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Abstract: Facial movements are crucial for human interaction because they provide relevant infor-
mation on verbal and non-verbal communication and social interactions. From a clinical point of
view, the analysis of facial movements is important for diagnosis, follow-up, drug therapy, and
surgical treatment. Current methods of assessing facial palsy are either (i) objective but inaccurate,
(ii) subjective and, thus, depending on the clinician’s level of experience, or (iii) based on static data.
To address the aforementioned problems, we implemented a deep learning algorithm to assess facial
movements during smiling. Such a model was trained on a dataset that contains healthy smiles only
following an anomaly detection strategy. Generally speaking, the degree of anomaly is computed by
comparing the model’s suggested healthy smile with the person’s actual smile. The experimentation
showed that the model successfully computed a high degree of anomaly when assessing the patients’
smiles. Furthermore, a graphical user interface was developed to test its practical usage in a clinical
routine. In conclusion, we present a deep learning model, implemented on open-source software,
designed to help clinicians to assess facial movements.

Keywords: anomaly detection; deep learning; long-short term memory; facial paralysis

1. Introduction

According to Jones et al. [1], the human face is an important social stimulus since it
provides relevant information about the observed person’s age [2] and sex [2,3]. More-
over, facial expressions are responsible for conveying emotional messages, enhancing
communication, and establishing links between individuals [4].

From a clinical point of view, the analysis of facial movements is relevant for diagnosis,
care, and follow-up. Primarily, this analysis provides quantitative criteria that ensure
an efficient follow-up for patients with facial pathology, e.g., facial paralysis [5]. Several
techniques for assessing facial movement have been developed [6], with a view to quanti-
fying the extent of facial paralysis and facilitating diagnosis and therapy, e.g., plastic or
reconstructive surgery. Generally speaking, techniques for assessing facial movement can
be categorized as either subjective or objective [7].

Subjective assessment techniques are based on the observation made by experienced
clinicians; examples include the House–Brackmann facial nerve grading system [8], the
Yanagihara facial nerve grading system [9] and the Sunnybrook facial grading system [10].
These methods rely on the graded observation of specific movements. Hence, the method’s
level of repeatability can be criticized [11–14].
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Objective techniques are based on the use of sensors to quantify and assess facial
movements. Most of these techniques can be automated to some degree, to make them
quicker to administer and to reduce variations. However, the signals generated by sensors
can be difficult to interpret. Objective assessment techniques can be subdivided into four
groups: electromyography (EMG), computer vision, three-dimensional (3D) imaging, and
optical motion capture.

The EMG technique consists of measuring the muscle electric response to nerve
stimulation. This technique requires one to puncture the small needles of the sensor into
a specific facial muscle [15]. Once the sensor is placed, the patient is asked to exercise
the muscle to read the electric signals. A non-invasive alternative to EMG is the surface
EMG [16], which uses patches of electrodes instead of needles. However, uniformly
placing the patches is a hard practice, and the signal is sensitive to external interference [7].
Electroneuronography is another alternative to EMG that consists of comparing distal facial
muscle response to electrical impulses. By applying electrical stimulation to the facial
nerve trunk, this method records compound muscle action potential as electric signals [17].
Nevertheless, some studies have invalidated distal muscle comparison when assessing
facial palsy [18].

Computer vision techniques can be further divided into sparse and dense techniques.
The former one leverages on face recognition to automatically place virtual landmarks on
the image [19]. Then, some machine learning techniques, such as an ensemble of regression
trees [20], or support vector machines [21], are used to classify different levels of facial
paralysis based on asymmetry features. These techniques are capable to assess facial
palsy [22,23] and social perception [1]. When dealing with the sequence of images, dense
techniques are based on optical flow, which describes the face movement in the image
space [24–26]. Otherwise, when dealing with single images, the assessment can be defined
as a classification task, performed by a Convolutional Neural Network (CNN) [27], where
asymmetry is used as a feature [28]. However, these techniques use each pixel in the image
to predict or classify variants of facial palsy. Although computer vision techniques are
faster than the other objective techniques, they are inaccurate since they rely on metric
estimations defined on the image space [26].

In practice, the analysis through 3D scans [6] can be used for planning future maxillo-
facial surgery [29], soft tissues changes quantification [30] and facial mimic variations of
patients before and after treatment [31]. This class can be further subdivided depending on
the sensor: laser-based scanning, stereophotogrammetry, structured-light scanning, or RGB-
D (red, green, blue-depth) sensors [32]. Depending on the sensor, this technique can provide
dense information (RGB-D) or sparse information (stereophotogrammetry) if landmarks
are placed on the face [33]. Although the stereophotogrammetric technique is the most
accurate and reliable, its cost, size, and complexity, are often unsuitable for incorporation
into clinical environments with limited availability of resources. One alternative solution to
these disadvantages is the use of RGB-D sensors since they can collect accurate static and
dynamic 3D facial scans; however, further improvements prior to their implementation are
required [32]. In conclusion, the main drawbacks of 3D scan techniques are that most of
them do not measure the motion of the face but rather a single 3D model [34], and some of
their evaluations rely on subjective analysis.

Optical motion capture techniques use photogrammetry to track the movement of
markers in 3D over time. The markers are placed in relevant zones in the face to measure
the movement of the skin [35,36].

In [37], a statistical analysis is carried out to assess the presence of unilateral facial palsy
before and after surgery. The analysis consists of comparing the trajectories of each pair of
distal markers to measure their symmetry. One of the main advantages of motion capture
systems is their precision which depends on the camera’s configuration. However, current
methods to assess facial movement rely on models that do not fully exploit sequential
data [38,39].
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Here, we present a deep learning model that assesses facial movement by exploiting
optical motion capture data. Compared with the study in [39], we decided to use a deep
learning model to represent sequential data collected from healthy movement rather than
using a statistical model. Furthermore, we implemented the model through a graphical user
interface (GUI), available at https://github.com/PolezhaevaOlga/Face_Motion_Capture
(accessed on 12 December 2022), to test its practical usage in clinical routines. Generally
speaking, the software evaluates the movement of the patient’s lower third of the face when
smiling and provides relevant information on possible diagnoses. Moreover, the software
provides a global degree of anomaly that further complements the clinician’s diagnostic.
Specifically, the evaluation is carried out with a long short-term memory (LSTM) model [40]
defined as an anomaly detector; thus, it compares the patient’s movement with its own
prediction. When evaluating a smile, the model is able to predict a healthy estimation of it
because it was trained on a dataset that contained solely smiles from healthy volunteers
following a one-class anomaly detection strategy [41]. The main objective of this study is to
present a different approach, through a deep learning model, to objectively assess facial
movement. The second objective is to provide the open-source software, containing the
trained model, that served as the proof of concept of our approach.

Below, Section 2 covers the data acquisition and preprocessing as well as the mathe-
matical definitions of the baseline model and our proposed deep learning model. Then,
Section 3 details the training and evaluation of the proposed model, the comparison be-
tween the latter model and the baseline, and the GUI built to assist clinicians. Lastly, the
model’s advantages and limitations are discussed in Section 4, and the paper provides a
brief conclusion in Section 5.

2. Materials and Methods

This Section focuses on depicting the processes of data acquisition and preprocessing,
as well as the models to be compared. The pipeline’s various steps are depicted in Figure 1.
Firstly, the data are acquired from motion capture sessions. Secondly, five preprocessing
steps are applied to the data. Thirdly, the preprocessed data are used to generate the dataset.
Lastly, the dataset is used to compute, train, and evaluate the models.

Figure 1. The pipeline’s workflow.

2.1. Motion Capture Sessions

The data used in this paper were acquired in several motion capture sessions. In each
session, we recorded a neutral expression and five facial movements: gentle closure of the
eyelids, forced closure of the eyelids, pronunciation of the [o] sound, pronunciation of the
[pµ] sound and broad smiling. The movements were recorded by tracking 105 reflective
markers with an optical-passive motion capture system (Vicon Ltd., Oxford, UK). Prior
to the sessions, a group of volunteers and patients were recruited. On the one hand,
all volunteers were Caucasian men and women, between 18 and 30 years old, with no
facial pathology known. On the other hand, patients were Caucasian men and women
with facial pathology. For each volunteer and each patient, a 3D model of the face was
generated using a stereo photogrammetry technique (Vectra M3 Imaging System, Canfield
Scientific, Parsippany, NJ, USA). Later, a perforated mask was 3D printed (Form 2, Formlabs,

https://github.com/PolezhaevaOlga/Face_Motion_Capture
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Somerville, MA, USA) so that the markers could be placed precisely on the face, using
hypoallergenic glue. Moreover, rigid dental support made by a professional prosthetic
defined the head’s reference frame to disregard the head movements. During the session,
each volunteer and each patient were asked to perform the 5 facial movements. Lastly, the
movements were exported in a comma-separated value (csv) file format. The protocol used
in the current study was approved by the Local Independent Ethics Committee (CPP Nord-
Ouest II, Amiens, France) under references ID-RCB 2011-A00532-39/2011-23 and ID-RCB
2016-A00716-45/2016-55, registered at ClinicalTrials.gov (NCT02002572 and NCT03115203),
and performed in accordance with the ethical standards of the 1964 Helsinki Declaration
and its subsequent revisions. All participants provided written informed consent for study
participation. For further details of the data acquisition process, please refer to [42].

Although the 5 movements previously described were recorded for each participant,
this study focuses on the broad smile movement, as its production leads to large muscle
displacements. For this purpose, 52 markers of the lower third of the face were chosen
(highlighted in Figure 2) to be analyzed further. This consideration was implemented
to reduce the complexity of the anomaly detection task, given the small number of csv
samples on the dataset.

Figure 2. Set of markers virtually placed on a 3D model of the face. The selected markers appear
highlighted in violet and red (commissure markers).

2.2. Data Preprocessing

The motion capture system tracked the 3D WPj(t) ∈ R3 of the j-th marker, being
j = 1, 2, . . . , 52, over time in the world coordinate frameW . The dental support is tracked to
define the position and orientation of the head reference frameH in the Special Orthogonal
group SO(3). The start and the end of each smile are selected manually, and WP(t) was
linearly interpolated, so the number of timesteps |t| = 400 remained constant.

A homogeneous transformation

HP′ = HMWWP′, (1)

where P′ is the homogeneous coordinate of P and HMW is the transformation matrix, is
applied to express P inH, i.e., HP. This transformation disregards the head’s translation
and rotation, so the face’s movements are precisely tracked.
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Much as in [38,39,43], the markers’ displacement was chosen as the feature vector that
describes the smile. The markers’ displacement, from their initial position to the current
one, was defined by

D(Pj(t)) = ‖Pj(0)− Pj(t)‖, (2)

where Pj(0) and Pj(t) are, respectively, the initial and current position of the j-th marker
and D ∈ R.

Once D had been obtained, the missing values were estimated using linear regres-
sion [44]. However, this regression can be applied only if a small number of values are
missing. In other cases, the csv file was not considered. Lastly, a scale transformation
(also known as the min-max transformation) was applied to Equation (2) to normalize the
feature vector:

S(D(Pj)) = D(Pj)/max(D(P), D(Pj)). (3)

2.3. Datasets

Firstly, the training and validation datasets, which represent 70% of the smiles, were
generated from healthy smiles only (n = 25 and n = 7, respectively). These datasets were
used to compute the baseline and train the deep learning model. Then, the test dataset was
generated from 4 healthy smiles (H-test) and 9 patients’ smiles (P-test). The latter smiles
were produced by 3 facial palsy patients and 1 facial transplantation patients. This dataset,
which represents the 30% of the smiles, is used to evaluate both models. It is important
to notice that the latter smiles were produced by volunteers that suffer from facial palsy.
Specifically, all the healthy smiles samples were collected from 2014 to 2017 as previously
described in [35,36,43,45–47].

2.4. Models

Two models are considered to evaluate the facial movement of healthy and patho-
logical smiles: the baseline and the LSTM model. In brief, we compare the traditional
approach [39], based on a statistical model, with a more complex model. Specifically, our
LSTM model was a multivariate time series forecaster that follows a seq-to-vector [48] archi-
tecture. Although other deep learning models, such as multi-layer perceptron (MLP) [49],
CNN, recurrent neural network (RNN) [50], and LSTM-CNN [51], were evaluated for this
task, we decided only to include LSTM because its prediction better fitted the healthy
smiles on the dataset. Similarly to [52], LSTM showed to be the best anomaly detector using
sequential data by computing lower errors than other deep learning models.

2.4.1. Baseline

The baseline model computes a single smile as the average of the markers’
scaled displacement

B(P) =
1
n ∑ S(D(P)), (4)

where n is the number of smiles (n = 32, see Section 2.3). In other words, the baseline can
be roughly interpreted as the average smile of the training and validation datasets. Figure 3
shows two examples of the markers’ average scaled displacement.
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Figure 3. Average of the scaled displacement for the commissure markers.

2.4.2. Long-Short Term Memory

An LSTM model was chosen to predict the smile because it had given a good level of
performance for expression recognition by leveraging on sequential data [53]. Moreover,
this model has outperformed other deep learning models as a dynamic and time-variant
anomaly detector [52].

The LSTM cell [54], displayed in Figure 4, is defined as follows:

i(t) = σ(W>xix(t) + W>hih(t−1) + bi)

f(t) = σ(W>x f x(t) + W>h f h(t−1) + b f )

o(t) = σ(W>xox(t) + W>hoh(t−1) + bo)

g(t) = tanh(W>xgx(t) + W>hgh(t−1) + bg)

c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ g(t)

y(t) = h(t) = o(t) ⊗ tanh(c(t))

(5)

where g is the gate, f, i, and o are the controller of the forget, input, and output gates,
respectively, h is the hidden state, c is the cell, x is the feature vector and

σ(z) = (1 + e−z)−1

tanh(z) =
ez − e−z

ez + e−z

(6)

are the logistic sigmoid and hyperbolic tangent functions, respectively, with z ∈ R.

Figure 4. Representation of an LSTM cell.
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In the view of the time series forecaster architecture, the mean square error (MSE):

MSE = ∑
(ŷ− y)2

n
, (7)

where y and ŷ are the real and the predicted outputs, respectively, were chosen as the loss
function. Similarly to [55], a windowing process was applied to x. This process consists of
generating a batch of inputs and targets by sliding a window through a vector. The size of
the window, defined by window_size = input_size+ target_size, was experimentally
set to input_size = 10 and target_size = 1, which results in window_size = 11. Thus,
resulting on an input size nx = (|j| × window_size× |t|) = (52× 11× 400).

During training, the model’s parameters were randomly initialized and then updated
using the Adam algorithm [56] and the stochastic gradient descent method. Several learning
rates, batch sizes, number of hidden units and number of hidden layers were experimentally
tuned using the Keras Tuner library and the RandomSearch Tuner class for a maximum of
100 epochs with an early stop on the validation loss.

As an anomaly detector, the overall objective of the model was to minimize the degree
of anomaly (cost) when evaluating the healthy smiles during training. To this end, the root
mean square error (RMSE)

RMSE =

√
∑

(ŷ− y)2

n
, (8)

was selected as the cost function.

3. Results

This section presents the results of three experiments: (i) LSTM’s training and eval-
uation, (ii) facial movement assessments comparison between LSTM and baseline, and
(iii) LSTM model deployment on clinician diagnosis through a GUI. All the processes car-
ried out in this study were executed on the same computer whose technical specifications
are detailed in Table 1.

Table 1. System specifications.

Hardware or Software Settings

Model Asus Strix G15
Operative System Windows home

GPU NVIDIA GeForce RTX 3060
Memory (RAM) 16 GB

Processor AMD Ryzen 7 5800H with Radeon Graphics 3.2 GHz
Memory storage capacity 512 GB SSD
Programming languages Python 3.10

IDE Jupyter notebook, Spyder
Libraries Tensorflow, Pandas, Numpy, Tkinter, Scikit learn

The goal of the training is to find the parameters that minimize the cost (or degree of
anomaly) on the training dataset. The training’s performance of the LSTM model is shown
in Figure 5. The model achieved a performance of 0.0268, 0.0469, 0.0372, 0.0685, for the
training, validation, H-test, and P-test datasets, respectively. Some LSTM model’s predic-
tions on the right and left commissure markers, for the H-test and P-Test, are presented
in Figure 6.

The LSTM model’s standard deviations were: 0.0119, 0.0274, 0.0174, and 0.0362 for the
training, validation, H-Test, and P-Test datasets, respectively.

Next, the baseline and the LSTM models evaluate the test datasets (Table 2) by com-
puting the degree of anomaly (Equation (8)). Figure 7 illustrates the evaluation, carried out
by both models, on the left oral commissure marker of a smile that belongs to the H-Test.
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Figure 5. Performance of LSTM during training.

(a) Healthy control #1.

(b) Patient #1.

(c) Patient #2.

Figure 6. LSTM assessment of a relevant pair of distal markers on the test dataset.
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Table 2. RMSE for the test dataset.

Smile H-1 H-2 H-3 H-4 P-1 P-2 P-3

LSTM 0.0454 0.0398 0.0527 0.0338 0.0895 0.0976 0.0625
Baseline 0.163 0.103 0.092 0.11 0.168 0.202 0.142

(a) LSTM-3 prediction. (b) Baseline: Average smile.

Figure 7. Predictions of the left oral commissure marker on a healthy smile.

In the view of the results presented here, we built a GUI for facial movement assess-
ment to evaluate its deployment in clinical practice. Therefore, we created DeepSmile
(Figure 8), which is an open-source software that assesses facial movement during a smile
by running the trained LSTM model as an executable file. DeepSmile uses the csv file as the
input to provide a report of its facial movement assessment with the following information:
the patient’s data; the performance of each marker (much as in Figure 6); a normalized and
metric (in mm) degree of anomaly; a discrete indicator of relevant anomaly based on the
normalized degree of anomaly relative to a predefined threshold.

Figure 8. DeepSmile’s graphical user interface.

To sum up, the DeepSmile’s facial movement assessment can be carried out as follows.
Firstly, the markers are placed on the patient’s face (as in [42]) during the motion capture
session. Secondly, the patient is asked to smile while the markers’ locations are recorded.
Thirdly, the markers are labeled (again as in [42]) and exported as a csv file. Lastly, the
csv file is loaded into DeepSmile through a GUI and a report (based on the LSTM model’s
evaluation) is generated.
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4. Discussion

In short, we have addressed a facial movement assessment problem as a non-linear
optimization task rather than a classification task [57] to avoid a certain level of subjectivity,
ex. the classes being defined by the grades of the House–Brackmann system. Furthermore,
an anomaly detector is able to precisely track the degree of anomaly of a patient during
follow-up which is expected to decrease over time if the rehabilition is successful. As stated
in [52], LSTM models outperform other machine learning algorithms when sequential
data is involved in anomaly detection tasks. On the one hand, the LSTM model is trained
to minimize the degree of anomaly when evaluating the healthy smiles on the training
dataset. Thus, its predictions are adapted to fit healthy smiles (Figure 6) and flag up a higher
degree of anomalies for the patients’ smiles. On the other hand, the baseline computes
a single smile as the average of the training dataset. Hence, its assessment relies on a
reference smile which does not fit other healthy smiles. Consequently, we consider that
the LSTM’s evaluations outperform those of the statistical model commonly used in the
literature. Figure 7 illustrates an example where the LSTM’s prediction is well adapted to
evaluate healthy smiles whereas the baseline is not. Nonetheless, we consider that further
investigation on LSTM variants, such as LSTM auto-encoders [58], should be carried out
to exploit sequential data collected by motion capture system which might contain some
null values.

Similarly to clinical diagnoses, the variation of the LSTM model’s assessment is lower
with healthy smiles than with patients’ smiles. When evaluating the H-test, the RMSE
was lower for the LSTM than for the baseline. Conversely, when evaluating the P-test, the
RMSE was higher for the LSTM model than for the baseline (Table 2). This implies that
the LSTM model is more robust than the baseline to differentiate a healthy smile from a
pathological one. Furthermore, the degree of anomaly computed by the baseline on H-1 is
higher than the corresponding one computed on P-3 (Table 2). In contrast, all the anomalies
computed by the LSTM on the H-test are lower than those computed on the P-test. We,
therefore, infer that a model that conveys temporal information is more suitable than a
reference average healthy smile for assessing facial movements.

Compared with other deep learning models that leverage on qualitative grading
system to evaluate facial pathologies ([59,60]), our LSTM model provides an objective
assessment that exploits motion capture data. Furthermore, marker positions are more
accurate than landmark positions because metric measurements are directly recorded
rather than being estimated from the image space ([22]). Nevertheless, the cameras used
by computer vision techniques are cheaper, and their installation requires less space than
optical motion capture systems. Although the symmetry was not defined as a characteristic
feature of healthy facial movement, ex. [22,61], we observed that our model outputs a low
degree of anomaly when evaluating symmetric movement. Indeed, Miller et al. report that
Emotrics computed more asymmetry in facial landmark positions than Auto E-Face when
evaluating healthy volunteers [22] whereas our model did not present this phenomenon. It
is interesting to note that the model predicted a displacement of similar magnitude when
evaluating a patient with right-sided paralysis (Figure 6c); thus, the model computed a
significant degree of anomaly on the paralyzed side. However, the model also computed a
smaller degree of anomaly on the healthy side of the face. This reflects the phenomenon of
compensation of the non-paralyzed side that we observe in clinical practice, but underlines
the fact that, depending on the case, this side cannot really be considered as healthy, at least
from the point of view of movement ([62,63]). This data objectively underlines the fact that
the management of patients with facial paralysis concerns the whole face. One example
is the use of botulinum toxin on the non-paralyzed side to induce a more symmetric
mimicry ([64]).

In this study, one of the challenges was to train the model on a small number of
healthy smiles. To address it, we opted to reduce the complexity of the anomaly detection
task by experimentally selecting a small subset of markers. Indeed, the weights related
to the selected markers were higher than the rest when training the deep learning model.
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Another challenge related to our dataset is that, so far, our deep learning model is trained
on healthy smiles produced by Caucasian volunteers only. Additionally, we observed in
some patients a passive displacement of markers placed on the paralyzed side. Indeed, the
markers were attracted in the direction of the non-paralyzed side by the soft tissue traction
phenomenon. Therefore, we concluded that the displacement feature might not fully model
abnormal movement, and another feature that includes the direction of movement should
be considered.

The GUI we have developed calculates the level of anomaly in millimeters as well as in
percentage for all the markers selected. It is, therefore, a global indicator of facial mobility,
which can be used for the longitudinal follow-up of patients to quantify the evolution
of paralysis. On the one hand, the interest of the GUI is to help clinicians to interpret
facial movement, measured by a motion capture system, by displaying a global degree of
anomaly. On the other hand, this principle leads to data simplification, whereas we could
provide an enhanced diagnosis by fully exploiting another feature. In the future, it would,
therefore, be interesting to diversify the algorithm so that it produces a group of scores, as
in the Sunnybrook score [10], related to defined anatomical areas or particular functions.
Moreover, this group of scores could be related to the relevant zones for each of the 5
movements of our complete protocol. Therefore, we must further curate our data, train
more deep learning models on the other 4 movements of our motion capture protocol and
explore other loss functions [65], meta-heuristic optimization algorithms [66] and features
such as the markers’ positions over time. Lastly, other deep learning architectures, such as
auto-encoders [67], LSTM auto-encoders, graph neural networks (GNN) [68] or MLP, could
be considered for facial movement assessment using motion capture data.

5. Conclusions

In this paper, we present an end-to-end deep learning framework to assess facial
movement using optical motion capture data. Our deep learning model is able to detect
abnormal movements because it was trained to predict healthy smiles via a one-class
anomaly detection strategy. Compared with clinician-graded facial palsy evaluations, our
novel technique is repeatable, reliable, objective, and not subjected to observer bias or
human error; thus, it can further complement the clinician diagnosis. Furthermore, our
training was deployed in a clinical environment, through a GUI, and it demonstrated
its potential use, thus, validating the proof of concept. Although, further development
is required.
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