Ganglion Cell Complex Analysis: Correlations with Retinal Nerve Fiber Layer on Optical Coherence Tomography
Abstract
:1. Introduction
2. Acquisition Technique of GCC
3. OCT in Neurological and Vessel Diseases
4. Variation of GCC and RNFL with the Stages of Glaucoma
4.1. Early Stage
4.2. Moderate Stage
4.3. Advanced Stage
5. Follow-Up of Glaucoma by Considering the GCC Thickness Change
6. Other Criteria Based on GCC for Glaucoma Diagnosis
6.1. Macular Vulnerability Zone
6.2. Inferior-Superior Asymmetry
6.3. Interocular GCC Asymmetry
7. The Comparison of GCC with Other Ophthalmologic Parameters in the Detection and Evaluation of Glaucoma Patients
7.1. The Comparison of GCC with RNFL
7.1.1. The Value of GCC Compared to RNFL in Different Stages of Glaucoma
7.1.2. The Value of GCC Compared to pRNFL for Myopia
7.1.3. The Value of GCC Compared to pRNFL for Different Types of Glaucoma
7.2. The Comparison of GCC with the Cup/Disc Ratio
7.3. Comparison of GCC with the Macular Thickness
7.4. GCC and VF in the Glaucoma Patient
7.4.1. Comparison of GCC with VF
7.4.2. The Role of GCC and RNFL in the Prediction of VF Changes
7.4.3. Combining Indices for Glaucoma Disease Staging
8. Errors and Artefacts in the GCC Examination
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Devalla, S.K.; Liang, Z.; Pham, T.H.; Boote, C.; Strouthidis, N.G.; Thiery, A.H.; Girard, M.J.A. Glaucoma Management in the Era of Artificial Intelligence. Br. J. Ophthalmol. 2020, 104, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Tatham, A.J.; Medeiros, F.A. Detecting Structural Progression in Glaucoma with Optical Coherence Tomography. Ophthalmology 2017, 124, S57–S65. [Google Scholar] [CrossRef] [PubMed]
- Renard, J.-P.; Fénolland, J.-R.; Giraud, J.-M. Glaucoma Progression Analysis by Spectral-Domain Optical Coherence Tomography (SD-OCT). J. Fr. Ophtalmol. 2019, 42, 499–516. [Google Scholar] [CrossRef]
- Scuderi, G.; Fragiotta, S.; Scuderi, L.; Iodice, C.M.; Perdicchi, A. Ganglion Cell Complex Analysis in Glaucoma Patients: What Can It Tell Us? Eye Brain 2020, 12, 33–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nouri-Mahdavi, K.; Nowroozizadeh, S.; Nassiri, N.; Cirineo, N.; Knipping, S.; Giaconi, J.; Caprioli, J. Macular Ganglion Cell/Inner Plexiform Layer Measurements by Spectral Domain Optical Coherence Tomography for Detection of Early Glaucoma and Comparison to Retinal Nerve Fiber Layer Measurements. Am. J. Ophthalmol. 2013, 156, 1297–1307.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, V.; Tham, Y.-C.; Cheung, C.Y.; Mani, B.; Wong, T.Y.; Aung, T.; Cheng, C.-Y. Diagnostic Accuracy of Macular Ganglion Cell-Inner Plexiform Layer Thickness for Glaucoma Detection in a Population-Based Study: Comparison with Optic Nerve Head Imaging Parameters. PLoS ONE 2018, 13, e0199134. [Google Scholar] [CrossRef] [PubMed]
- Curcio, C.A.; Allen, K.A. Topography of Ganglion Cells in Human Retina. J. Comp. Neurol. 1990, 300, 5–25. [Google Scholar] [CrossRef]
- Kansal, V.; Armstrong, J.J.; Pintwala, R.; Hutnik, C. Optical Coherence Tomography for Glaucoma Diagnosis: An Evidence Based Meta-Analysis. PLoS ONE 2018, 13, e0190621. [Google Scholar] [CrossRef]
- Tan, O.; Chopra, V.; Lu, A.T.-H.; Schuman, J.S.; Ishikawa, H.; Wollstein, G.; Varma, R.; Huang, D. Detection of Macular Ganglion Cell Loss in Glaucoma by Fourier-Domain Optical Coherence Tomography. Ophthalmology 2009, 116, 2305–2314.e142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takagi, S.T.; Kita, Y.; Yagi, F.; Tomita, G. Macular Retinal Ganglion Cell Complex Damage in the Apparently Normal Visual Field of Glaucomatous Eyes With Hemifield Defects. J. Glaucoma 2012, 21, 318–325. [Google Scholar] [CrossRef]
- Lisboa, R.; Paranhos, A., Jr.; Weinreb, R.N.; Zangwill, L.M.; Leite, M.T.; Medeiros, F.A. Comparison of Different Spectral Domain OCT Scanning Protocols for Diagnosing Preperimetric Glaucoma. Invest. Ophthalmol. Vis. Sci. 2013, 54, 3417–3425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, L.; Zhao, Y.; Yoshida, M.; Chen, H.; Yang, J.F.; Kim, T.S.; Cang, J.; Troy, J.B.; Liu, X. Sustained Ocular Hypertension Induces Dendritic Degeneration of Mouse Retinal Ganglion Cells That Depends on Cell Type and Location. Investig. Ophthalmol. Vis. Sci. 2013, 54, 1106–1117. [Google Scholar] [CrossRef]
- Dascalescu, D.; Corbu, C.; Coviltir, V.; Schmitzer, S.; Constantin, M.; Burcel, M.; Ionescu, C.; Strehaianu, V.; Potop, V. The Ganglion Cell Complex as an Useful Tool in Glaucoma Assessment. Rom J. Ophthalmol. 2018, 62, 300–303. [Google Scholar] [CrossRef]
- Cennamo, G.; Romano, M.R.; Vecchio, E.C.; Minervino, C.; Della Guardia, C.; Velotti, N.; Carotenuto, A.; Montella, S.; Orefice, G.; Cennamo, G. Anatomical and Functional Retinal Changes in Multiple Sclerosis. Eye (Lond) 2016, 30, 456–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierro, L.; Rabiolo, A. Emerging Issues for Optical Coherence Tomography. Dev. Ophthalmol. Karger Basel 2017, 60, 28–37. [Google Scholar]
- Wang, B.; Camino, A.; Pi, S.; Guo, Y.; Wang, J.; Huang, D.; Hwang, T.S.; Jia, Y. Three-Dimensional Structural and Angiographic Evaluation of Foveal Ischemia in Diabetic Retinopathy: Method and Validation. Biomed. Opt. Express 2019, 10, 3522–3532. [Google Scholar] [CrossRef] [PubMed]
- Glovinsky, Y.; Quigley, H.A.; Pease, M.E. Foveal Ganglion Cell Loss Is Size Dependent in Experimental Glaucoma. Investig. Ophthalmol. Vis. Sci. 1993, 34, 395–400. [Google Scholar] [PubMed]
- Murthy, R.K.; Haji, S.; Sambhav, K.; Grover, S.; Chalam, K.V. Clinical Applications of Spectral Domain Optical Coherence Tomography in Retinal Diseases. Biomed. J. 2016, 39, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Verticchio Vercellin, A.C.; Jassim, F.; Poon, L.Y.-C.; Tsikata, E.; Braaf, B.; Shah, S.; Ben-David, G.; Shieh, E.; Lee, R.; Simavli, H.; et al. Diagnostic Capability of Three-Dimensional Macular Parameters for Glaucoma Using Optical Coherence Tomography Volume Scans. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4998–5010. [Google Scholar] [CrossRef] [Green Version]
- Mwanza, J.-C.; Oakley, J.D.; Budenz, D.L.; Chang, R.T.; Knight, O.J.; Feuer, W.J. Macular Ganglion Cell-Inner Plexiform Layer: Automated Detection and Thickness Reproducibility with Spectral Domain-Optical Coherence Tomography in Glaucoma. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8323–8329. [Google Scholar] [CrossRef] [Green Version]
- Pazos, M.; Dyrda, A.A.; Biarnés, M.; Gómez, A.; Martín, C.; Mora, C.; Fatti, G.; Antón, A. Diagnostic Accuracy of Spectralis SD OCT Automated Macular Layers Segmentation to Discriminate Normal from Early Glaucomatous Eyes. Ophthalmology 2017, 124, 1218–1228. [Google Scholar] [CrossRef]
- Akashi, A.; Kanamori, A.; Nakamura, M.; Fujihara, M.; Yamada, Y.; Negi, A. Comparative Assessment for the Ability of Cirrus, RTVue, and 3D-OCT to Diagnose Glaucoma. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4478–4484. [Google Scholar] [CrossRef] [Green Version]
- Kita, Y.; Soutome, N.; Horie, D.; Kita, R.; Hollό, G. Circumpapillary Ganglion Cell Complex Thickness to Diagnose Glaucoma: A Pilot Study. Indian J. Ophthalmol. 2017, 65, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Chaglasian, M.; Fingeret, M.; Davey, P.G.; Huang, W.-C.; Leung, D.; Ng, E.; Reisman, C.A. The Development of a Reference Database with the Topcon 3D OCT-1 Maestro. Clin. Ophthalmol. 2018, 12, 849–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donaldson, L.; Margolin, E. Visual Fields and Optical Coherence Tomography (OCT) in Neuro-Ophthalmology: Structure-Function Correlation. J. Neurol. Sci. 2021, 429, 118064. [Google Scholar] [CrossRef] [PubMed]
- Petzold, A. Three “Red Lines” for Pattern Recognition-Based Differential Diagnosis Using Optical Coherence Tomography in Clinical Practice. J. Neuroophthalmol. 2021, 41, 385–398. [Google Scholar] [CrossRef]
- Jørstad, Ø.K.; Wigers, A.R.; Marthinsen, P.B.; Moe, M.C.; Evang, J.A. Loss of Horizontal Macular Ganglion Cell Complex Asymmetry: An Optical Coherence Tomography Indicator of Chiasmal Compression. BMJ Open Ophthalmol. 2018, 3, e000195. [Google Scholar] [CrossRef] [Green Version]
- Tieger, M.G.; Hedges, T.R.; Ho, J.; Erlich-Malona, N.K.; Vuong, L.N.; Athappilly, G.K.; Mendoza-Santiesteban, C.E. Ganglion Cell Complex Loss in Chiasmal Compression by Brain Tumors. J. Neuro-Ophthalmol. 2017, 37, 7–12. [Google Scholar] [CrossRef]
- Goto, K.; Miki, A.; Yamashita, T.; Araki, S.; Takizawa, G.; Mizukawa, K.; Ieki, Y.; Kiryu, J. Quantitative Analysis of Macular Inner Retinal Layer Using Swept-Source Optical Coherence Tomography in Patients with Optic Tract Syndrome. J. Ophthalmol. 2017, 2017, 3596587. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, T.; Miki, A.; Goto, K.; Araki, S.; Takizawa, G.; Ieki, Y.; Kiryu, J.; Tabuchi, A.; Iguchi, Y.; Kimura, K.; et al. Evaluation of Significance Maps and the Analysis of the Longitudinal Time Course of the Macular Ganglion Cell Complex Thicknesses in Acquired Occipital Homonymous Hemianopia Using Spectral-Domain Optical Coherence Tomography. Neuro-Ophthalmol. 2020, 44, 236–245. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, S.; Fu, J.; Wu, G.; Mu, D.; Li, S.; Wang, J.; Wang, N. Comparative Study of Retinal Nerve Fibre Layer Measurement by RTVue OCT and GDx VCC. Br. J. Ophthalmol. 2011, 95, 509–513. [Google Scholar] [CrossRef]
- Leite, M.T.; Rao, H.L.; Zangwill, L.M.; Weinreb, R.N.; Medeiros, F.A. Comparison of the Diagnostic Accuracies of the Spectralis, Cirrus, and RTVue Optical Coherence Tomography Devices in Glaucoma. Ophthalmology 2011, 118, 1334–1339. [Google Scholar] [CrossRef] [Green Version]
- Rao, H.L.; Zangwill, L.M.; Weinreb, R.N.; Sample, P.A.; Alencar, L.M.; Medeiros, F.A. Comparison of Different Spectral Domain Optical Coherence Tomography Scanning Areas for Glaucoma Diagnosis. Ophthalmology 2010, 117, 1692–1699.e1. [Google Scholar] [CrossRef]
- Park, S.B.; Sung, K.R.; Kang, S.Y.; Kim, K.R.; Kook, M.S. Comparison of Glaucoma Diagnostic Capabilities of Cirrus HD and Stratus Optical Coherence Tomography. Arch. Ophthalmol. 2009, 127, 1603–1609. [Google Scholar] [CrossRef] [Green Version]
- Moreno, P.A.M.; Konno, B.; Lima, V.C.; Castro, D.P.E.; Castro, L.C.; Leite, M.T.; Mendes Pacheco, M.A.M.; Lee, J.M.; Prata, T.S. Spectral-Domain Optical Coherence Tomography for Early Glaucoma Assessment: Analysis of Macular Ganglion Cell Complex versus Peripapillary Retinal Nerve Fiber Layer. Can. J. Ophthalmol. 2011, 46, 543–547. [Google Scholar] [CrossRef]
- Traverso, C.E.; Walt, J.G.; Kelly, S.P.; Hommer, A.H.; Bron, A.M.; Denis, P.; Nordmann, J.P.; Renard, J.P.; Bayer, A.; Grehn, F.; et al. Direct Costs of Glaucoma and Severity of the Disease: A Multinational Long Term Study of Resource Utilisation in Europe. Br. J. Ophthalmol. 2005, 89, 1245–1249. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.A.; Shin, H.-Y.; Park, H.-Y.L.; Park, C.K. The Pattern of Retinal Nerve Fiber Layer and Macular Ganglion Cell-Inner Plexiform Layer Thickness Changes in Glaucoma. J. Ophthalmol. 2017, 2017, 6078365. [Google Scholar] [CrossRef] [Green Version]
- Miraftabi, A.; Amini, N.; Morales, E.; Henry, S.; Yu, F.; Afifi, A.; Coleman, A.L.; Caprioli, J.; Nouri-Mahdavi, K. Macular SD-OCT Outcome Measures: Comparison of Local Structure-Function Relationships and Dynamic Range. Investig. Opthalmology Vis. Sci. 2016, 57, 4815. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.R.; Lee, E.S.; Seong, G.J.; Kim, J.H.; An, H.G.; Kim, C.Y. Structure–Function Relationship and Diagnostic Value of Macular Ganglion Cell Complex Measurement Using Fourier-Domain OCT in Glaucoma. Investig. Opthalmology Vis. Sci. 2010, 51, 4646. [Google Scholar] [CrossRef]
- Rao, H.L.; Qasim, M.; Hussain, R.S.M.; Januwada, M.; Pillutla, L.N.; Begum, V.U.; Chaitanya, A.; Senthil, S.; Garudadri, C.S. Structure–Function Relationship in Glaucoma Using Ganglion Cell–Inner Plexiform Layer Thickness Measurements. Investig. Opthalmology Vis. Sci. 2015, 56, 3883. [Google Scholar] [CrossRef] [Green Version]
- Moghimi, S.; Bowd, C.; Zangwill, L.M.; Penteado, R.C.; Hasenstab, K.; Hou, H.; Ghahari, E.; Manalastas, P.I.C.; Proudfoot, J.; Weinreb, R.N. Measurement Floors and Dynamic Ranges of OCT and OCT Angiography in Glaucoma. Ophthalmology 2019, 126, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Mwanza, J.-C.; Budenz, D.L.; Warren, J.L.; Webel, A.D.; Reynolds, C.E.; Barbosa, D.T.; Lin, S. Retinal Nerve Fibre Layer Thickness Floor and Corresponding Functional Loss in Glaucoma. Br. J. Ophthalmol. 2015, 99, 732–737. [Google Scholar] [CrossRef] [Green Version]
- Hood, D.C.; Kardon, R.H. A Framework for Comparing Structural and Functional Measures of Glaucomatous Damage. Prog. Retin. Eye Res. 2007, 26, 688–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hood, D.C.; Anderson, S.C.; Wall, M.; Kardon, R.H. Structure versus Function in Glaucoma: An Application of a Linear Model. Investig. Opthalmology Vis. Sci. 2007, 48, 3662. [Google Scholar] [CrossRef] [Green Version]
- Bowd, C.; Zangwill, L.M.; Weinreb, R.N.; Medeiros, F.A.; Belghith, A. Estimating Optical Coherence Tomography Structural Measurement Floors to Improve Detection of Progression in Advanced Glaucoma. Am. J. Ophthalmol. 2017, 175, 37–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, K.R.; Sun, J.H.; Na, J.H.; Lee, J.Y.; Lee, Y. Progression Detection Capability of Macular Thickness in Advanced Glaucomatous Eyes. Ophthalmology 2012, 119, 308–313. [Google Scholar] [CrossRef]
- Shin, J.W.; Sung, K.R.; Lee, G.C.; Durbin, M.K.; Cheng, D. Ganglion Cell–Inner Plexiform Layer Change Detected by Optical Coherence Tomography Indicates Progression in Advanced Glaucoma. Ophthalmology 2017, 124, 1466–1474. [Google Scholar] [CrossRef]
- Zhang, X.; Dastiridou, A.; Francis, B.A.; Tan, O.; Varma, R.; Greenfield, D.S.; Schuman, J.S.; Sehi, M.; Chopra, V.; Huang, D. Baseline Fourier-Domain Optical Coherence Tomography Structural Risk Factors for Visual Field Progression in the Advanced Imaging for Glaucoma Study. Am. J. Ophthalmol. 2016, 172, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.J.; Baek, S.U.; Kim, Y.K.; Park, K.H.; Jeoung, J.W. Rates of Ganglion Cell-Inner Plexiform Layer Thinning in Normal, Open-Angle Glaucoma and Pseudoexfoliation Glaucoma Eyes: A Trend-Based Analysis. Investig. Ophthalmol. Vis. Sci. 2019, 60, 599–604. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.J.; Kim, Y.K.; Park, K.H.; Jeoung, J.W. Trend-Based Analysis of Ganglion Cell–Inner Plexiform Layer Thickness Changes on Optical Coherence Tomography in Glaucoma Progression. Ophthalmology 2017, 124, 1383–1391. [Google Scholar] [CrossRef]
- Leung, C.K.S.; Ye, C.; Weinreb, R.N.; Yu, M.; Lai, G.; Lam, D.S. Impact of Age-Related Change of Retinal Nerve Fiber Layer and Macular Thicknesses on Evaluation of Glaucoma Progression. Ophthalmology 2013, 120, 2485–2492. [Google Scholar] [CrossRef] [PubMed]
- Holló, G.; Zhou, Q. Evaluation of Retinal Nerve Fiber Layer Thickness and Ganglion Cell Complex Progression Rates in Healthy, Ocular Hypertensive, and Glaucoma Eyes with the Avanti RTVue-XR Optical Coherence Tomograph Based on 5-Year Follow-Up. J. Glaucoma 2016, 25, e905–e909. [Google Scholar] [CrossRef] [PubMed]
- Hood, D.C.; Raza, A.S.; de Moraes, C.G.V.; Liebmann, J.M.; Ritch, R. Glaucomatous Damage of the Macula. Prog. Retin. Eye Res. 2013, 32, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, G.; Luo, T.; Gast, T.J.; Burns, S.A.; Malinovsky, V.E.; Swanson, W.H. Imaging Glaucomatous Damage Across the Temporal Raphe. Investig. Opthalmology Vis. Sci. 2015, 56, 3496. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Gast, T.J.; Burns, S.A. In Vivo Adaptive Optics Imaging of the Temporal Raphe and Its Relationship to the Optic Disc and Fovea in the Human Retina. Investig. Opthalmology Vis. Sci. 2014, 55, 5952. [Google Scholar] [CrossRef] [Green Version]
- Swanson, W.H.; King, B.J.; Burns, S.A. Within-Subject Variability in Human Retinal Nerve Fiber Bundle Width. PLoS ONE 2019, 14, e0223350. [Google Scholar] [CrossRef]
- Hood, D.C.; Raza, A.S.; de Moraes, C.G.v; Johnson, C.A.; Liebmann, J.M.; Ritch, R. The Nature of Macular Damage in Glaucoma as Revealed by Averaging Optical Coherence Tomography Data. Transl. Vis. Sci. Technol. 2012, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Jonas, J.B.; Fernández, M.C.; Stürmer, J. Pattern of Glaucomatous Neuroretinal Rim Loss. Ophthalmology 1993, 100, 63–68. [Google Scholar] [CrossRef]
- Jonas, J.B.; Mardin, C.Y.; Schlötzer-Schrehardt, U.; Naumann, G.O. Morphometry of the Human Lamina Cribrosa Surface. Investig. Ophthalmol. Vis. Sci. 1991, 32, 401–405. [Google Scholar]
- Choi, J.A.; Park, H.-Y.L.; Jung, K.-I.; Hong, K.H.; Park, C.K. Difference in the Properties of Retinal Nerve Fiber Layer Defect Between Superior and Inferior Visual Field Loss in Glaucoma. Investig. Opthalmology Vis. Sci. 2013, 54, 6982. [Google Scholar] [CrossRef] [Green Version]
- Heijl, A.; Lundqvist, L. The frequency distribution of earliest glaucomatous visual field defects documented by automatic perimetry. Acta Ophthalmol 2009, 62, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Tanna, A.P. Retinal Nerve Fiber Layer Analysis in Glaucoma. In Atlas of Optical Coherence Tomography for Glaucoma; Springer International Publishing: Cham, Switzerland, 2020; pp. 31–60. [Google Scholar]
- Quigley, H.A.; Addicks, E.M. Regional Differences in the Structure of the Lamina Cribrosa and Their Relation to Glaucomatous Optic Nerve Damage. Arch. Ophthalmol. 1981, 99, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Dandona, L.; Quigley, H.A.; Brown, A.E.; Enger, C. Quantitative Regional Structure of the Normal Human Lamina Cribrosa: A Racial Comparison. Arch. Ophthalmol. 1990, 108, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Kotowski, J.; Folio, L.S.; Wollstein, G.; Ishikawa, H.; Ling, Y.; Bilonick, R.A.; Kagemann, L.; Schuman, J.S. Glaucoma Discrimination of Segmented Cirrus Spectral Domain Optical Coherence Tomography (SD-OCT) Macular Scans. Br. J. Ophthalmol. 2012, 96, 1420–1425. [Google Scholar] [CrossRef] [PubMed]
- Takemoto, D.; Higashide, T.; Ohkubo, S.; Udagawa, S.; Sugiyama, K. Ability of Macular Inner Retinal Layer Thickness Asymmetry Evaluated by Optical Coherence Tomography to Detect Preperimetric Glaucoma. Transl. Vis. Sci. Technol. 2020, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Yamada, H.; Hangai, M.; Nakano, N.; Takayama, K.; Kimura, Y.; Miyake, M.; Akagi, T.; Ikeda, H.O.; Noma, H.; Yoshimura, N. Asymmetry Analysis of Macular Inner Retinal Layers for Glaucoma Diagnosis. Am. J. Ophthalmol. 2014, 158, 1318–1329.e3. [Google Scholar] [CrossRef]
- Kim, Y.K.; Yoo, B.W.; Kim, H.C.; Park, K.H. Automated Detection of Hemifield Difference across Horizontal Raphe on Ganglion Cell-Inner Plexiform Layer Thickness Map. Ophthalmology 2015, 122, 2252–2260. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, E.K.; Park, K.H.; Kim, D.M.; Jeoung, J.W. Asymmetry Analysis of Macular Inner Retinal Layers for Glaucoma Diagnosis: Swept-Source Optical Coherence Tomography Study. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Asrani, S. Novel Software Strategy for Glaucoma Diagnosis. Arch. Ophthalmol. 2011, 129, 1205. [Google Scholar] [CrossRef] [PubMed]
- Mwanza, J.C.; Durbin, M.K.; Budenz, D.L. Interocular Symmetry in Peripapillary Retinal Nerve Fiber Layer Thickness Measured with the Cirrus HD-OCT in Healthy Eyes. Am. J. Ophthalmol. 2011, 151, 514–521.e1. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.J.; Jeoung, J.W.; Park, K.H.; Kim, D.M. Glaucoma Detection Ability of Ganglion Cell-Inner Plexiform Layer Thickness by Spectral-Domain Optical Coherence Tomography in High Myopia. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2296–2304. [Google Scholar] [CrossRef] [Green Version]
- Jeoung, J.W.; Choi, Y.J.; Park, K.H.; Kim, D.M. Macular Ganglion Cell Imaging Study: Glaucoma Diagnostic Accuracy of Spectral-Domain Optical Coherence Tomography. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4422–4429. [Google Scholar] [CrossRef]
- Takayama, K.; Hangai, M.; Durbin, M.; Nakano, N.; Morooka, S.; Akagi, T.; Ikeda, H.O.; Yoshimura, N. A Novel Method to Detect Local Ganglion Cell Loss in Early Glaucoma Using Spectral-Domain Optical Coherence Tomography. Investig. Ophthalmol. Vis. Sci. 2012, 53, 6904–6913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.Y.; Jeoung, J.W.; Park, K.H.; Kim, D.M. Macular Ganglion Cell Imaging Study: Interocular Symmetry of Ganglion Cell-Inner Plexiform Layer Thickness in Normal Healthy Eyes. Am. J. Ophthalmol. 2015, 159, 315–323.e2. [Google Scholar] [CrossRef] [PubMed]
- Sullivan-Mee, M.; Ruegg, C.C.; Pensyl, D.; Halverson, K.; Qualls, C. Diagnostic Precision of Retinal Nerve Fiber Layer and Macular Thickness Asymmetry Parameters for Identifying Early Primary Open-Angle Glaucoma. Am. J. Ophthalmol. 2013, 156, 567–577.e1. [Google Scholar] [CrossRef]
- Williams, A.L.; Gatla, S.; Leiby, B.E.; Fahmy, I.; Biswas, A.; De Barros, D.M.; Ramakrishnan, R.; Bhardwaj, S.; Wright, C.; Dubey, S.; et al. The Value of Intraocular Pressure Asymmetry in Diagnosing Glaucoma. J. Glaucoma 2013, 22, 215–218. [Google Scholar] [CrossRef]
- Li, H.; Healey, P.R.; Tariq, Y.M.; Teber, E.; Mitchell, P. Symmetry of Optic Nerve Head Parameters Measured by the Heidelberg Retina Tomograph 3 in Healthy Eyes: The Blue Mountains Eye Study. Am. J. Ophthalmol. 2013, 155, 518–523.e1. [Google Scholar] [CrossRef] [PubMed]
- Field, M.G.; Alasil, T.; Baniasadi, N.; Que, C.; Simavli, H.; Sobeih, D.; Sola-Del Valle, D.; Best, M.J.; Chen, T.C. Facilitating Glaucoma Diagnosis with Intereye Retinal Nerve Fiber Layer Asymmetry Using Spectral-Domain Optical Coherence Tomography. J. Glaucoma 2016, 25, 167–176. [Google Scholar] [CrossRef]
- Iester, M.; Telani, S.; Perdicchi, A.; Manni, G.L.; Uva, M.; Figus, M.; Perdicchi, A.; Brusini, P.; Paoli, D.; Rolando, M.; et al. Differences in Central Corneal Thickness between the Paired Eyes and the Severity of the Glaucomatous Damage. Eye 2012, 26, 1424–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, R.A.; Demirel, S.; Fan, J.; Keltner, J.L.; Johnson, C.A.; Kass, M.A.; Budenz, D.L.; Fantes, F.E.; Gedde, S.J.; Parrish, R.K.; et al. Asymmetries and Visual Field Summaries as Predictors of Glaucoma in the Ocular Hypertension Treatment Study. Investig. Ophthalmol. Vis. Sci. 2006, 47, 3896–3903. [Google Scholar] [CrossRef]
- Aydin, D.; Kusbeci, T.; Uzunel, U.D.; Orsel, T.; Yuksel, B. Evaluation of Retinal Nerve Fiber Layer and Ganglion Cell Complex Thickness in Unilateral Exfoliation Syndrome Using Optical Coherence Tomography. J. Glaucoma 2016, 25, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Hammer, T.; Schlötzer-Schrehardt, U.; Naumann, G.O.H. Unilateral or Asymmetric Pseudoexfoliation Syndrome? Arch. Ophthalmol. 2001, 119, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zong, Y.; Zhai, R.; Kong, X.; Jiang, C.; Sun, X. Intereye and Intraeye Asymmetry Analysis of Retinal Microvascular and Neural Structure Parameters for Diagnosis of Primary Open-Angle Glaucoma. Eye 2019, 33, 1596–1605. [Google Scholar] [CrossRef]
- Rao, H.L.; Pradhan, Z.S.; Weinreb, R.N.; Reddy, H.B.; Riyazuddin, M.; Dasari, S.; Palakurthy, M.; Puttaiah, N.K.; Rao, D.A.S.; Webers, C.A.B. Regional Comparisons of Optical Coherence Tomography Angiography Vessel Density in Primary Open-Angle Glaucoma. Am. J. Ophthalmol. 2016, 171, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Le, P.v.; Tan, O.; Chopra, V.; Francis, B.A.; Ragab, O.; Varma, R.; Huang, D. Regional Correlation Among Ganglion Cell Complex, Nerve Fiber Layer, and Visual Field Loss in Glaucoma. Investig. Opthalmology Vis. Sci. 2013, 54, 4287. [Google Scholar] [CrossRef] [Green Version]
- Barua, N.; Sitaraman, C.; Goel, S.; Chakraborti, C.; Mukherjee, S.; Parashar, H. Comparison of Diagnostic Capability of Macular Ganglion Cell Complex and Retinal Nerve Fiber Layer among Primary Open Angle Glaucoma, Ocular Hypertension, and Normal Population Using Fourier-Domain Optical Coherence Tomography and Determining Their Functional Correlation in Indian Population. Indian J. Ophthalmol. 2016, 64, 296–302. [Google Scholar] [CrossRef]
- Oli, A.; Joshi, D. Can Ganglion Cell Complex Assessment on Cirrus HD OCT Aid in Detection of Early Glaucoma? Saudi J. Ophthalmol. 2015, 29, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Cennamo, G.; Montorio, D.; Romano, M.R.; Cardone, D.M.; Minervino, C.; Reibaldi, M.; Cennamo, G. Structure-Functional Parameters in Differentiating Between Patients With Different Degrees of Glaucoma. J. Glaucoma 2016, 25, e884–e888. [Google Scholar] [CrossRef]
- Seol, B.R.; Jeoung, J.W.; Park, K.H. Glaucoma Detection Ability of Macular Ganglion Cell-Inner Plexiform Layer Thickness in Myopic Preperimetric Glaucoma. Investig. Opthalmology Vis. Sci. 2015, 56, 8306. [Google Scholar] [CrossRef]
- Hong, S.W.; Lee, S.B.; Jee, D.; Ahn, M.D. Evaluation of Interocular Retinal Nerve Fiber Layer Thickness Symmetry as a Diagnostic Modality for Glaucoma. J. Glaucoma 2016, 25, e763–e771. [Google Scholar] [CrossRef]
- Drance, S.M. The Visual Field of Low Tension Glaucoma and Shock-Induced Optic Neuropathy. Arch. Ophthalmol. 1977, 95, 1359–1361. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, S.P.; Werner, E.B. Location of Early Glaucomatous Visual Field Defects. Can. J. Ophthalmol. 1980, 15, 131–133. [Google Scholar] [PubMed]
- Zhang, Y.; Wen, W.; Sun, X. Comparison of Several Parameters in Two Optical Coherence Tomography Systems for Detecting Glaucomatous Defects in High Myopia. Investig. Opthalmology Vis. Sci. 2016, 57, 4910. [Google Scholar] [CrossRef] [Green Version]
- Shoji, T.; Sato, H.; Ishida, M.; Takeuchi, M.; Chihara, E. Assessment of Glaucomatous Changes in Subjects with High Myopia Using Spectral Domain Optical Coherence Tomography. Investig. Opthalmology Vis. Sci. 2011, 52, 1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydin, D. Comparison of Ganglion Cell Complex Defect Patterns of Exfoliative Glaucoma and Prymary Open Angle Glaucoma Using Optycal Coherence Tomography. JOJ Ophthalmol. 2017, 6, 555677. [Google Scholar] [CrossRef] [Green Version]
- Saricaoglu, M.S.; Karakurt, A.; Hamurcu, M.; Ekicier Acar, S. Comparison of the Ganglion Cell Complex and Retinal Nerve Fiber Layer Thickness in Pseudoexfoliation Syndrome, Pseudoexfoliation Glaucoma and Healthy Subjects. New Front. Ophthalmol. 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Eltutar, K.; Acar, F.; Kayaarası Öztürker, Z.; Ünsal, E.; Özdoğan Erkul, S. Structural Changes in Pseudoexfoliation Syndrome Evaluated with Spectral Domain Optical Coherence Tomography. Curr. Eye Res. 2015, 41, 513–520. [Google Scholar] [CrossRef]
- Kim, N.R.; Hong, S.; Kim, J.H.; Rho, S.S.; Seong, G.J.; Kim, C.Y. Comparison of Macular Ganglion Cell Complex Thickness by Fourier-Domain OCT in Normal Tension Glaucoma and Primary Open-Angle Glaucoma. J. Glaucoma 2013, 22, 133–139. [Google Scholar] [CrossRef]
- Omodaka, K.; Takada, N.; Takahashi, H.; Nakazawa, T. Regional Structural Vulnerability of the Macula in Patients with Normal Tension Glaucoma. Clin. Exp. Ophthalmol. 2015, 43, 89–90. [Google Scholar] [CrossRef]
- Lim, S.-H.; Gu, W.M.; Cha, S.C. Comparison of the Retinal Nerve Fiber Layer and Ganglion Cell Complex Thickness in Korean Patients with Unilateral Exfoliation Syndrome and Healthy Subjects. Eye 2020, 34, 1419–1425. [Google Scholar] [CrossRef]
- Barisić, F.; Sicaja, A.J.; Ravlić, M.M.; Novak-Laus, K.; Iveković, R.; Mandić, Z. Macular Thickness and Volume Parameters Measured Using Optical Coherence Tomography (OCT) for Evaluation of Glaucoma Patients. Coll. Antropol. 2012, 36, 441–445. [Google Scholar]
- Sathyan, P.; Agarwal, P.; Sharma, A.; Saini, V. Macular Thickness Variability in Primary Open Angle Glaucoma Patients Using Optical Coherence Tomography. J. Curr. Glaucoma Pr. 2014, 8, 10–14. [Google Scholar] [CrossRef]
- Greenfield, D.S. Macular Thickness Changes in Glaucomatous Optic Neuropathy Detected Using Optical Coherence Tomography. Arch. Ophthalmol. 2003, 121, 41. [Google Scholar] [CrossRef]
- Leung, C.K.S.; Chan, W.-M.; Yung, W.-H.; Ng, A.C.K.; Woo, J.; Tsang, M.-K.; Tse, R.K.K. Comparison of Macular and Peripapillary Measurements for the Detection of Glaucoma. Ophthalmology 2005, 112, 391–400. [Google Scholar] [CrossRef]
- Pokharel, A.; Shrestha, J.B.; Shrestha, G.S. Macular Thickness and Macular Volume Measurements Using Spectral Domain Optical Coherence Tomography in Normal Nepalese Eyes. Clin. Ophthalmol. 2016, 2016, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, F.A.; Lisboa, R.; Weinreb, R.N.; Girkin, C.A.; Liebmann, J.M.; Zangwill, L.M. A Combined Index of Structure and Function for Staging Glaucomatous Damage. Arch. Ophthalmol. 2012, 130, 1107–1116. [Google Scholar] [CrossRef]
- Zhang, X.; Loewen, N.; Tan, O.; Greenfield, D.S.; Schuman, J.S.; Varma, R.; Huang, D.; Huang, D.; Francis, B.; Greenfield, D.S.; et al. Predicting Development of Glaucomatous Visual Field Conversion Using Baseline Fourier-Domain Optical Coherence Tomography. Am. J. Ophthalmol. 2016, 163, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Dastiridou, A.; Francis, B.A.; Tan, O.; Varma, R.; Greenfield, D.S.; Schuman, J.S.; Huang, D. Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field. Am. J. Ophthalmol. 2017, 184, 63–74. [Google Scholar] [CrossRef]
- Artes, P.H.; O’Leary, N.; Nicolela, M.T.; Chauhan, B.C.; Crabb, D.P. Visual Field Progression in Glaucoma. Ophthalmology 2014, 121, 2023–2027. [Google Scholar] [CrossRef] [Green Version]
- Saunders, L.J.; Russell, R.A.; Crabb, D.P. Measurement Precision in a Series of Visual Fields Acquired by the Standard and Fast Versions of the Swedish Interactive Thresholding Algorithm. JAMA Ophthalmol. 2015, 133, 74. [Google Scholar] [CrossRef] [Green Version]
- Abe, R.Y.; Diniz-Filho, A.; Zangwill, L.M.; Gracitelli, C.P.B.; Marvasti, A.H.; Weinreb, R.N.; Baig, S.; Medeiros, F.A. The Relative Odds of Progressing by Structural and Functional Tests in Glaucoma. Investig. Opthalmology Vis. Sci. 2016, 57, OCT421–OCT428. [Google Scholar] [CrossRef] [Green Version]
- Sommer, A. Clinically Detectable Nerve Fiber Atrophy Precedes the Onset of Glaucomatous Field Loss. Arch. Ophthalmol. 1991, 109, 77. [Google Scholar] [CrossRef]
- Banegas, S.A.; Antón, A.; Morilla, A.; Bogado, M.; Ayala, E.M.; Fernandez-Guardiola, A.; Moreno-Montañes, J. Evaluation of the Retinal Nerve Fiber Layer Thickness, the Mean Deviation, and the Visual Field Index in Progressive Glaucoma. J. Glaucoma 2016, 25, e229–e235. [Google Scholar] [CrossRef]
- Zhang, X.; Parrish, R.K.; Greenfield, D.S.; Francis, B.A.; Varma, R.; Schuman, J.S.; Tan, O.; Huang, D. Predictive Factors for the Rate of Visual Field Progression in the Advanced Imaging for Glaucoma Study. Am. J. Ophthalmol. 2019, 202, 62–71. [Google Scholar] [CrossRef]
- Distante, P.; Lombardo, S.; Verticchio Vercellin, A.C.; Raimondi, M.; Rolando, M.; Tinelli, C.; Milano, G. Structure/Function Relationship and Retinal Ganglion Cells Counts to Discriminate Glaucomatous Damages. BMC Ophthalmol. 2015, 15, 185. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Medeiros, F.A. A Simplified Combined Index of Structure and Function for Detecting and Staging Glaucomatous Damage. Sci. Rep. 2021, 11, 3172. [Google Scholar] [CrossRef]
- Han, I.C.; Jaffe, G.J. Evaluation of Artifacts Associated with Macular Spectral-Domain Optical Coherence Tomography. Ophthalmology 2010, 117, 1177–1189.e4. [Google Scholar] [CrossRef]
- Giani, A.; Cigada, M.; Esmaili, D.D.; Salvetti, P.; Luccarelli, S.; Marziani, E.; Luiselli, C.; Sabella, P.; Cereda, M.; Eandi, C.; et al. Artifacts in Automatic Retinal Segmentation Using Different Optical Coherence Tomography Instruments. Retina 2010, 30, 607–616. [Google Scholar] [CrossRef]
- Hwang, Y.H. Patterns of Macular Ganglion Cell Abnormalities in Various Ocular Conditions. Investig. Opthalmology Vis. Sci. 2014, 55, 3995. [Google Scholar] [CrossRef] [Green Version]
- Yoo, Y.C.; Lee, C.M.; Park, J.H. Changes in Peripapillary Retinal Nerve Fiber Layer Distribution by Axial Length. Optom. Vis. Sci. 2012, 89, 4–11. [Google Scholar] [CrossRef]
- Qiu, K.L.; Zhang, M.Z.; Leung, C.K.-S.; Zhang, R.P.; Lu, X.H.; Wang, G.; Lam, D.S.C. Diagnostic Classification of Retinal Nerve Fiber Layer Measurement in Myopic Eyes: A Comparison Between Time-Domain and Spectral-Domain Optical Coherence Tomography. Am. J. Ophthalmol. 2011, 152, 646–653.e2. [Google Scholar] [CrossRef]
- Liefers, B.; Venhuizen, F.G.; Schreur, V.; van Ginneken, B.; Hoyng, C.; Fauser, S.; Theelen, T.; Sánchez, C.I. Automatic Detection of the Foveal Center in Optical Coherence Tomography. Biomed. Opt. Express 2017, 8, 5160. [Google Scholar] [CrossRef] [Green Version]
- Gregori, G.; Knighton, R.W.; Puliafito, C.A.; Legarreta, J.E.; Punjabi, O.S.; Lalwani, G.A. Macular Thickness Measurements in Normal Eyes Using Spectral Domain Optical Coherence Tomography. Ophthalmic. Surg. Lasers Imaging Retin. 2008, 39, 15428877–20080715-02. [Google Scholar] [CrossRef]
- Asrani, S.; Edghill, B.; Gupta, Y.; Meerhoff, G. Optical Coherence Tomography Errors in Glaucoma. J. Glaucoma 2010, 19, 237–242. [Google Scholar] [CrossRef]
- Cheung, C.Y.L.; Yiu, C.K.F.; Weinreb, R.N.; Lin, D.; Li, H.; Yung, A.Y.; Pang, C.P.; Lam, D.S.C.; Leung, C.K.S. Effects of Scan Circle Displacement in Optical Coherence Tomography Retinal Nerve Fibre Layer Thickness Measurement: A RNFL Modelling Study. Eye 2009, 23, 1436–1441. [Google Scholar] [CrossRef] [Green Version]
- Wolf-Schnurrbusch, U.E.K.; Ceklic, L.; Brinkmann, C.K.; Iliev, M.E.; Frey, M.; Rothenbuehler, S.P.; Enzmann, V.; Wolf, S. Macular Thickness Measurements in Healthy Eyes Using Six Different Optical Coherence Tomography Instruments. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3432–3437. [Google Scholar] [CrossRef]
- Krebs, I.; Hagen, S.; Brannath, W.; Haas, P.; Womastek, I.; de Salvo, G.; Ansari-Shahrezaei, S.; Binder, S. Repeatability and Reproducibility of Retinal Thickness Measurements by Optical Coherence Tomography in Age-Related Macular Degeneration. Ophthalmology 2010, 117, 1577–1584. [Google Scholar] [CrossRef]
- Vizzeri, G.; Bowd, C.; Medeiros, F.A.; Weinreb, R.N.; Zangwill, L.M. Effect of Signal Strength and Improper Alignment on the Variability of Stratus Optical Coherence Tomography Retinal Nerve Fiber Layer Thickness Measurements. Am. J. Ophthalmol. 2009, 148, 249–255.e1. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Vazeen, M.; Varma, R.; Chopra, V.; Walsh, A.C.; LaBree, L.D.; Sadda, S.R. Factors Associated with Variability in Retinal Nerve Fiber Layer Thickness Measurements Obtained by Optical Coherence Tomography. Ophthalmology 2007, 114, 1505–1512. [Google Scholar] [CrossRef]
- Chen, J.J.; Thurtell, M.J.; Longmuir, R.A.; Garvin, M.K.; Wang, J.-K.; Wall, M.; Kardon, R.H. Causes and Prognosis of Visual Acuity Loss at the Time of Initial Presentation in Idiopathic Intracranial Hypertension. Investig. Opthalmology Vis. Sci. 2015, 56, 3850. [Google Scholar] [CrossRef]
- Awadalla, M.S.; Fitzgerald, J.; Andrew, N.H.; Zhou, T.; Marshall, H.; Qassim, A.; Hassall, M.; Casson, R.J.; Graham, S.L.; Healey, P.R.; et al. Prevalence and Type of Artefact with Spectral Domain Optical Coherence Tomography Macular Ganglion Cell Imaging in Glaucoma Surveillance. PLoS ONE 2018, 13, e0206684. [Google Scholar] [CrossRef]
Parameter | Early-Stage Glaucoma | Moderate-Stage Glaucoma | Advanced-Stage Glaucoma |
---|---|---|---|
GCC | Inferior and inferotemporal quadrant thickness are the most sensitive parameters | Same as early-stage glaucoma | Superior quadrant thickness best correlated to MD value |
RNFL | Inferior quadrant thickness is a sensitive parameter | Inferior quadrant thickness has a stronger correlation to MD value on VF | Not very reliable (reaches the floor effect before GCC) |
VF (MD value) | Less sensitive than RNFL and GCC | Some studies show correlation with parameters of the RNFL and GCC | Superior RNFL and slightly superior or similar with GCC |
Parameter | OCT Aspects in the Early Glaucoma | Observation |
---|---|---|
GCC | Loss of the thickness in the inferotemporal quadrant (sometimes the loss is outside the examination area) | Related to MVZ |
RNFL | Loss of the thickness in the inferior quadrant | Appears after GCC thickness loss in the inferotemporal quadrant |
Inferior-superior asymmetry | Asymmetry of superior and inferior sectors of the temporal quadrant of the GCC | Appears after focal loss of GCC |
Interocular GCC asymmetry | Global and inferior segment asymmetry of the GCC | GCC intraocular asymmetry is associated with RNFL and ONH asymmetry Exception is PEX syndrome |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghita, A.M.; Iliescu, D.A.; Ghita, A.C.; Ilie, L.A.; Otobic, A. Ganglion Cell Complex Analysis: Correlations with Retinal Nerve Fiber Layer on Optical Coherence Tomography. Diagnostics 2023, 13, 266. https://doi.org/10.3390/diagnostics13020266
Ghita AM, Iliescu DA, Ghita AC, Ilie LA, Otobic A. Ganglion Cell Complex Analysis: Correlations with Retinal Nerve Fiber Layer on Optical Coherence Tomography. Diagnostics. 2023; 13(2):266. https://doi.org/10.3390/diagnostics13020266
Chicago/Turabian StyleGhita, Aurelian Mihai, Daniela Adriana Iliescu, Ana Cristina Ghita, Larisa Adriana Ilie, and Alexandru Otobic. 2023. "Ganglion Cell Complex Analysis: Correlations with Retinal Nerve Fiber Layer on Optical Coherence Tomography" Diagnostics 13, no. 2: 266. https://doi.org/10.3390/diagnostics13020266
APA StyleGhita, A. M., Iliescu, D. A., Ghita, A. C., Ilie, L. A., & Otobic, A. (2023). Ganglion Cell Complex Analysis: Correlations with Retinal Nerve Fiber Layer on Optical Coherence Tomography. Diagnostics, 13(2), 266. https://doi.org/10.3390/diagnostics13020266