The Role of Artificial Intelligence in Prospective Real-Time Histological Prediction of Colorectal Lesions during Colonoscopy: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Eligibility Assessment and Data Extraction
2.3. Outcomes
2.4. Statistical Analysis
3. Results
3.1. Elastic Scattering Microscopy
3.2. Autofluorescence Imaging
3.3. Narrow Band Imaging, Magnification Analysis, Supper Vector Machine
3.4. White Light Imaging and Narrow Band Imaging
3.5. Blue Light Imaging (CAD-EYE System)
3.6. Other
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Minchenberg, S.B.; Walradt, T.; Brown, J.R.G. Scoping out the future: The application of artificial intelligence to gastrointestinal endoscopy. World J. Gastrointest. Oncol. 2022, 14, 989–1001. [Google Scholar] [CrossRef]
- Liu, Y. Artificial intelligence-assisted endoscopic detection of esophageal neoplasia in early stage: The next step? World J. Gastroenterol. 2021, 27, 1392–1405. [Google Scholar] [CrossRef]
- Visaggi, P.; Barberio, B.; Gregori, D.; Azzolina, D.; Martinato, M.; Hassan, C.; Sharma, P.; Savarino, E.; de Bortoli, N. Systematic review with meta-analysis: Artificial intelligence in the diagnosis of oesophageal diseases. Aliment. Pharmacol. Ther. 2022, 55, 528–540. [Google Scholar] [CrossRef]
- Wang, P.P.; Deng, C.L.; Wu, B. Magnetic resonance imaging-based artificial intelligence model in rectal cancer. World J. Gastroenterol. 2021, 27, 2122–2130. [Google Scholar] [CrossRef]
- Polat, K.; Güneş, S. Breast cancer diagnosis using least square support vector machine. Digit. Signal Proc. 2007, 17, 694. [Google Scholar] [CrossRef]
- Khosravi, P.; Lysandrou, M.; Eljalby, M.; Li, Q.; Kazemi, E.; Zisimopoulos, P.; Sigaras, A.; Meng, M.B.; Barnes, J.; Ricketts, C.; et al. A deep learning approach to diagnostic classification of prostate cancer using pathology-radiology fusion. J. Magn. Reson. Imaging 2021, 54, 462. [Google Scholar] [CrossRef]
- Teramoto, A.; Tsukamoto, T.; Kiriyama, Y.; Fujita, H. Automated classification of lung cancer types from cytological images using deep convolutional neural networks. Biomed. Res. Int. 2017, 2017, 4067832. [Google Scholar] [CrossRef]
- Nasir, M.U.; Khan, M.A.; Zubair, M.; Ghazal, T.M.; Said, R.A.; Al Hamadi, H. Single and mitochondrial gene inheritance disorder prediction using machine learning. Comput. Mat. Contin. 2022, 73, 953. [Google Scholar]
- Turshudzhyan, A.; Rezaizadeh, H.; Tadros, M. Lessons learned: Preventable misses and near-misses of endoscopic procedures. World J. Gastrointest. Endosc. 2022, 14, 302–310. [Google Scholar] [CrossRef]
- Corley, D.A.; Jensen, C.D.; Marks, A.R.; Zhao, W.K.; Lee, J.K.; Doubeni, C.A.; Zauber, A.G.; de Boer, J.; Fireman, B.H.; Schottinger, J.E.; et al. Adenoma detection rate and risk of colorectal cancer and death. N. Engl. J. Med. 2014, 370, 1298–1306. [Google Scholar] [CrossRef]
- Ortega-Morán, J.F.; Azpeitia, Á.; Sánchez-Peralta, L.F.; Bote-Curiel, L.; Pagador, B.; Cabezón, V.; Saratxaga, C.L.; Sánchez-Margallo, F. Medical needs related to the endoscopic technology and colonoscopy for colorectal cancer diagnosis. BMC Cancer 2021, 21, 467. [Google Scholar] [CrossRef] [PubMed]
- Van Rijn, J.C.; Reitsma, J.B.; Stoker, J.; Bossuyt, P.M.; Van Deventer, S.J.; Dekker, E. Polyp miss rate determined by tandem colonoscopy: A systematic review. Am. J. Gastroenterol. 2006, 101, 343–350. [Google Scholar] [CrossRef]
- Than, M.; Witherspoon, J.; Shami, J.; Patil, P.; Saklani, A. Diagnostic miss rate for colorectal cancer: An audit. Ann. Gastroenterol. 2015, 28, 94–98. [Google Scholar] [PubMed]
- Machida, H.; Sano, Y.; Hamamoto, Y.; Muto, M.; Kozu, T.; Tajiri, H.; Yoshida, S. Narrow-band imaging in the diagnosis of colorectal mucosal lesions: A pilot study. Endoscopy 2004, 36, 1094–1098. [Google Scholar] [CrossRef] [PubMed]
- Guidozzi, N.; Menon, N.; Chidambaram, S.; Markar, S.R. The role of artificial intelligence in the endoscopic diagnosis of esophageal cancer: A systematic review and meta-analysis. Dis. Esophagus 2023, doad048. [Google Scholar] [CrossRef]
- Preferred Reporting Items for Systematic Reviews and Met-Analyses (PRISMA). 2020. Available online: http://www.prisma-statement.org/ (accessed on 30 July 2023).
- Kominami, Y.; Yoshida, S.; Tanaka, S.; Sanomura, Y.; Hirakawa, T.; Raytchev, B.; Tamaki, T.; Koide, T.; Kaneda, K.; Chayama, K. Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy. Gastrointest. Endosc. 2016, 83, 643–649. [Google Scholar] [CrossRef]
- Li, J.W.; Wu CC, H.; Lee JW, J.; Liang, R.; Soon GS, T.; Wang, L.M.; Koh, X.H.; Koh, C.J.; Chew, W.D.; Lin, K.W.; et al. Real-World Validation of a Computer-Aided Diagnosis System for Prediction of Polyp Histology in Colonoscopy: A Prospective Multicenter Study. Am. J. Gastroenterol. 2023, 118, 1353–1364. [Google Scholar] [CrossRef]
- Barua, I.; Wieszczy, P.; Kudo, S.E.; Misawa, M.; Holme, Ø.; Gulati, S.; Williams, S.; Mori, K.; Itoh, H.; Takishima, K.; et al. Real-Time Artificial Intelligence–Based Optical Diagnosis of Neoplastic Polyps during Colonoscopy. NEJM Evid. 2022, 1, EVIDoa2200003. [Google Scholar] [CrossRef]
- Aihara, H.; Saito, S.; Inomata, H.; Ide, D.; Tamai, N.; Ohya, T.R.; Kato, T.; Amitani, S.; Tajiri, H. Computer-aided diagnosis of neoplastic colorectal lesions using ‘real-time’ numerical color analysis during autofluorescence endoscopy. Eur. J. Gastroenterol. Hepatol. 2013, 25, 488–494. [Google Scholar] [CrossRef]
- Mori, Y.; Kudo, S.E.; Misawa, M.; Saito, Y.; Ikematsu, H.; Hotta, K.; Ohtsuka, K.; Urushibara, F.; Kataoka, S.; Ogawa, Y.; et al. Real-Time Use of Artificial Intelligence in Identification of Diminutive Polyps during Colonoscopy: A Prospective Study. Ann. Intern. Med. 2018, 169, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Minegishi, Y.; Kudo, S.E.; Miyata, Y.; Nemoto, T.; Mori, K.; Misawa, M.; Showa University Nagoya University Ai Research Group. Comprehensive Diagnostic Performance of Real-Time Characterization of Colorectal Lesions Using an Artificial Intelligence-Assisted System: A Prospective Study. Gastroenterology 2022, 163, 323–325. [Google Scholar] [CrossRef] [PubMed]
- Inomata, H.; Tamai, N.; Aihara, H.; Sumiyama, K.; Saito, S.; Kato, T.; Tajiri, H. Efficacy of a novel auto-fluorescence imaging system with computer-assisted color analysis for assessment of colorectal lesions. World J. Gastroenterol. 2013, 19, 7146–7153. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Diaz, E.; Jepeal, L.I.; Baffy, G.; Lo, W.K.; Mashimo, H.; A’amar, O.; Bigio, I.J.; Singh, S.K. Artificial Intelligence-Based Assessment of Colorectal Polyp Histology by Elastic-Scattering Spectroscopy. Dig. Dis. Sci. 2022, 67, 613–621. [Google Scholar] [CrossRef]
- Dos Santos, C.E.; Malaman, D.; Sanmartin ID, A.; Leão, A.B.; Leão, G.S.; Pereira-Lima, J.C. Performance of artificial intelligence in the characterization of colorectal lesions. Saudi J. Gastroenterol. 2023, 29, 219–224. [Google Scholar] [CrossRef]
- Rondonotti, E.; Hassan, C.; Tamanini, G.; Antonelli, G.; Andrisani, G.; Leonetti, G.; Paggi, S.; Amato, A.; Scardino, G.; Di Paolo, D.; et al. Artificial intelligence-assisted optical diagnosis for the resect-and-discard strategy in clinical practice: The Artificial intelligence BLI Characterization (ABC) study. Endoscopy 2023, 55, 14–22. [Google Scholar] [CrossRef]
- Houwen, B.B.; Hazewinkel, Y.; Giotis, I.; Vleugels, J.L.; Mostafavi, N.S.; van Putten, P.; Focens, P.; Dekker, E.; POLAR Study Group. Computer-aided diagnosis for optical diagnosis of diminutive colorectal polyps including sessile serrated lesions: A real-time comparison with screening endoscopists. Endoscopy 2023, 55, 756–765. [Google Scholar] [CrossRef]
- Quan, S.Y.; Wei, M.T.; Lee, J.; Mohi-Ud-Din, R.; Mostaghim, R.; Sachdev, R.; Siegel, D.; Friedlander, Y.; Friedland, S. Clinical evaluation of a real-time artificial intelligence-based polyp detection system: A US multi-center pilot study. Sci. Rep. 2022, 12, 6598. [Google Scholar] [CrossRef]
- Shahidi, N.; Rex, D.K.; Kaltenbach, T.; Rastogi, A.; Ghalehjegh, S.H.; Byrne, M.F. Use of Endoscopic Impression, Artificial Intelligence, and Pathologist Interpretation to Resolve Discrepancies Between Endoscopy and Pathology Analyses of Diminutive Colorectal Polyps. Gastroenterology 2020, 158, 783–785. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Diaz, E.; Huang, Q.; Cerda, S.R.; O’Brien, M.J.; Bigio, I.J.; Singh, S.K. Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy. Gastrointest. Endosc. 2015, 81, 539–547. [Google Scholar] [CrossRef]
- World Cancer Research Fund International. Colorectal Cancer Statistics. Available online: https://www.wcrf.org/cancer-trends/colorectal-cancer-statistics/ (accessed on 10 August 2023).
- McKinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G.S.; Darzi, A.; et al. International evaluation of an AI system for breast cancer screening. Nature 2020, 577, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Dembrower, K.; Crippa, A.; Colón, E.; Eklund, M.; Strand, F. Artificial intelligence for breast cancer detection in screening mammography in Sweden: A prospective, population-based, paired-reader, non-inferiority study. Lancet Digit. Health 2023, 5, e703–e711. [Google Scholar] [CrossRef] [PubMed]
- Areia, M.; Mori, Y.; Correale, L.; Repici, A.; Bretthauer, M.; Sharma, P.; Taviera, F.; Spadaccini, M.; Antonelli, G.; Ebigbo, A.; et al. Cost-effectiveness of artificial intelligence for screening colonoscopy: A modelling study. Lancet Digit. Health 2022, 4, 436–444. [Google Scholar] [CrossRef] [PubMed]
- The CONSORT-AI and SPIRIT-AI Steering Group. Reporting guidelines for clinical trials evaluating artificial intelligence interventions are needed. Nat. Med. 2019, 25, 1467–1468. [Google Scholar] [CrossRef] [PubMed]
- Collins, G.S.; Moons, K.G. Reporting of artificial intelligence prediction models. Lancet 2019, 393, 1577–1579. [Google Scholar] [CrossRef]
- Sounderajah, V.; Ashrafian, H.; Aggarwal, R.; De Fauw, J.; Denniston, A.K.; Greaves, F.; Karthikesalingam, A.; King, D.; Liu, X.; Markar, S.R.; et al. Developing specific reporting guidelines for diagnostic accuracy studies assessing AI interventions: The STARD-AI Steering Group. Nat. Med. 2020, 26, 807–808. [Google Scholar] [CrossRef] [PubMed]
- Khan, B.; Fatima, H.; Qureshi, A.; Kumar, S.; Hanan, A.; Hussain, J.; Abdullah, S. Drawbacks of Artificial Intelligence and Their Potential Solutions in the Healthcare Sector. Biomed. Mater. Devices 2023, 1–8. [Google Scholar] [CrossRef] [PubMed]
Year | Author | Country | Number of Patients | Number of Lesions Analysed | Site | Colonoscopy Module Used | Type of System | How Were the Systems Validated |
---|---|---|---|---|---|---|---|---|
2012 | Aihara et al. [20] | Japan | 32 | 102 | Colorectal | Olympus Corp | Autofluorescence endoscopy | NR |
2013 | Inomata et al. [23] | Japan | 88 | 163 | Colorectal | CF-FH260AZI, Olympus | Autofluorescence endoscopy | NR |
2016 | Kominami et al. [17] | Japan | 48 | 118 | Colorectal | Olympus | NBI, magnifying colonoscopy with a support vector machine | Training set: 2247 images from 1262 colorectal lesions |
2018 | Mori et al. [21] | Japan | 327 | 475 | Rectosigmoid | CF-Y-0058 Olympus | Endocytoscope with light microscopy NBI mode and methylene blue staining | Training: 61,925 images |
2020 | Shahidi et al. [29] | Canada | - | 644 | Colorectal | Olympus | White light and NBI | Previously trained and validated |
2021 | Rodriguez-Diaz et al. [24] | USA | 169 | 367 | Colorectal | NR | Elastic-scattering spectroscopy | Training set: 512 measurements from 294 polyps |
2022 | Barua et al. [19] | Norway/ UK/Japan | 518 | 892 | Rectosigmoid | Olympus Corp | High-resolution magnification colonoscopies, NBI, SVM | Previous training and validation: 35,000 polyps images from five Japanese endoscopy centres |
2022 | Rondonotti et al. [26] | USA | 389 | 596 | Rectosigmoid | ELUXEO 7000 endoscopy, Fujifilm | Blue light imaging | Previously validated |
2022 | Quan et al. [28] | USA | 100 | - | Colorectal | CF-HQ190 Olympus | Endovigilant | Training: 83,000 images from 300 colonoscopy videos. Validation: 21,454 images from 30 videos—sensitivity 0.90, specificity 0.97, AUC 0.94 |
2022 | Minegishi et al. [22] | Japan | 181 | 465 | Colorectal | EVIS-X1 Olympus | White light and NBI | Training: 18,079 images |
2023 | Li et al. [18] | Singapore | 320 | 661 | Colorectal | ELUXEO 7000 endoscopy, Fujifilm | CNN with blue laser imaging | Commercially available tool |
2023 | Dos Santos et al. [25] | Brazil | 74 | 110 | Colorectal | Fujifilm | Magnification with multi-light technology (WLI and link colour imaging) | NR |
2023 | Houwen et al. [27] | The Netherlands | 194 | 423 | Colorectal | Olympus | POLyp Artificial Recognition | Training: Eight hospitals collected 2637 annotated images from 1339 polyps |
Computer Assisted Diagnosis | Endoscopist Diagnosis | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | Author | Sensitivity (CI) | Specificity (CI) | PPV (CI) | NPV (CI) | Accuracy (CI) | Sensitivity (CI) | Specificity (CI) | PPV (CI) | NPV (CI) | Accuracy (CI) | p Value |
2012 | Aihara et al. [20] | 0.94 | 0.89 | 0.96 | 0.85 | NR | NR | NR | NR | NR | NR | NR |
2013 | Inomata et al. [23] | 0.84 | 0.83 | 0.53 | 0.96 | 0.83 | NR | NR | NR | NR | NR | NR |
2016 | Kominami et al. [17] | 0.96 | 0.93 | 0.96 | 0.93 | 0.95 | NR | NR | NR | NR | NR | NR |
2018 | Mori et al. [21] | NR | NR | NR | 0.96 (0.92–0.99) | NR | NR | NR | NR | 0.92 (0.88–0.95) | NR | NR |
2020 | Shahidi et al. [29] | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
2021 | Rodriguez-Diaz et al. [24] | 0.92 (0.87–0.96) | 0.87 (0.80–0.93) | 0.87 (0.80–0.93) | 0.91 | NR | NR | NR | NR | NR | NR | |
2022 | Barua et al. [19] | 0.90 (0.87–0.93) | 0.86 (0.82–0.89) | 0.82 (0.78–0.86) | 0.93 (0.90–0.95) | 0.88 (0.84–0.92) | 0.83 (0.79–0.86) | 0.79 (0.74–0.83) | 0.92 (0.89–0.94) | NR | NR | |
2022 | Rondonotti et al. [26] | 0.89 (0.84–0.91) | 0.88 (0.84–0.91) | 0.85 (0.80–0.89) | 0.91 (0.87–0.94) | 0.92 (0.85–0.91) | 0.89 (0.84–0.92) | 0.89 (0.85–0.92) | 0.86 (0.81–0.90) | 0.91 (0.87–0.94) | 0.89 (0.86–0.91) | NR |
2022 | Quan et al. [28] | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
2022 | Minegishi et al. [22] | 0.96 (0.93–0.98) | 0.67 (0.57–0.76) | 0.89 (0.84–0.92) | 0.86 (0.76–0.93) | 0.88 (0.84–0.91) | 0.94 (0.90–0.95) | 0.63 | NR | 0.86 | NR | NR |
2023 | Li et al. [18] | 0.62 (0.57–0.67) | 0.87 (0.83–0.91) | 0.89 (0.85–0.92) | 0.59 (0.54–0.64) | 0.72 (0.68–0.75) | 0.70 (0.66–0.75) | 0.83 (0.78–0.87) | 0.87 (0.83–0.90) | 0.63 (0.58–0.69) | 0.75 (0.72–0.78) | 0.001 |
2023 | Dos Santos et al. [25] | 0.76 (0.65–0.85) | 0.97 (0.83–1.00) | 0.98 (0.91–1.00) | 0.60 (0.45–0.74) | 0.82 (0.79–0.85) | 0.93 (0.84–0.97) | 0.97 (0.83–1.00) | 0.99 (0.93–1.00) | 0.83 (0.66–0.93) | 0.94 (0.92–0.95) | <0.01 |
2023 | Houwen et al. [27] | 0.89 (0.86–0.93) | 0.38 (0.27–0.48) | 0.86 (0.82–0.89) | 0.46 (0.34–0.58) | 0.79 (0.75–0.83) | 0.92 (0.90–0.95) | 0.44 (0.33–0.55) | 0.87 (0.84–0.91) | 0.58 (0.46–0.70) | 0.83 (0.79–0.86) | 0.1 |
Artificial Intelligence System | Technology | System Integration | Detection |
---|---|---|---|
Electric scattering microscopy | Short light pulses of 50 microseconds encompassing wavelengths of 300–900 nm. | Optical probes with two 200 μm columns of fibres for illumination and lesion detection. Probes can be built into biopsy forceps. | Spectroscopic optical biopsy with binary output: neoplastic vs. non-neoplastic. |
Autofluorescence imaging | Real-time analysis of colour ratios of red, blue, and green. The green/red ratio represents the intensity of light on the lesion. | The intensity of light is emitted to a charge-coupled device and displayed on the endoscopic monitor. | A cut-off value of the green/red ratio was distinguishable between neoplastic and non-neoplastic lesions. |
Narrow band imaging, magnification, and support vector machine | Algorithm recognising target features, including microvasculature and pi-patterns, using a filtered xenon light (shorter wavelength). | Support vector system outputs from targeted feature analysis using narrow-band imaging. | Lesion characterisation using a cut-off value to differentiate neoplastic and non-neoplastic lesions. |
White light imaging and Narrow band imaging | Diffuse reflectance of a xenon light where multiple wavelengths are absorbed in tissues. | Algorithm incorporating features from white light and narrow band imaging for characterisation (deep convolutional neural network). | Lesion characterisation using feature analysis. |
Blue light imaging (CAD-EYE system) | Blue light imaging is based on two monochromatic lasers at 410 nm and 450 nm wavelength to assess microvasculature patterns. | Real-time convolutional neural network system based on pattern recognition. | Optical diagnosis distinguishing neoplastic and non-neoplastic lesions. |
EndoVigilant | Video and augmentation of lesion attributes. | Real-time computer-aided outputs on the endoscopic screen. | Lesion attributes are displayed on the endoscopic screen to aid in diagnosis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vadhwana, B.; Tarazi, M.; Patel, V. The Role of Artificial Intelligence in Prospective Real-Time Histological Prediction of Colorectal Lesions during Colonoscopy: A Systematic Review and Meta-Analysis. Diagnostics 2023, 13, 3267. https://doi.org/10.3390/diagnostics13203267
Vadhwana B, Tarazi M, Patel V. The Role of Artificial Intelligence in Prospective Real-Time Histological Prediction of Colorectal Lesions during Colonoscopy: A Systematic Review and Meta-Analysis. Diagnostics. 2023; 13(20):3267. https://doi.org/10.3390/diagnostics13203267
Chicago/Turabian StyleVadhwana, Bhamini, Munir Tarazi, and Vanash Patel. 2023. "The Role of Artificial Intelligence in Prospective Real-Time Histological Prediction of Colorectal Lesions during Colonoscopy: A Systematic Review and Meta-Analysis" Diagnostics 13, no. 20: 3267. https://doi.org/10.3390/diagnostics13203267
APA StyleVadhwana, B., Tarazi, M., & Patel, V. (2023). The Role of Artificial Intelligence in Prospective Real-Time Histological Prediction of Colorectal Lesions during Colonoscopy: A Systematic Review and Meta-Analysis. Diagnostics, 13(20), 3267. https://doi.org/10.3390/diagnostics13203267