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Abstract: Breast mass identification is a crucial procedure during mammogram-based early breast
cancer diagnosis. However, it is difficult to determine whether a breast lump is benign or cancerous at
early stages. Convolutional neural networks (CNNs) have been used to solve this problem and have
provided useful advancements. However, CNNs focus only on a certain portion of the mammogram
while ignoring the remaining and present computational complexity because of multiple convolutions.
Recently, vision transformers have been developed as a technique to overcome such limitations of
CNNs, ensuring better or comparable performance in natural image classification. However, the
utility of this technique has not been thoroughly investigated in the medical image domain. In this
study, we developed a transfer learning technique based on vision transformers to classify breast
mass mammograms. The area under the receiver operating curve of the new model was estimated as
1 ± 0, thus outperforming the CNN-based transfer-learning models and vision transformer models
trained from scratch. The technique can, hence, be applied in a clinical setting, to improve the early
diagnosis of breast cancer.

Keywords: transfer learning; transformers; breast cancer; mammography

1. Introduction

Breast cancer is the most prevalent cancer in women in the United States, accounting
for 30% (or 1 in 3) of all new cases of female cancer each year, except for skin cancers [1,2].
Incidence rates have risen by 0.5% annually in recent years; however, there has been a
steady decrease in the number of breast cancer deaths, with an overall decrease of 43%
from 1989 to 2020 [1,3]. Better treatment options as well as earlier detection through
screening and awareness campaigns are considered the reasons for death rate decline [4–6].
Mammography (MG) plays a major role in early detection of breast cancer [7]. MG can
detect breast cancer at early stages even with small tumors that cannot be felt as lumps [8].
However, false diagnoses may occur because of the complexity of MGs and the high
number of tests performed by radiologists [9]. To provide radiologists with an unbiased
perspective, computer-aided detection (CAD), which applies image-processing methods
and pattern recognition, has been developed [10]. Studies have demonstrated the value of
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conventional CAD systems that do not utilize artificial intelligence; however, it remains
difficult to accurately detect breast cancer [11]. Nevertheless, the conventional CAD models
could not increase the diagnostic efficacy of MG considerably [12–15]. The significant
false-positive rates when employing conventional CAD for anomaly identification in MGs
present the main obstacle [16]. False-positive results lead to patient anxiety, unnecessary
radiation exposure, pointless biopsies, high callback rates, higher medical expenses, and
a greater number of examinations. New and more accurate detection techniques were
hence probed, leading to the use of machine learning techniques in the classification of
diagnostic images [17,18]. In particular, deep learning (DL) of mammograms is being
investigated and applied in large numbers for the early detection of breast cancer in the
past few years [19–23]. Convolutional neural network (CNN)-based DL has attracted a
lot of attention recently for MGs as it aids in overcoming the constraints of CAD systems
(false positives, unnecessary radiation exposure, pointless biopsies, high callback rates,
higher medical expenses, and greater number of examinations) [24]. CNNs outperform
CAD models in terms of detection accuracy and aid radiologists in making more accurate
diagnoses by providing quantitative analyses of complicated lesions [25]. According to
previous studies, DL methods significantly lower the likelihood of human error, while
diagnosing 85% of the breast cancer cases accurately [26–28]. The most recent CNN models
are designed to help radiologists discover even the smallest breast tumors in the very early
stages, alerting the radiologist to prepare for further interventions [29–31].

However, when used on an entire mammogram image, CNNs are computationally
expensive due to the multiple convolutions at different feature levels. They focus on a
particular area of the image first rather than the entire image and then build up features
for the whole image gradually, resulting in expensive computational steps. CNN lacks the
ability to handle rotation and scale invariance with no augmentation and fails to encode
relative spatial information. To address the issues of failure to encode relative spatial
information and the lack of handling rotation and scale invariance, patch-based breast
image classifiers are used, where the potential region of interest (ROI) is used rather than
the entire image of the breast. This approach has limitations. The first challenge of CNN-
based DL models for mammographic breast cancer detection is tumor localization [30].
Most CNN-based DL models use a patch-based approach, whereby a suspected tumor area
on a mammogram is cropped and fed into the model [32]. This leads to loss of information
from the entire mammogram, resulting in false-positive results [19]. In addition, the patch-
based approach is time consuming and computationally expensive [33,34]. The second
limitation of the CNN-based approach is that its performance varies based on the size
of lesions in an image [35,36]. Thus, the size of the lesion in the region of interest (ROI)
affects the performance of CNNs [37]. Third, CNNs require considerable pre-processing to
compensate for poor image quality [38]. Owing to reduced visibility, low contrast, poor
clarity, and noise, a sizable proportion of abnormalities are misdiagnosed or overlooked [39].
Common pre-processing methods, such as filters, have been suggested to improve image
quality, image smoothing, and noise reduction [38]. However, selecting the best method
for pre-processing MGs to enhance CNN classification remains a challenge. Fourth, CNNs
perform poorly for imbalanced datasets, thus affecting their performance immensely [36,40].
The inequality between positive and negative classes in the training datasets is referred to
as dataset imbalance [41]. Directly training CNN models on imbalanced datasets may skew
the prediction in favor of classes with a higher number of observations [42]. Finally, CNNs
perform poorly in classifying tumors in multi view mammograms, which is a crucial aid
in clinical settings [43]. Current CNN models are trained to detect tumors on MGs while
ignoring the presence of additional malignancies [44–46].

Additionally, finding good datasets for training is a challenge in the medical image
domain [47,48], which is true in the case of MG also [19]. This affects the overall success
of DL approaches for mammogram classification. Several approaches have been used to
compensate for the lack of training image datasets [9,49]. Two widely employed techniques
are data augmentation and transfer learning. Data augmentation enables the creation
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of rearranged image data using the original image, thereby increasing the number and
variety of the training image datasets [43]. It includes operations such as noise addition,
rotation, translation, contrast, saturation, color augmentation, brightness, scaling, and
cropping. Transfer learning utilizes pre-trained weights from selected datasets to be used as
a starting point for training on another dataset [19,50]. This approach enables leveraging the
knowledge learned from previous tasks for the target task [47]. Almost all CNN-based DL
approaches for mammographic breast cancer detection utilize a transfer-learning approach
to compensate for the lack of large datasets and to utilize an optimized model with prior
feature knowledge for new tasks [51].

In this study, we developed a deep-learning approach for mammographic breast
cancer detection using transfer learning based on vision transformers. This study makes
two major contributions to the literature. The first is the image-data-balancing module
used to solve the class imbalance problem in a mammogram dataset. The dataset utilized
for this study is composed of two categories, those from benign and malignant tissues,
with unequal sample sizes. In other words, there is a class imbalance that could lead
to bias in model learning. To overcome this problem, we propose augmentation-based
class balancing. Second, we designed a vision-transformer-based transfer-learning method
for mammogram classification. This new transfer-learning approach improves on the
shortcomings of CNN-based transfer-learning methods by leveraging the self-attention
approach of transformers.

2. Related Works

DL based on CNNs is widely employed to aid the early detection of breast cancer
using MG. As a result, a few artificial intelligence (AI) tools have been approved by the
Food and Drug Administration (FDA) to aid radiologists in decision making. However,
owing to the numerous convolution tasks within various network layers, CNNs are compu-
tationally complex and require high computational power as the quantity of data increases.
Additionally, when analyzing mammograms, CNNs concentrate on a particular region
(the region where a tumor is suspected), disregarding the rest of the image, which causes
CNNs to miss some crucial details, which would have been discovered if the entire image
was examined at once. Vision transformers (ViTs) have recently gained prominence in the
field of computer vision, surpassing CNNs in tasks that require natural image classification.
Because of their lower computational complexity and ability to overcome the limitations
of CNNs in focusing only on a small portion of an image, ViTs outperformed the most
advanced CNN models.

The ViT concept is a development of the text-transformer-based original transformer
concept. With a minor adjustment in the code to accommodate the various data modalities,
it is simply a transformer applied to the image domain. A ViT specifically employs several
tokenization and embedding techniques. The general architecture is the same, though.
A source image is divided into a collection of image patches known as visual tokens.
The visual tokens are incorporated into a collection of fixed-dimension encoded vectors.
The transformer encoder network, which is essentially the same as the one in charge of
processing the text input, is fed the position of a patch in the image together with the
encoded vector. The ViT encoder is composed of several blocks, each of which has three
main processing components: the layer norm, the multi-head attention network (MSP),
and the multi-layer perceptron (MLP). The model can adjust to differences in the training
images thanks to the layer norm, which keeps the training process on track. A network
called MSP is in charge of creating attention maps from the provided embedded visual
tokens. These attention maps assist the network in concentrating on the image’s most
crucial areas, such as the object (s). The MLP is a two-layer classification network with a
GELU (Gaussian Error Linear Unit) at the very end. The last MLP block, also referred to as
the MLP head, serves as the transformer’s output. SoftMax can be used on this output to
provide classification labels (i.e., if the application is image classification).
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A few studies have investigated the use of ViTs in classifying mammograms for the
early diagnosis of breast cancer. Lee et al. [52] proposed transformer-based DL, which
tackles the challenges of mammogram normalization and inter-reader variance in grad-
ing. They proposed an approach that uses a photometric transformer network (PTN) as a
programmable normalization module to forecast the normalization parameters of input
MG. It seamlessly connects to the primary prediction network, allowing for combined
learning of the best normalization and density grade. In principle, the PTN resembles a
spatial transformer network [53]. However, the PTN seeks to identify a set of photometric
transformation parameters that are best for predicting breast density, while the spatial trans-
former network forecasts suitable geometric transformation parameters. Tulder et al. [45]
suggested a novel token-based and pixel-wise cross-view transformer technique and used
it on two public MG datasets. The authors suggested an approach based on transformers
that join views at the feature map level without requiring pixel-by-pixel correspondences.
They used cross-view attention rather than self-attention to transfer information across
views, different from how conventional transformers process information inside a single
sequence. For image segmentation and breast mass detection in digital mammograms,
Su et al. [54] proposed the YOLO–LOGO transformer model. This included two steps:
first, they used YoloV5 to detect the breast mass ROI and cropped it directly from the
high-resolution image to increase training effectiveness. Thereafter, they used an updated
version of the local–global (LOGO) segmentation strategy, which significantly increased
the segmentation resolution at the original pixel level. Garrucho et al. [55] evaluated the
domain generalization of MG models by comparing the performance of eight cutting-edge
detection techniques trained in a single domain, including transformer-based models, and
tested them in five unexplored domains. They observed that transformer-based models
were more robust and performed better than others in domain generalization of mammo-
grams. Chen et al. [56] used a multi-view transformer (MVT) model to detect breast cancer
segments on mammograms. MVT was composed of two main components, the local and
global transformer blocks. Local transformer blocks individually analyze data from each
view image. In contrast, the global transformer blocks combine data from the four-view
mammograms. Self-attention, multi-head attention, and multilayer perceptron were the
three main components of the local and global transformer blocks, both of which had the
same design.

3. Materials and Methods
3.1. Dataset

In this study, we used the Digital Database for Screening Mammography (DDSM)
dataset to train and test our vision-transformer-based transfer-learning system for early
identification of breast cancer. This dataset is publicly available and accessible at https:
//data.mendeley.com/datasets/ywsbh3ndr8/2 [accessed on 12 September 2022]. The
dataset includes 13,128 images including 5970 from benign and 7158 from malignant
tissues. Sample images from the dataset are shown in Figure 1.

3.2. Class Balancing

The dataset retrieved for this study was class imbalanced; that is, the number of
images from malignant and benign tissues in the dataset were not equal. The ratio of
malignant-to-benign samples in the DDSM dataset was 0.65:0.35. This data distribution
may affect the learning of the designed algorithm and had to be fixed first. Thus, we
performed a novel data-balancing method using data augmentation. To the best of our
knowledge, this data class balancing approach for mammogram images was used for the
first time by our group [36]. First, the dataset was categorized into 80% training and 20%
testing sets. To balance the dataset for 5-fold cross-validation (nested cross-validation),
we used five-image augmentations, including color jitter, gamma correction, horizontal
flip, salt-and-pepper, and sharpening, as seen in [36]. The dataset was divided into five
folds, each of which included the training and validation datasets. Therefore, in the DDSM
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dataset, for the first four folds, 1145 images of malignant tumors were present in each fold,
whereas 1146 images of malignant tumors were present in the fifth fold. Similarly, for
the benign class, the first four folds had 955 images while the fifth fold had 956 images.
To balance the data between both classes, we subjected images of the benign class to five
image augmentations, whereas malignant mass images underwent only one augmentation.
Finally, post-augmentation, 1146 images were present in every fold for both classes of
benign and malignant tumors, as shown in Figure 2.

Diagnostics 2023, 13, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 1. Sample images from the Digital Database for Screening Mammography dataset before 
augmentation. 

3.2. Class Balancing 
The dataset retrieved for this study was class imbalanced; that is, the number of im-

ages from malignant and benign tissues in the dataset were not equal. The ratio of malig-
nant-to-benign samples in the DDSM dataset was 0.65:0.35. This data distribution may 
affect the learning of the designed algorithm and had to be fixed first. Thus, we performed 
a novel data-balancing method using data augmentation. To the best of our knowledge, 
this data class balancing approach for mammogram images was used for the first time by 
our group [36]. First, the dataset was categorized into 80% training and 20% testing sets. 
To balance the dataset for 5-fold cross-validation (nested cross-validation), we used five-
image augmentations, including color jitter, gamma correction, horizontal flip, salt-and-
pepper, and sharpening, as seen in [36]. The dataset was divided into five folds, each of 
which included the training and validation datasets. Therefore, in the DDSM dataset, for 
the first four folds, 1145 images of malignant tumors were present in each fold, whereas 
1146 images of malignant tumors were present in the fifth fold. Similarly, for the benign 
class, the first four folds had 955 images while the fifth fold had 956 images. To balance 
the data between both classes, we subjected images of the benign class to five image aug-
mentations, whereas malignant mass images underwent only one augmentation. Finally, 
post-augmentation, 1146 images were present in every fold for both classes of benign and 
malignant tumors, as shown in Figure 2. 

Figure 1. Sample images from the Digital Database for Screening Mammography dataset
before augmentation.

Diagnostics 2023, 13, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 2. Data class balancing using image augmentation: M, malignant; B, benign. 

3.3. Preprocessing 
The pixel sizes of the mammograms in the dataset varied considerably; therefore, we 

resized all images to a size of 224 × 224 pixels, which is the preferred size for patch gener-
ation from the input images. 

3.4. The Proposed Method 
In this study, we performed a vision-transformer-based transfer-learning method to 

classify mammograms as being from benign or malignant tissues. Therefore, vision trans-
former models pre-trained on natural images (ImageNet dataset) were used for mammo-
gram classification. 

3.4.1. Vision Transformer Architecture 
Vision transformers are derived from the original transformer model used in the nat-

ural language processing (NLP) model, where the input is a one-dimensional sequence of 
word tokens. However, images are two-dimensional, and vision transformer models par-
tition images into smaller two-dimensional patches and input the patches as word tokens, 
as performed by the original NLP transformer models. The input image of height 𝐻, 
width 𝑊, and number of channels 𝐶, is divided into smaller two-dimensional patches to 
arrange the input image data in a way similar to how the input is structured in the NLP 
domain. This produces 𝑁 = ுௐమ  patches with a pixel size of 𝑃 × 𝑃 [57]. Prior to providing 
the patches to the transformer encoder, flattening, sequence imbedding, learnable embed-
ding, and patch embedding were performed in the following order: 
• Every patch was flattened into a vector, 𝑋, with a length of 𝑃ଶ × 𝐶, for 𝑛 = 1, … 𝑁. 
• Mapping the flattened patches to 𝐷 dimensions using a trainable linear projection, 𝐸, produced a series of embedded image patches. 
• The sequence of the embedded image patches was prefixed with a learnable class 

embedding 𝑋௦௦. The 𝑋௦௦ values correspond to the classification outcome 𝑌. 

Figure 2. Data class balancing using image augmentation: M, malignant; B, benign.



Diagnostics 2023, 13, 178 6 of 16

3.3. Preprocessing

The pixel sizes of the mammograms in the dataset varied considerably; therefore,
we resized all images to a size of 224 × 224 pixels, which is the preferred size for patch
generation from the input images.

3.4. The Proposed Method

In this study, we performed a vision-transformer-based transfer-learning method
to classify mammograms as being from benign or malignant tissues. Therefore, vision
transformer models pre-trained on natural images (ImageNet dataset) were used for mam-
mogram classification.

3.4.1. Vision Transformer Architecture

Vision transformers are derived from the original transformer model used in the
natural language processing (NLP) model, where the input is a one-dimensional sequence
of word tokens. However, images are two-dimensional, and vision transformer models
partition images into smaller two-dimensional patches and input the patches as word
tokens, as performed by the original NLP transformer models. The input image of height
H, width W, and number of channels C, is divided into smaller two-dimensional patches
to arrange the input image data in a way similar to how the input is structured in the
NLP domain. This produces N = HW

P2 patches with a pixel size of P × P [57]. Prior to
providing the patches to the transformer encoder, flattening, sequence imbedding, learnable
embedding, and patch embedding were performed in the following order:

• Every patch was flattened into a vector, Xn
p , with a length of P2 × C, for n = 1, . . . N.

• Mapping the flattened patches to D dimensions using a trainable linear projection, E,
produced a series of embedded image patches.

• The sequence of the embedded image patches was prefixed with a learnable class
embedding Xclass. The Xclass values correspond to the classification outcome Y.

• Finally, one-dimensional positional embeddings Epos, which are also learned dur-
ing training, are added to the patch embeddings to add positioning information to
the input.

The embedding vectors produced as a result of the aforementioned operations are
given by zo (1):

zo =
[

Xclass; X1
pE; . . . ; XN

p E
]
+ Epos (1)

We fed zo to the transformer–encoder network, which is a stack of L identical layers, to
conduct the classification. The classification head was then fed with the value of Xclass at the
Lth layer of the encoder output. A MLP with a single hidden layer was used to implement
the classification head during pretraining, and a single linear layer was used during fine
tuning. The MLP implements the GELU nonlinearity, serving as the classification head.

Overall, the vision transformer used the encoder components of the original NLP
transformer architecture. The encoder receives a sequence of embedded picture patches
of size 16 × 16 as input, together with positional data, and a learnable class embedding
suspended to the sequence. The smaller the size of the patch, the higher the performance
will be and the higher the computational cost will be. Thus, 16 × 16 patch size was chosen
as in [58] because of its robustness against performance degradation and computational
complexity. The learnable class-embedding value is sent to a classification head coupled to
the output of the encoder, which uses it to produce a classification output depending on its
state. Figure 3 shows the general structure of the vision-transformer-based transfer-learning
architecture. The original vision transformer model, pre-trained on the ImageNet dataset,
was used in such a way that the last layer was replaced with a flattening layer followed by
batch normalization and an output dense layer.
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3.4.2. Transfer Learning

Transfer learning was employed such that vision transformer models pre-trained on
the large ImageNet natural image dataset were utilized as a starting point to train the
mammogram dataset. The objective was to use the vision transformer’s knowledge from
the large natural image dataset to classify breast mammograms into two classes: those
from benign and malignant tissues. For this, we detached the pre-trained prediction head
and replaced it with a D× K feedforward layer, where K = 2 is the total number of classes
in the downstream direction. Here, with transfer learning, we sought to enhance the
learning of the target function ft(·) in the target domain Dt, utilizing the knowledge from
the source domain Ds, and the learning task, Ts. The ImageNet dataset has m training
samples

{(
x1, y1), . . . ,

(
xi, yi), . . . , (xm, ym)

}
, where xi and yi represent the ith input and

label, respectively. Thereafter, the weights of the ImageNet pre-trained vision transformer
model W0, were utilized as a starting point during transfer learning to generate W1 by
minimizing the objective function in (2), where

〈
yij
∣∣xij, W0, W1, b

〉
is the Softmax output

probability function, and b is the bias.

J(〈W1, b|W0〉) =
−1
mn ∑m

i=1 ∑m
j=1 yij log

(
P
〈

yij
∣∣∣xij, W0, W1, b

〉)
(2)

In this study, we utilized three state-of-the-art Vision Transformer models: the vision
transformer (ViT) model proposed by Dosovitskiy et al. [58], the Swin transformer (Swin-T)
model proposed by Liu et al. [59], and the pyramid vision transformer (PVT) model
proposed by Wang et al. [60]. Swin-T improves locality using local or window attention
by applying self-attention to nonoverlapping windows. By gradually integrating the
windows, window-to-window communication in the following layer creates a hierarchical
representation, as shown in Figure 4. There are four variants of Swin transformer, Swin-
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tiny, Swin-small, Swin-base, and Swin-large, but in our case, we utilized Swin-small and
Swin-base owing to improved performance and reduced computational complexity.

Diagnostics 2023, 13, x FOR PEER REVIEW 8 of 17 
 

 

3.4.2. Transfer Learning 
Transfer learning was employed such that vision transformer models pre-trained on 

the large ImageNet natural image dataset were utilized as a starting point to train the 
mammogram dataset. The objective was to use the vision transformer’s knowledge from 
the large natural image dataset to classify breast mammograms into two classes: those 
from benign and malignant tissues. For this, we detached the pre-trained prediction head 
and replaced it with a 𝐷 × 𝐾 feedforward layer, where 𝐾 = 2 is the total number of clas-
ses in the downstream direction. Here, with transfer learning, we sought to enhance the 
learning of the target function 𝑓௧(∙) in the target domain 𝐷௧ , utilizing the knowledge 
from the source domain 𝐷௦, and the learning task, 𝑇௦. The ImageNet dataset has 𝑚 train-
ing samples ሼ(𝑥ଵ, 𝑦ଵ), … , (𝑥, 𝑦), … , (𝑥, 𝑦)ሽ, where 𝑥  and 𝑦  represent the 𝑖௧  input 
and label, respectively. Thereafter, the weights of the ImageNet pre-trained vision trans-
former model 𝑊, were utilized as a starting point during transfer learning to generate 𝑊ଵ by minimizing the objective function in (2), where ൻ𝑦ห𝑥, 𝑊, 𝑊ଵ, 𝑏 ൿ is the Softmax 
output probability function, and 𝑏 is the bias. 𝐽(⟨𝑊ଵ, 𝑏|𝑊⟩) = −1𝑚𝑛   𝑦log (𝑃ൻ𝑦ห𝑥, 𝑊, 𝑊ଵ, 𝑏 ൿ)ୀଵୀଵ  (2)

In this study, we utilized three state-of-the-art Vision Transformer models: the vision 
transformer (ViT) model proposed by Dosovitskiy et al. [58], the Swin transformer (Swin-
T) model proposed by Liu et al. [59], and the pyramid vision transformer (PVT) model 
proposed by Wang et al. [60]. Swin-T improves locality using local or window attention 
by applying self-attention to nonoverlapping windows. By gradually integrating the win-
dows, window-to-window communication in the following layer creates a hierarchical 
representation, as shown in Figure 4. There are four variants of Swin transformer, Swin-
tiny, Swin-small, Swin-base, and Swin-large, but in our case, we utilized Swin-small and 
Swin-base owing to improved performance and reduced computational complexity. 

 
Figure 4. Swin transformer architecture: H, height; W, width; C, channel; LN, layer normalization; 
MLP, multilayer perceptron; Z, output features; W-MSA, window based multi-head self-attention; 
SW-MSA, shifted window based multi-head self-attention. 

PVT uses a type of self-attention known as spatial-reduction attention (SRA), which 
is characterized by a spatial reduction in both keys and values, to obtain the quadratic 
complexity of the attention mechanism [60]. SRA gradually reduced the spatial dimen-
sionality of the characteristics across the entire model. In addition, it applied positional 
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dium, and PVT-large, but in our case, we utilized PVT-medium and PVT-large for im-
proved performance. 

Figure 4. Swin transformer architecture: H, height; W, width; C, channel; LN, layer normalization;
MLP, multilayer perceptron; Z, output features; W-MSA, window based multi-head self-attention;
SW-MSA, shifted window based multi-head self-attention.

PVT uses a type of self-attention known as spatial-reduction attention (SRA), which is
characterized by a spatial reduction in both keys and values, to obtain the quadratic com-
plexity of the attention mechanism [60]. SRA gradually reduced the spatial dimensionality
of the characteristics across the entire model. In addition, it applied positional embeddings
to all transformer blocks, strengthening the idea of order. The PVT architecture is shown in
Figure 5. There are four variants of PVT, PVT-tiny, PVT-small, PVT-medium, and PVT-large,
but in our case, we utilized PVT-medium and PVT-large for improved performance.
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3.5. Experimental Settings

The performance of the proposed method was evaluated using five experimental
settings. The first is a comparison of the performance of the proposed transfer-learning
method using three state-of-the-art vision transformer architectures. Second, we trained
vision transformer models on the mammogram dataset from scratch using these three
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architectures and compared them with their transfer learning counterparts. Third, we com-
pared transfer learning using vision transformers with CNNs. In the fourth experimental
setting, the computational cost of each vision transformer model was evaluated. Fifth, we
compared the performance of the proposed method with those using previous methods on
the same dataset.

3.6. Implementation Details

The models in this study were trained for 50 epochs with a learning rate of 0.0001,
using the Adam optimizer. These parameters were chosen based on prior studies on the
same dataset and hardware and software settings [19]. We applied an exponential decay
and a batch size of 64. We divided our datasets into training and testing groups in an
8:2 ratio. For the vision transformer models, GELU was used as an activation function,
together with an L2 regularizer. A rectified linear unit (ReLu) was used in the CNNs,
along with an L2 regularizer. To prevent bias in the results, the same parameter settings
were used for all comparisons. Five-fold cross-validation was used to compare the model
performances. RTX 3090 GPUs were used to implement the proposed transfer learning
model. We used Python programming language version 3.6 on TensorFlow framework.

3.7. Performance Metrics

Model performances were determined in terms of machine learning quantitative
performance metrics and statistical measures. The metrics included accuracy, area under the
receiver operating curve (AUC), F1-score, precision, recall, Matthew’s correlation coefficient
(MCC) [61], and kappa scores, all of which were calculated with a 95% confidence interval.
Table 1 provides the details of the performance metrics.

Table 1. Performance metrics: TP, true positive; TN, true negative; FP, false positive; FN,
false negative.

Metrics Formula

Accuracy TP+TN
TP+FP+FN+TN

Precision TP
(TP+FP)

Recall TP
(TP+FN)

F1 score TP
TP+ 1

2 (FP+FN)

MCC score TN×TP−FN×FP√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Kappa score 2×(TP×TN−FN×FP)
(TP+FP)×(FP+TN)+(TP+FN)×(FN+TN)

4. Results

The proposed vision-transformer-based transfer-learning model exhibited superior
performance on the DDSM dataset, as shown in Table 2. Six of the models used were
from three different vision-transformer-based architectures and performed uniformly in
terms of all the metrics used to evaluate performance. Consequently, the proposed vision-
transformer-based transfer-learning model provided an accuracy, AUC, F1 score, precision,
recall, MCC, and kappa value of 1 ± 0 on the DDSM dataset. This provides strong
evidence that vision-transformer-based transfer learning is effective in improving the DL
approach for breast mammograms, thereby improving the early diagnostic techniques for
breast cancer.

Figure 6 depicts the training time taken in seconds (s) (Figure 6a) and loss value
(Figure 6b) of each model. Even though the loss value for the six models is between 0.4 and
0.5, the training time needed for each model varies. The ViT-large model needed 7400 s,
being the slowest for training. On the other hand, the PVT-medium model took only 2900 s,
being the fastest model to train on the DDSM dataset. This shows that some models take
longer time to train to achieve the best performance, as in the case of ViT-large, while others
need less training time to achieve the same performance, as in the case of PVT-medium.
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This is critical while choosing a model to deploy, especially in clinical settings where large
number of images are processed every day.

Table 2. Results of vision-transformer-based transfer learning for breast cancer detection from
mammograms: AUC, area under receiver operating characteristic curve; MCC, Matthew’s
correlation coefficient.

Architecture Model Accuracy
(95%)

AUC
(95%)

F1 Score
(95%)

Precision
(95%)

Recall
(95%)

MCC
(95%)

Kappa
(95%)

Vision transformer
ViT-base 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
ViT-large 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

Swin transformer
Swin-small 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Swin-base 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

Pyramid vision
transformer

PVT-medium 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
PVT-large 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
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An investigation was conducted to determine the computational complexity of the
proposed method. To do so, we used floating point operations per second (FLOPS) to
compare the computational costs of the different vision-transformer-based transfer-learning
models. FLOPS is a measure of the number of operations needed to run a single instance of
a certain model. For instance, how many operations are required to train a single instance of
ViT model. The larger the FLOPS, the higher the computational cost; the lower the FLOPS,
the lower the computational cost. Thus, a model with a smaller FLOPS is preferred. Figure 7
depicts the number of parameters in millions (M) (Figure 7a) trained for each model and
their corresponding FLOPS in gigas (G) (Figure 7b) for all six vision-transformer-based
transfer-learning models. As can be seen from the figure, models with a large number
of parameters have a larger FLOPS, and vice versa. In our case, the PVT-medium with
44 million parameters had the smallest FLOPS of 7G. In contrast, ViT-large with 309 million
parameters had the highest FLOPS of 59G. Therefore, the PVT-medium with the smallest
value of FLOPS was effective for vision-transformer-based transfer learning on the DDSM
dataset, although its performance in terms of accuracy is the same as that of the other
five models.
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We trained a vision transformer model built from scratch, as in Dosovitskiy et al. [58],
Liu et al. [59], and Wang et al. [53] to compare their performance against pre-trained vision
transformer models (the proposed transfer learning method) for classifying breast images.
We used pre-trained vision transformer models, and the final layer was changed to reflect
the number of classes we wanted to categorize into (two in our case). Apart from that, we
used the original models (which have the same number of layers as the original models
utilized in this paper) as they are. For a fair comparison, we utilized the same optimizers
and their corresponding learning rates in other models trained from scratch, as those in the
proposed model. Table 3 shows the results of the transformer models on the DDSM dataset
trained from scratch. PVT-medium model provided the highest performance result among
all the vision transformer models trained from scratch. It exhibited an accuracy, AUC,
F1 score, precision, recall, MCC, and kappa score of 0.78 ± 0.02, 0.77 ± 0.02, 0.78 ± 0.01,
0.78 ± 0.02, 0.78 ± 0.02, 0.77 ± 0.01, and 0.77 ± 0.02, respectively. This result is far in-
ferior to the results achieved by the vision-transformer-based transfer-learning models
depicted in Table 2. Hence, vision-transformer-based transfer-learning models provide im-
proved performance compared with vision transformer models trained from scratch on the
DDSM dataset.

Table 3. Results of vision transformer methods trained from scratch for breast cancer detection
from mammograms: AUC, area under receiver operating characteristic curve; MCC, Matthew’s
correlation coefficient.

Architecture Model Accuracy
(95%)

AUC
(95%)

F1 Score
(95%)

Precision
(95%)

Recall
(95%)

MCC
(95%)

Kappa
(95%)

Vision transformer
ViT-base 0.74 ± 0.02 0.73 ± 0.03 0.74 ± 0.01 0.74 ± 0.01 0.74 ± 0.01 0.73 ± 0.03 0.73 ± 0.02
ViT-large 0.72 ± 0.04 0.72 ± 0.02 0.72 ± 0.03 0.72 ± 0.04 0.72 ± 0.03 0.71 ± 0.02 0.72 ± 0.01

Swin transformer
Swin-small 0.75 ± 0.02 0.75 ± 0.03 0.75 ± 0.01 0.75 ± 0.02 0.75 ± 0.02 0.74 ± 0.03 0.74 ± 0.02
Swin-base 0.76 ± 0.01 0.75 ± 0.02 0.75 ± 0.02 0.75 ± 0.01 0.76 ± 0.01 0.75 ± 0.01 0.75 ± 0.02

Pyramid vision
transformer

PVT-medium 0.78 ± 0.02 0.77 ± 0.02 0.78 ± 0.01 0.78 ± 0.02 0.78 ± 0.02 0.77 ± 0.01 0.77 ± 0.02
PVT-large 0.77 ± 0.03 0.77 ± 0.01 0.77 ± 0.02 0.77 ± 0.02 0.77 ± 0.02 0.77 ± 0.01 0.77 ± 0.01

To compare the performance of the proposed vision-transformer-based transfer learn-
ing with CNN-based transfer learning, we ran experiments using state-of-the-art CNN
models, with the same setting as in vision transformer models, except for using ReLu and
GELU as the activation functions for CNN-based models and vision-transformer-based
models, respectively. The results of the performance of the CNN-based transfer learning
models on the DDSM dataset are presented in Table 4. Compared with the results achieved
by the vision-transformer-based transfer-learning models in Table 2, which has the highest
AUC of 1± 0, the results of the CNN-based transfer-learning models, with the highest AUC
of 0.95 ± 0.01 for ResNet50, indicate that CNN-based transfer learning models perform
much poorer. This indicates that vision transformers are better for mammograms than
CNNs are.

Table 4. Results of CNN-based transfer learning for breast cancer detection from mammograms:
AUC, area under receiver operating characteristic curve; MCC, Matthew’s correlation coefficient.

Architecture Model Accuracy
(95%)

AUC
(95%)

F1 Score
(95%)

Precision
(95%)

Recall
(95%) MCC (95%) Kappa (95%)

ResNet
ResNet50 0.95 ± 0.01 0.96 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.94 ± 0.01 0.94 ± 0.02

ResNet101 0.95 ± 0.01 0.95 ± 0.02 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.94 ± 0.02 0.94 ± 0.02

EfficientNet
EfficientNetB0 0.94 ± 0.02 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.93 ± 0.03 0.93 ± 0.02
EfficientNetB2 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01

InceptionNet InceptionNetV2 0.93 ± 0.02 0.93 ± 0.01 0.93 ± 0.02 0.93 ± 0.02 0.93 ± 0.02 0.93 ± 0.03 0.92 ± 0.02
InceptionNetV3 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.93 ± 0.02 0.93 ± 0.02
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5. Discussion

Vision-transformer-based transfer learning for breast mammogram classification was
developed in this study. We implemented image-augmentation-based class-wise data
balancing to compensate for the imbalance in the number of benign and malignant sam-
ples within the DDSM dataset. This helps the proposed model to avoid bias to a given
class with a greater amount of data and negatively affects the detection outcome. The
state-of-the-art vision transformer architectures, including the vision transformer model
proposed by Dosovitskiy et al. [58], the Swin vision transformer model proposed by
Liu et al. [59], and the pyramid vision transformer model proposed by Wang et al. [60], were
utilized to evaluate the performance of the developed vision-transformer-based transfer
learning for breast mammogram classification. Consequently, the vision-transformer-based
transfer-learning approach provided the highest quantitative and statistical measures for
classifying breast mammograms as being from benign or malignant tissues. This proves
the effectiveness and quality of the vision-transformer-based transfer-learning approach for
detecting breast cancer from mammograms. The prime reason for the better performance
of vision transformers is the ability to capture global information from the early layers
and the deep self-attention mechanism that enables features in each patch to be carefully
analyzed for decision making. Additionally, our study showed that vision transformer
models are more effective when used for transfer learning on the DDSM dataset than
training the models from scratch, because of the small number of images in the DDSM
dataset. DL models require a large amount of data for training and a large number of
parameters to be trained, which results in the overfitting of the models in the case of a
small training dataset, such as the DDSM data. Therefore, transfer learning provided better
results as it used weights that were pre-trained on large datasets, such as the ImageNet
dataset, and leverages that knowledge to learn from small datasets, such as DDSM, during
training. We further investigated the effectiveness of vision-transformer-based transfer
learning by comparing it directly with CNN-based transfer learning for classifying breast
mammograms as being from benign or malignant tissues. To summarize, we observed
that vision-transformer-based transfer learning outperformed CNN-based transfer learning
of the DDSM dataset. Moreover, PVT-based transfer-learning models were computation-
ally less expensive, providing the same performance as those of other models, including
ViTs with a lower computational cost for breast mammogram classification. Finally, we
compared our approach with models from published works and found that our approach
produced the best performance results (Table 5). Details about the models in Table 5 can be
found in Section 2.

Table 5. Performance of published works on mammogram breast cancer detection using transform-
ers: DDSM, Digital Database for Screening Mammography; AUC, area under receiver operating
characteristic curve.

Paper Purpose Dataset AUC

Lee et al. [52] Classification Private 0.9663 ± 0.033
Tulder et al. [45] Classification DDSM 0.803 ± 0.003

Su et al. [54] Detection DDSM 0.65
Garrucho et al. [55] Detection OPTIMAM 0.948

Chen et al. [56] Classification Private 0.818 ± 0.039
Current work Classification DDSM 1 ± 0

6. Conclusions

We have presented a vision-transformer-based transfer-learning approach for breast
mammogram classification. A detailed evaluation using different vision transformer
models and variants has been performed. Consequently, we found that vision-transformer-
based transfer learning is effective for breast mammogram image classification, providing
superior performance with less computational complexity. Vision transformer-based trans-
fer learning outperformed convolutional neural network-based transfer learning for breast
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mammogram classification. However, this result was obtained from training on a single
dataset obtained from one source, and further studies utilizing different datasets from
different sources should be considered to generalize the result obtained in this study.
Future studies should also consider the use of various deep learning parameters to inves-
tigate their effect on vision-transformer-based transfer learning for breast mammogram
image classification.
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