Int. J. Gen. Med. 2023, 16, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Crombé, A.; Bertolo, F.; Fadli, D.; Kind, M.; Le Loarer, F.; Perret, R.; Chaire, V.; Spinnato, P.; Lucchesi, C.; Italiano, A. Distinct patterns of the natural evolution of soft tissue sarcomas on pre-treatment MRIs captured with delta-radiomics correlate with gene expression profiles. Eur. Radiol. 2023, 33, 1205–1218. [Google Scholar] [CrossRef] [PubMed]
- Escobar, T.; Vauclin, S.; Orlhac, F.; Nioche, C.; Pineau, P.; Champion, L.; Brisse, H.; Buvat, I. Voxel-wise supervised analysis of tumors with multimodal engineered features to highlight interpretable biological patterns. Med. Phys. 2022, 49, 3816–3829. [Google Scholar] [CrossRef]
- Casale, R.; Varriano, G.; Santone, A.; Messina, C.; Casale, C.; Gitto, S.; Sconfienza, L.M.; Bali, M.A.; Brunese, L. Predicting risk of metastases and recurrence in soft-tissue sarcomas via Radiomics and Formal Methods. JAMIA Open 2023, 6, ooad025. [Google Scholar] [CrossRef]
- Chen, W.; Samuelson, F.W.; Gallas, B.D.; Kang, L.; Sahiner, B.; Petrick, N. On the assessment of the added value of new predictive biomarkers. BMC Med. Res. Methodol. 2013, 13, 98. [Google Scholar] [CrossRef]
- Kang, L.; Chen, W.; Petrick, N.A.; Gallas, B.D. Comparing two correlated C indices with right-censored survival outcome: A one-shot nonparametric approach. Stat. Med. 2015, 34, 685–703. [Google Scholar] [CrossRef]
- Kohavi, R.; John, G.H. The wrapper approach. In Feature Extraction, Construction and Selection; Springer: Boston, MA, USA, 1998; pp. 33–50. [Google Scholar]
- Ho, T.K. Random Decision Forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995. [Google Scholar]
Group A (No Lung Metastases) | Group B (Lung Metastases) | p-Value * | |
---|---|---|---|
Number of patients | 18 | 14 | - |
Gender ratio (M/F) | 5/13 | 9/5 | 0.072 |
Age, y, median (range) | 53.5 (16–83) | 62.5 (44–74) | 0.106 |
Grade ratio (Low/Intermediate/High) | 1/9/8 | 0/4/10 | 0.216 |
MSKCC type (Fibrosarcoma/Leiomyosarcoma/Liposarcoma/MFH/Synovial sarcoma/Other) | 1/6/3/3/3/2 | 0/3/2/8/1/0 | 0.238 |
Selected Features | |
---|---|
Gross Tumor Volume (GTV) | Edema Tumor Volume (EDV) |
original_glcm_Correlation | original_firstorder_Kurtosis |
original_glszm_SmallAreaLowGrayLevelEmphasis | original_glszm_SizeZoneNonUniformityNormalized |
RF-GTV Median [Interquartile Range] | RF-EDV Median [Interquartile Range] | |
---|---|---|
Accuracy | 0.83 [0.17] | 0.75 [0.17] |
Sensitivity | 0.67 [0.50] | 0.67 [0.50] |
Specificity | 1.00 [0.33] | 0.80 [0.33] |
AUC | 0.88 [0.23] | 0.79 [0.38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casale, R.; De Angelis, R.; Coquelet, N.; Mokhtari, A.; Bali, M.A. The Impact of Edema on MRI Radiomics for the Prediction of Lung Metastasis in Soft Tissue Sarcoma. Diagnostics 2023, 13, 3134. https://doi.org/10.3390/diagnostics13193134
Casale R, De Angelis R, Coquelet N, Mokhtari A, Bali MA. The Impact of Edema on MRI Radiomics for the Prediction of Lung Metastasis in Soft Tissue Sarcoma. Diagnostics. 2023; 13(19):3134. https://doi.org/10.3390/diagnostics13193134
Chicago/Turabian StyleCasale, Roberto, Riccardo De Angelis, Nicolas Coquelet, Ayoub Mokhtari, and Maria Antonietta Bali. 2023. "The Impact of Edema on MRI Radiomics for the Prediction of Lung Metastasis in Soft Tissue Sarcoma" Diagnostics 13, no. 19: 3134. https://doi.org/10.3390/diagnostics13193134
APA StyleCasale, R., De Angelis, R., Coquelet, N., Mokhtari, A., & Bali, M. A. (2023). The Impact of Edema on MRI Radiomics for the Prediction of Lung Metastasis in Soft Tissue Sarcoma. Diagnostics, 13(19), 3134. https://doi.org/10.3390/diagnostics13193134