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Abstract: Breast cancer is one of the common malignant tumors in women. It seriously endangers
women’s life and health. The human epidermal growth factor receptor 2 (HER2) protein is responsible
for the division and growth of healthy breast cells. The overexpression of the HER2 protein is
generally evaluated by immunohistochemistry (IHC). The IHC evaluation criteria mainly includes
three indexes: staining intensity, circumferential membrane staining pattern, and proportion of
positive cells. Manually scoring HER2 IHC images is an error-prone, variable, and time-consuming
work. To solve these problems, this study proposes an automated predictive method for scoring
whole-slide images (WSI) of HER2 slides based on a deep learning network. A total of 95 HER2
pathological slides from September 2021 to December 2021 were included. The average patch level
precision and f1 score were 95.77% and 83.09%, respectively. The overall accuracy of automated
scoring for slide-level classification was 97.9%. The proposed method showed excellent specificity for
all IHC 0 and 3+ slides and most 1+ and 2+ slides. The evaluation effect of the integrated method is
better than the effect of using the staining result only.

Keywords: breast cancer; HER2; IHC; whole-slide image; deep learning

1. Introduction

Breast cancer has become one of the most common cancers worldwide. According to
Global Cancer Statistics 2020, there are about 2.3 million new breast cancers worldwide
and about 685,000 deaths, accounting for 15.5% of female malignancies [1]. Breast cancer is
also one of the important causes of female tumor-related death, which greatly affects the
physical and mental health of people all over the world.

Human epidermal growth factor receptor 2 (HER2)-positive breast cancer refers to
the amplification of the ERBB2/neu proto-oncogene or the overexpression of the HER2
transmembrane receptor protein. Compared with other types of breast cancer, HER2-
positive breast cancer has a high degree of malignancy. It is a special breast cancer subtype
with strong aggressiveness, early recurrence and metastasis, and poor prognosis [2–4].

HER2 receptor protein overexpression is generally assessed by immunohistochemistry
(IHC). Normally, amplification levels of the HER2 gene were detected by fluorescence
in situ hybridization (FISH) and chromogenic in situ hybridization (CISH). Guidelines
of the Chinese Society of Clinical Oncology (CSCO) 2021 specify the criteria for HER2 to
improve the procedures for Her2 testing and standardize the interpretation of the results [5].
According to CSCO 2021, the status of HER2 should be screened by the IHC method first for
newly diagnosed breast cancer cases. If the results of the HER2 IHC staining are uncertain,
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FISH detection should be performed for confirmation. As shown in Table 1, if more than
10% of the infiltrating cancer cells have strong and intact cell membranes with brown
staining in IHC slides, the case displays 3+ and it is accepted as HER2-positive. If less than
10% of the infiltrating cancer cells have intact brown cell membranes or more than 10%
of the infiltrating cancer cells have incomplete and/or weak to moderate membranous
staining, the case is diagnosed as 2+ (HER2-equivocal) and the further ISH testing is needed
to assess HER2 expression [6]. If faint/barely perceptible membrane staining is detected in
more than 10% of invasive tumor cells, the case is reported as 1+ (HER2-negative). If no
staining or faint/barely perceptible membrane staining is seen in less than 10% of invasive
tumor cells, the case is reported as 0 (HER2-negative). The IHC evaluation criteria can
be summarized into three aspects: staining intensity, circumferential membrane staining
pattern, and proportion of positive cells. However, these criteria are still subjective in
practice, and there is no specific and explainable numerical basis. Therefore, it is highly
significant to propose an interpretable algorithm with automated IHC scoring diagnosis [7].

Table 1. Evaluation criteria for HER2 expression by IHC assay in breast cancer.

IHC Score Staining Pattern HER2 Expression

0 No staining or incomplete membrane staining which is faint
or barely perceptible in ≤10% of invasive tumor cells Negative

1+ Incomplete membrane staining which is faint or barely
perceptible in >10% of invasive tumor cells Low expression

2+

(a) Weak to moderate membrane staining with uneven
brownish yellow coloration in >10% of invasive tumor cells

(b) ≤10% of invasive tumor cells have circumferential
membrane staining which is complete, intense, and has

brownish coloration

Equivocal (low expression if the slide is
ISH-negative, positive if it is

ISH-positive.)

3+
>10% of invasive tumor cells have circumferential

membrane staining which is complete, intense, and has
brownish coloration

Positive

Computer-aided diagnosis systems have developed rapidly in the medical field [8–11].
Using computers to perform objective and quantitative analysis of medical imaging data to
assist doctors in clinical diagnosis of lesions can help to improve diagnosis accuracy and
efficiency [12]. The appearance of digital whole-slide images (WSIs) gives the opportunity
to see and analyze more detailed information and make a great step forward in automatic
metastatic breast cancer detection [13–17]. WSI is obtained by scanning and collecting
traditional glass pathological sections through an automatic microscope or optical magnifi-
cation system with a digital section acquisition device. It has high resolution and a large file
size. In general, WSI has multiple layers, representing a pyramid structure. The different
layers of the WSI correspond to different resolutions. The bottom layer of the pyramid has
the highest resolution image data, while the upper layers are thumbnails of the bottom
image for the pathologist to retrieve the data at low resolutions. It is worth mentioning that
the length or width between layers is usually double, which makes downsampling faster
and more accurate. However, since a single WSI has billions of pixels, the WSI labeling
process is time-consuming for doctors. Therefore, a deep-learning-based network is used
for auxiliary analysis of IHC WSIs [18]. Since the computer cannot directly process the WSI
image, we need to cut the image into several patches, calculate each patch, then generate a
thermal map diagnosis. We proposed an architecture to identify cancer areas in IHC images
and generate corresponding probability maps.

2. Materials and Methods

As shown in Figure 1, the proposed method includes 3 stages. First, the labeled masks
were extracted from the original WSIs with corresponding labels. Then, the tumor patches
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and normal patches were generated randomly according to label masks. These patches
were passed to a deep learning model (ResNet34) to refine the binary classification [19].
In stage two, the tissue mask was extracted from the test WSI. The patches generated
from the tissue mask were passed into the model to build the probability map. Then, the
binary tumor prediction was produced from the probability map with a threshold. In stage
three, the test WSI was differentiated from the four subclasses: IHC 0/1+/2+/3+. This
part of the work was implemented to perform an accurate and interpretable result using
comprehensive judgments.
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Figure 1. The proposed framework for this study.

2.1. Data Acquisition

Pathological slides from breast cancer patients in Peking Union Medical College
Hospital from September to December in 2021 were retrospectively included to form
the dataset of this study. These slides were scanned into WSIs using Aperio AT2 (Leica,
Germany) high-throughput biopsy scanner with a 20-magnification-scale objective and
bright-field illumination. The scan resolution was 0.5036 um per pixel. The dataset consisted
of a total of 95 whole slide images in Aperio format (.svs). Four categories were included,
which were IHC 0, 1+, 2+, and 3+. Two pathologists selected 23 WSIs from the dataset
and labeled the area with concentrated and evenly distributed tumor cells for training
and testing the deep learning model. The IHC scoring of all pathological images was
determined according to CSCO 2021. Figure 2 shows the samples of each category of this
dataset. The data distribution performed is shown in Table 2.



Diagnostics 2023, 13, 263 4 of 14

Diagnostics 2023, 13, 263 4 of 15 
 

 

was determined according to CSCO 2021. Figure 2 shows the samples of each category of 

this dataset. The data distribution performed is shown in Table 2. 

      

(a) (b) 

      

(c) (d) 

Figure 2. Sample thumbnail images (left) and patches (right) of the dataset for four categories show-

ing typical levels of membrane staining. (a) IHC 0. (b) IHC 1+. (c) IHC 2+. (d) IHC 3+. 

Table 2. Composition of the dataset. 

IHC Score No. WSIs No. Labeled WSIs 1 No. WSIs with 3+ control 2 

0 14 2 6 

1+ 25 7 7 

2+ 36 7 24 

3+ 20 7 10 

Total 95 23 47 
1 The labeled areas are all tumor areas rather than regions which only satisfy the IHC score. 2 WSI 

with 3+ control means this WSI has a IHC 3+ control tissue next to the main tissue (see Figure 3). 

  
(a) (b) 

Figure 3. (a) Normal WSI. (b) WSI with 3+ control.  

Figure 2. Sample thumbnail images (left) and patches (right) of the dataset for four categories
showing typical levels of membrane staining. (a) IHC 0. (b) IHC 1+. (c) IHC 2+. (d) IHC 3+.

Table 2. Composition of the dataset.

IHC Score No. WSIs No. Labeled WSIs 1 No. WSIs with 3+
control 2

0 14 2 6
1+ 25 7 7
2+ 36 7 24
3+ 20 7 10

Total 95 23 47
1 The labeled areas are all tumor areas rather than regions which only satisfy the IHC score. 2 WSI with 3+ control
means this WSI has a IHC 3+ control tissue next to the main tissue (see Figure 3).
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2.2. Image Preprocessing

Since WSIs usually have billions of pixels, either labeling or calculating WSIs at high
magnification scale is an extremely tedious and time-consuming process. By observing
the sections, it is found that there are tissue areas and white background areas in each
WSI. Therefore, in order to reduce the computation time and complexity, it is necessary
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to focus on the analysis of the tissue area and skip the white background area. In this
paper, a threshold-based segmentation method is utilized to detect the background region
automatically. Specifically, the original image is first transferred from the RGB color space
to the HSV color space. Then, the Otsu algorithm is used to calculate the optimal threshold
of each channel, and the final mask image is generated by combining the masks of the
H and S channels [20]. According to the actual calculation, the Otsu method can filter
about 75% of the area which belongs to the background, on average, greatly improving the
efficiency of calculation.

Due to the limited number of annotated WSI, the image augmentation method can be
used to amplify the existing images to increase the type and number of images. Meanwhile,
it plays a certain role in inhibiting the overfitting of the model. In this study, images were
rotated and flipped at random angles so as to increase the number of training patches. It
is worth noting that, in the process of image extraction or image augmentation, staining
standardization is not carried out. The reason is the existing dyeing standardization
algorithm with good effect is not perfect in the call of GPU, and it takes too long to process
a single-patch image (1–7 s/patch). In addition, staining standardization changes the color
of the image to some extent. Without a color standardization process, the brown part and
the blue part of IHC staining can still be distinguished by color space conversion.

Before the algorithm training was initiated, the 20-magnification-scale WSIs were
cropped into 256 ∗ 256 pixels of patches, and 23 labeled WSIs were randomly divided into
the training set and the test set. A total of 8000 patches were obtained from the training
set. Lesions identified on these patches were utilized to train and test the performance of
ResNet34 algorithm. Annotated patches of training and validation datasets were separated
by the function embedded in the scikit-learn package (ratio 9:1), and total of 16,000 images
were eventually used in stage one, among which 14,400 images were used for training and
1600 images were used for validation.

2.3. Deep Learning Structure

Deep learning has been extensively used in the diagnosis and analysis of medical
images in recent years [21–27]. The convolutional neural network stands out among many
deep learning networks because of its strong feature learning ability and has become
a cutting-edge algorithm in the field of image classification. In stage one, ResNet34 is
used as the deep learning backbone network in this paper. During the training process,
256 ∗ 256 ∗ 3 patches from the tumor and non-tumor regions of WSIs were used as inputs
in this stage to train the classification model to distinguish the two classes. During the
training phase, the hyperparameters of the network were set as follows: the optimizer was
set to SGD, the learning rate was set to 0.01, the momentum was set to 0.9, the loss function
was set to nn.CrossEntropyLoss, the epoch was 50, and the patch size was 64.

2.4. Extraction of Membranes and Cells

The diagnosis of HER2 dominates the type of subsequent treatment. Therefore, this
diagnosis becomes very important for breast cancer patients [28]. IHC is a special staining
method for finding the HER2 protein in cancer cells based on the detection of specific
antigens in tissue. The IHC staining slides are composed of a brown channel (diaminoben-
zidine, DAB signal) and a counterstain blue/violet channel (hematoxylin, H signal). The
membrane extraction method used in this study was performed on the brown channel.

According to the CSCO 2021 guidelines, the evaluation criteria of IHC-stained slides
is directly related to the membrane staining condition. Therefore, the staining intensity is
presented as an evaluation indicator. Staining intensity is the most important feature for
the classification of HER2 slides. The staining intensity indicates the depth of a certain color
in the image. In this study, it refers to the depth of brown areas. The image is converted
from RGB color space to HSV color space, and the brown area is extracted by a function in
OpenCV library [29]. After that, the extracted brown areas are converted to gray level and
its depth is calculated. When the staining intensity is low, it indicates that the extracted area
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is lightly stained, while when the staining intensity is high, it indicates that the extracted
area is deeply stained. Its value range from 0 to 1. The staining intensity of each IHC
score is in a different range, and hence this evaluation index is a good candidate feature for
further classification [30–33].

In this study, color deconvolution and watershed algorithms are employed to extract
tumor cells. After the input RGB image is preprocessed, the RGB value is converted into
optical density (OD) space, with the value range of [0, 1]. The inverse matrix of the OD
matrix is the required deconvolution matrix [34]. Therefore, color deconvolution method
is employed to separate and distinguish DAB and H staining [35]. Due to the overlap
between cells, the watershed algorithm based on distance transformation is needed in order
to process the binary image obtained by the color deconvolution method. The specific
algorithm is as follows.

Firstly, the image after color deconvolution is converted to gray level and the mor-
phology operation is performed to eliminate the interference on the boundary. Then the
distance transformation of the gray image is carried out to split the adherent cells. Finally,
expansion and filling methods are performed, and the connected component-based method
is used to extract the cells.

After the results of staining and cell extraction are obtained, the three interpretative
evaluation indicators of IHC scoring are calculated using these results. The flow diagram
of the specific algorithm is shown in Figure 4. The result of staining intensity can be
calculated from the mean value of the results extracted by staining. In addition, a proper
threshold should be set for the results of staining extraction for morphological corrosion and
expansion operation. The number of positive cells can be obtained by contour extraction.
The circumferential membrane staining pattern can be obtained by dividing the number
of positive cells calculated above by the total number of cell counts. For the calculation of
the proportion of positive cells, traversing the pixels of the stained area to find the nearest
cell of these pixels for calculation is an accurate method. However, the algorithm has high
computational complexity and greatly increases the running time. In view of this, this
study presents a rapid method to calculate the proportion of positive cells. The core of this
method is to multiply the stain extraction mask and the cell extraction mask. If the result of
one pixel is non-zero, the cell where the point is located is marked as a staining-positive cell.
Otherwise, it is marked as a staining-negative cell. This algorithm has low computational
complexity. In addition, the computational efficiency greatly improves.
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3. Results

PyTorch was used to build and form the CNN model in this study. All experiments
were conducted with a Linux server (Linux version CentOS 3.10.0 to 69.3.EL7.x86_64, CPU
version Intel (R) Xeon (R)Silver 4114 @ 2.20 GHz. The name of the graphics card is NVIDIA
GeForce RTX2080 Ti).

3.1. Tumor Area Classification

Figure 5 visualizes the training results of the stage one. Figure 5a is the original WSI.
The black outline in Figure 5b shows the tumor areas marked by the pathologist. Due to the
high resolution of WSI, patch-level classification of images is performed. The probability
heat map of the tumor region output by the deep learning model is shown in Figure 5c with
the original image added. Dark red color indicates areas with high probability of cancer,
while light and blue areas indicate low probability of tumor. The results are basically in
line with the expert annotations. A binary image of tumor areas is produced by selecting a
proper threshold of the probability map. Note that small areas are filtered for visualization
during the tissue area extraction phase.
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The dataset with annotations is randomly divided into the training set and the test
set. At stage one, 16 WSIs are used for model training, and the remaining labeled WSIs are
used for model inspection and evaluation. The following evaluation indexes are used to
evaluate the model performance [36–41].

Accuracy =
TP + TN

TP + FP + TN + FN
(1)
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Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1score = 2 × Precison × Recall
Precision + Recall

(4)

where TP is true positive cases, FP stands for false positive cases, TN is true negative cases,
and FN represents false negative cases. Table 3 shows the average results of patch-level data
analysis. The values of false positive rate and true positive rate of the receiver operating
characteristic (ROC) curve is shown in Figure 6a. The closer the ROC curve to the upper left-
hand corner and the larger the area under curve (AUC) value, the better the performance of
classification. Similarly, the closer the precision-recall (PR) curve to the upper right corner
and the larger the average precision (AP) value, the better the performance of the model. It
can be calculated that the proposed model for tumor classification provides high value of
AUC (0.983) and AP (0.984).

Table 3. Patch-level classification performance on the test set.

Evaluation
Indexes Accuracy Precision Recall F1 Score

73.49% 95.77% 73.38% 83.09%
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3.2. IHC Slide Classification

In stage three, the tumor areas in each WSI need to be further processed. Firstly,
downsampling is performed on tumor areas. The rate of downsampling needs to be
calculated to extract non-overlapping patches of 512 ∗ 512 pixels. For each patch, the
staining area and the number of cells is extracted. Figure 7 shows the extraction of staining
regions of different IHC score. It can be observed that with the increase of IHC score,
the color extracted from the staining area is darker. Therefore, the initial classification of
pathological slides is constructed based on staining area by setting the proper threshold
with this feature. It is also the main reference basis for IHC scoring.
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Figure 7. Visualization of staining region extraction. Each row includes the original patch (left),
the binary image of extracted staining (middle), and the image of staining area with original image
superimposed (right) for one IHC scoring. (a–c) IHC 0. (d–f) IHC 1+. (g–i) IHC 2+. (j–l) IHC 3+.
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In this study, color deconvolution and watershed algorithm are adopted for cell
extraction. For the cohesive and overlapping cells, the method based on the single-cell area
is used for segmentation and statistics. As for the extraction of cells with circumferential
positive membrane, a patch with IHC 3+ score is considered as an example. The schematic
diagram is shown in Figure 8. The confusion matrices of slide-level IHC results which only
used staining as the scoring basis and integrated the three scoring methods are illustrated
in Figure 9a (accuracy: 87.4%) and Figure 9b (accuracy: 97.9%), respectively. In addition,
we calculate the average time consumption of staining only method and integrated method
to compute a single patch. The comparison of time cost between these two methods is
shown in Figure 10. In general, the time cost of integrated method is nearly twice as much
as staining only method. In addition, Table 4 shows the statistical calculation of evaluation
indexes. For a single center dataset, the experimental thresholds can be set via this table.
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Table 4. The statistical calculation of evaluation indexes.

IHC Score 0 1+ 2+ 3+

Staining average min 0.000 0.006 0.146 0.541

Staining average max 0.008 0.189 0.367 0.611

Positive cell ratio min 0.000 0.004 0.130 0.173

Positive cell ratio max 0.041 0.125 0.318 0.338

Circumferential membrane cell ratio min 0.000 0.011 0.454 0.461

Circumferential membrane cell ratio max 0.000 0.360 0.741 0.908

4. Discussion

This study proposed a deep-learning-based predictive framework to automatically
evaluate the IHC score of HER2 WSIs in breast cancer. In total, 95 IHC section images with
23 labeled tumor areas were provided by Peking Union Medical College Hospital. The
corresponding IHC scores of all HER2 slides were used in the study of this project. The
predictive framework of this study is more interpretable compared with previous HER2
evaluation methods.

When a WSI is tested, the tumor area of this image is first predicted. Then, the
evaluation index in tumor area is calculated and analyzed. As can be seen from the results
in Table 1, the patch-level precision and f1 score of the proposed model are 95.77% and
83.09%, respectively, showing good performance in similar studies.

In stage three, three evaluation indexes of tumor patches were calculated. These
calculated features are identified based on CSCO 2021 guidelines, which are referenced by
pathologists when scoring IHC manually. The proposed method in stage three can extract
stained areas, extract positive cells, and extract cells with complete positive cell membranes.
It achieves high slide-level accuracy of HER2 score according to evaluation indexes. It is
worth mentioning that the selection of the threshold is intuitive and important. Certain
knowledge is needed to adjust a better threshold. Improper thresholds seriously affect
the accuracy of the method. Figure 8 presents the results of cell extraction and positive
cell labeling. These results are roughly consistent with the determination by manual
observation, indicating the high feasibility of the prediction framework. In Table 5, we
compare our method with other relevant methods. Most of these methods use manually
labeled WSIs to train and test models. The proposed method can perform HER2 scoring
based on WSI and obtain a high scoring accuracy.

Table 5. The comparison with related works.

Dataset Method Remarks

Saha et al. [24] 752 labeled images cropped from 79 WSIs
Fully connected long short-term memory

network, scoring by membrane and nuclei
detection

98.33% accuracy

Vandenberghe et al. [27] 74 WSIs
Watershed segmentation, support vector

machine, random forest, scoring by
classifying cells

83% accordance

Qaiser et al. [26] 86 WSIs Deep reinforcement learning, scoring by
connectivity-based method 79.4% accuracy

Singh et al. [38] 1345 labeled areas from 52 WSIs Neural network classifier, scoring by
ROI-based method 91.1% accuracy

Caroline et al. [39] 2580 labeled images from 86 WSIs K-nearest neighbor, multilayer perceptron,
scoring by decision trees 90% accuracy

Khameneh et al. [41] 127 WSIs Modified U-Net, scoring by WSI merging
and membrane segmentation

94.82% segmentation and 87%
classification accuracy

The proposed method 95 WSIs

ResNet, WSI segmentation, scoring by
integrated calculation of staining intensity,
circumferential membrane staining pattern,

and proportion of positive cells

73.49% segmentation accuracy, 95.77%
segmentation precision, 97.9% scoring

accuracy
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There are some limitations to our study. First, there may be inconsistencies in the depth
of the color due to inconsistencies in the dose of dye added during the slicing process. Some
deep learning methods use color standardization to better identify tumor areas. Generally,
color normalization was added in the image preprocessing stage of model training and
testing to make the result of classification more accurate. However, after the addition of this
method, the time of execution is greatly increased, and the higher accuracy has a limited
impact on the accuracy of the final IHC score. Secondly, although the processing method in
stage three has a high dependence on the selection of color thresholds, this paper finds that
the overall robustness of color extraction is stable after the conversion of color space. In
addition, the influence of color depth on classification results can be limited by collecting
HER2 slides from multiple centers.

In conclusion, this study conducted interpretable analysis and prediction of IHC scores
of histological images of HER2 slides based on the deep learning method. It provides the
direction for the clinical application of deep learning and promotes the development of
precision therapy in the field of breast cancer.
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