Galectin-3 as a Prognostic Biomarker in Patients with First Acute Myocardial Infarction without Heart Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Design
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics of This Study’s Patients and Major Adverse Cardiovascular Events (MACEs)
3.2. Prognostic Value of Galectin-3 Plasma Concentration Measured at Four Different Sites in AMI Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hara, A.; Niwa, M.; Noguchi, K.; Kanayama, T.; Niwa, A.; Matsuo, M.; Hatano, Y.; Tomita, H. Galectin-3 as a Next-Generation Biomarker for Detecting Early Stage of Various Diseases. Biomolecules 2020, 10, 389. [Google Scholar] [CrossRef] [PubMed]
- Zaborska, B.; Sikora-Frąc, M.; Smarż, K.; Pilichowska-Paszkiet, E.; Budaj, A.; Sitkiewicz, D.; Sygitowicz, G. The Role of Galectin-3 in Heart Failure—The Diagnostic, Prognostic and Therapeutic Potential—Where Do We Stand? Int. J. Mol. Sci. 2023, 24, 13111. [Google Scholar] [CrossRef] [PubMed]
- Shirakawa, K.; Endo, J.; Kataoka, M.; Katsumata, Y.; Yoshida, N.; Yamamoto, T.; Isobe, S.; Moriyama, H.; Goto, S.; Kitakata, H.; et al. IL (Interleukin)-10-STAT3-Galectin-3 axis is essential for osteopontin-producing reparative macrophage polarization after myocardial infarction. Circulation 2018, 138, 2021–2035. [Google Scholar] [CrossRef]
- Li, M.; Yuan, Y.; Guo, K.; Lao, Y.; Huang, X.; Feng, L. Value of Galectin-3 in acute myocardial infarction. Am. J. Cardiovasc. Drugs 2020, 20, 333–342. [Google Scholar] [CrossRef]
- Di Tano, G.; Caretta, G.; De Maria, R.; Parolini, M.; Bassi, L.; Testa, S.; Pirelli, S. Galectin-3 predicts left ventricular remodelling after anterior-wall myocardial infarction treated by primary percutaneous coronary intervention. Heart 2017, 103, 71–77. [Google Scholar] [CrossRef]
- Tian, L.; Chen, K.; Han, Z. Correlation between Galectin-3 and adverse outcomes in myocardial infarction patients: A Meta-Analysis. Cardiol. Res. Pract. 2020, 7, 7614327. [Google Scholar] [CrossRef]
- Agnello, L.; Bivona, G.; Lo Sasso, B.; Scazzone, C.; Bazan, V.; Bellia, C.; Ciaccio, M. Galectin-3 in acute coronary syndrome. Clin. Biochem. 2017, 50, 797–803. [Google Scholar] [CrossRef]
- Yu, L.; Ruifrok, W.P.; Meissner, M.; Bos, E.M.; van Goor, H.; Sanjabi, B.; van der Harst, P.; Pitt, B.; Goldstein, I.J.; Koerts, J.A.; et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ. Heart Fail. 2013, 6, 107–117. [Google Scholar] [CrossRef]
- Blanda, V.; Bracale, U.M.; Di Taranto, M.D.; Fortunato, G. Galectin-3 in Cardiovascular Diseases. Int. J. Mol. Sci. 2020, 21, 9232. [Google Scholar] [CrossRef]
- Wojciechowska, C.; Romuk, E.; Nowalany-Kozielska, E.; Jacheć, W. Serum Galectin-3 and ST2 as predictors of unfavorable outcome in stable dilated cardiomyopathy patients. Hell. J. Cardiol. 2017, 58, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, V.; Aimo, A.; Vergaro, G.; Saccaro, L.; Passino, C.; Emdin, M. Biomarkers for the diagnosis and management of heart failure. Heart Fail. Rev. 2022, 27, 625–643. [Google Scholar] [CrossRef]
- Cheng, Z.; Cai, K.; Xu, C.; Zhan, Q.; Xu, X.; Xu, D.; Zeng, Q. Prognostic Value of Serum Galectin-3 in Chronic Heart Failure: A Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 783707. [Google Scholar] [CrossRef] [PubMed]
- Andrejic, O.M.; Vucic, R.M.; Pavlovic, M.; McClements, L.; Stokanovic, D.; Jevtovic-Stoimenov, T.; Nikolic, V. Association between Galectin-3 levels within central and peripheral venous blood, and adverse left ventricular remodeling after first acute myocardial infarction. Sci. Rep. 2019, 9, 13145. [Google Scholar] [CrossRef]
- Windecker, S.; Kolh, P.; Alfonso, F.; Collet, J.P.; Cremer, J.; Falk, V.; Filippatos, G.; Hamm, C.; Head, S.J.; Jüni, P.; et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. Heart J. 2014, 35, 2541–2619. [Google Scholar] [PubMed]
- Gagno, G.; Padoan, L.; Stenner, E.; Beleù, A.; Ziberna, F.; Hiche, C.; Paldino, A.; Barbati, G.; Biolo, G.; Fiotti, N.; et al. Galectin 3 and Galectin 3 binding protein improve the risk stratification after myocardial infarction. J. Clin. Med. 2019, 8, 570. [Google Scholar] [CrossRef]
- Asleh, R.; Enriquez-Sarano, M.; Jaffe, A.S.; Manemann, S.M.; Weston, S.A.; Jiang, R.; Roger, V.L. Galectin-3 levels and outcomes after myocardial infarction: A population-based study. J. Am. Coll. Cardiol. 2019, 73, 2286–2295. [Google Scholar] [CrossRef]
- Li, M.; Guo, K.; Huang, X.; Feng, L.; Yuan, Y.; Li, J.; Lao, j.; Guo, Z. Association between serum Galectin-3 levels and coronary stenosis severity in patients with coronary artery disease. Front. Cardiovasc. Med. 2022, 9, 818162. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.H.; Sung, P.H.; Chang, L.T.; Sun, C.K.; Yeh, K.H.; Chung, S.Y.; Chua, S.; Chen, Y.L.; Wu, C.J.; Chang, H.W.; et al. Value and level of galectin-3 in acute myocardial infarction patients undergoing primary percutaneous coronary intervention. J. Atheroscler. Thromb. 2012, 19, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Lisowska, A.; Knapp, A.; Tycinska, A.; Motybel, E.; Kaminski, K.; Swięcki, P.; Musial, W.J.; Dymicka-Piekarska, V. Predictive value of Galectin-3 for the occurrence of coronary artery disease and prognosis after myocardial infarction and its association with carotid IMT values in these patients: A mid-term prospective cohort study. Atherosclerosis 2016, 246, 309–317. [Google Scholar] [CrossRef]
- Di Tano, G.; Caretta, G.; De Maria, R.; Bettari, L.; Parolini, M.; Testa, S.; Pirelli, S. Galectin-3 and outcomes after anterior-wall myocardial infarction treated by primary percutaneous coronary intervention. Biomark. Med. 2018, 12, 21–26. [Google Scholar] [CrossRef]
- Idzikowska, K.; Kacprzak, M.; Zielinska, M. The Prognostic Value of Cardiac Biomarkers in Patients with Acute Myocardial Infarction during and after Hospitalization. Rev. Cardiovasc. Med. 2022, 23, 320. [Google Scholar] [CrossRef]
- Tymińska, A.; Kapłon-Cieślicka, A.; Ozierański, K.; Budnik, M.; Wancerz, A.; Sypień, P.; Peller, M.; Maksym, J.; Balsam, P.; Opolski, G.; et al. Association of galectin-3 and soluble ST2 with In-hospital and 1-year outcomes In patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. Pol. Arch. Intern. Med. 2019, 129, 770–780. [Google Scholar]
- Kang, S.H.; Moon, J.Y.; Kim, S.H.; Sung, J.H.; Kim, I.J.; Lim, S.W.; Cha, D.H.; Kim, W.J. Association of hemoglobin levels with clinical outcomes in acute coronary syndromes in Koreans. Medicine 2022, 101, e32579. [Google Scholar] [CrossRef]
- Cakar, M.A.; Gunduz, H.; Vatan, M.B.; Kocayigit, I.; Akdemir, R. The Effect of admission creatinine levels on one-year mortality in acute myocardial infarction. Sci. World J. 2012, 2012, 186495. [Google Scholar] [CrossRef]
- Doost Hosseiny, A.; Moloi, S.; Chandrasekhar, J.; Farshid, A. Mortality pattern and cause of death in a long-term follow-up of patients with STEMI treated with primary PCI. Open Heart 2016, 3, e000405. [Google Scholar] [CrossRef] [PubMed]
- Ezubogly, M.; Akdeniz, B. Left ventricular ejection fraction in the prognosis of acute coronary syndromes. Int. J. Cardiol. 2017, 234, 137. [Google Scholar]
- Møller, J.E.; Hillis, G.S.; Oh, J.K.; Reeder, G.S.; Gersh, B.J.; Pellikka, P. Wall motion score index and ejection fraction for risk stratification after acute myocardial infarction. Am. Heart J. 2006, 151, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Perelshtein Brezinov, O.; Klempfner, R.; Zekry, S.B.; Goldenberg, I.; Kuperstein, R. Prognostic value of ejection fraction in patients admitted with acute coronary syndrome: A real world study. Medicine 2017, 96, e6226. [Google Scholar] [CrossRef]
- Margolis, G.; Khoury, S.; Ben-Shoshan, J.; Letourneau-Shesaf, S.; Flint, N.; Keren, G.; Shacham, Y. Prognostic Implications of Mid-Range Left Ventricular Ejection Fraction on Patients Presenting With ST-Segment Elevation Myocardial Infarction. Am. J. Cardiol. 2017, 120, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Chew, D.; Heikki, H.; Schmidt, G.; Kavanagh, K.M.; Dommasch, M.; Bloch Thomsen, P.E.; Sinnecker, D.; Raatikainen, P.; Exner, D.V. Change in Left Ventricular Ejection Fraction Following First Myocardial Infarction and Outcome. J. Am. Coll. Cardiol. EP. 2018, 4, 672–682. [Google Scholar] [CrossRef]
- Köktürk, U.; Püşüroğlu, H.; Somuncu, M.U.; Akgül, Ö.; Uygur, B.; Özyılmaz, S.; Işıksaçan, N.; Sürgit, Ö.; Yıldırım, A. Short and Long-Term Prognostic Significance of Galectin-3 in Patients with ST-Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Angiology 2023, 74, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Grandin, E.W.; Jarolim, P.; Murphy, S.A.; Ritterova, L.; Cannon, C.P.; Braunwald, E.; Morrow, D.A. Galectin-3 and the development of heart failure after acute coronary syndrome: Pilot experience from PROVE IT-TIMI 22. Clin. Chem. 2012, 58, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Perea, R.J.; Morales-Ruiz, M.; Ortiz-Perez, J.T.; Bosch, X.; Andreu, D.; Borras, R.; Acosta, J.; Penela, D.; Prat-González, S.; de Caralt, T.M.; et al. Utility of galectin-3 in predicting post-infarct remodeling after acute myocardial infarction based on extracellular volume fraction mapping. Int. J. Cardiol. 2016, 223, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Huai, W.; Ye, X.; Pan, Y.; Yang, X.; Chen, M.; Ma, Q.-B.; Gao, Y.; Zhang, Y. Circulating plasma galectin-3 predicts new-onset atrial fibrillation in patients after acute myocardial infarction during hospitalization. BMC Cardiovasc. Disord. 2022, 22, 392. [Google Scholar] [CrossRef]
- Erdogan, O.; Karaayvaz, E.; Erdogan, T.; Panc, C.; Sarıkaya, R.; Oncul, A.; Bilge, A.K. A new biomarker that predicts ventricular arrhythmia in patients with ischemic dilated cardiomyopathy: Galectin-3. Rev. Port. Cardiol. 2021, 40, 829–883. [Google Scholar] [CrossRef]
- Takemoto, Y.; Ramirez, R.J.; Yokokawa, M.; Kaur, K.; Ponce-Balbuena, D.; Sinno, M.C.; Willis, B.C.; Ghanbari, H.; Ennis, S.R.; Guerrero-Serna, G.; et al. Galectin-3 Regulates Atrial Fibrillation Remodeling and Predicts Catheter Ablation Outcomes. JACC Basic Transl. Sci. 2016, 1, 143–154. [Google Scholar] [CrossRef] [PubMed]
All Patients N = 59 | No MACE or Death N = 39 | MACE or Death N = 20 | p-Value | |
---|---|---|---|---|
Galectin-3 at site: | ||||
Aortic root (Q1, Q3), ng/mL | 9.2 (6.8–12.1) | 8.2 (5.9–9.9) | 13.9 (10.8–16.2) | <0.001 |
Femoral/radial artery ± SD, ng/mL | 9.72 ± 3.62 | 8.53 ± 3.46 | 11.55 ± 3.15 | 0.005 |
Coronary sinus ± SD, ng/mL | 9.74 ± 3.76 | 8.43 ± 2.57 | 12.56 ± 4.40 | 0.001 |
Cubital vein ± SD, ng/mL | 9.31 ± 3.35 | 8.05 ± 2.21 | 12.06 ± 3.80 | <0.001 |
Age ± SD, years | 65 ± 9 | 63 ± 8 | 69 ± 10 | 0.013 |
Gender (male), n (%) | 42 (71) | 32 (78.0%) | 9 (50.0%) | 0.063 |
BMI ± SD, kg/m2 | 27.8 ± 3.52 | 27.8 ± 3.4 | 27.8 ± 3.9 | 0.960 |
Smoking, n (%) | 18 (31) | 14 (34) | 4 (22) | 0.540 |
Diabetes mellitus, n (%) | 20 (34) | 14 (70) | 6 (30) | 0.999 |
CVI, n (%) | 3 (5) | 2 (5) | 1 (6) | 0.999 |
Hypertension, n (%) | 38 (64) | 24 (58) | 14 (78) | 0.238 |
Hyperlipoproteinemia, n (%) | 17 (29) | 11 (27) | 6 (33) | 0.756 |
STEMI, n (%) | 38 (64) | 23 (56) | 15 (83) | 0.044 |
Anterior MI, n (%) | 26 (44) | 16 (41) | 10 (50) | 0.239 |
Inferior MI, n (%) | 33 (56) | 23 (59) | 10 (50) | 0.969 |
NSTEMI, n (%) | 21 (36) | 16 (41) | 5 (25) | 0.044 |
Time from pain onset (Q1, Q3), hours | 10.0 (4.0–18.0) | 9.5 (4.0–20.0) | 8.5 (3.5–15.5) | 0.882 |
AV block, n (%) | 3 (5) | 0 (0) | 3 (17) | 0.025 |
VT/VF, n (%) | 7 (12) | 5 (12) | 2 (11) | 0.999 |
AF, n (%) | 5 (8) | 2 (5) | 3 (17) | 0.160 |
Systolic BP ± SD, mmHg | 130 ± 28 | 137 ± 27 | 115 ± 26 | 0.005 |
Diastolic BP ± SD, mmHg | 75 ± 17 | 79 ± 17 | 68 ± 15 | 0.023 |
HR ± SD, bpm | 74 ± 14 | 76 ± 11 | 70 ± 21 | 0.272 |
Urea (Q1, Q3), mmol/L | 6.3 (4.9–8.5) | 5.8 (4.6–6.9) | 9.6 (7.4–13.3) | 0.003 |
Creatinine (Q1, Q3), μmol/L | 87.0 (78.0–100.0) | 86.0 (77.0–93.8) | 115.5 (79.8–167.8) | 0.044 |
Creatinine clearance ± SD, ml/min | 83.41 ± 27.17 | 91.79 ± 21.29 | 64.32 ± 29.95 | <0.001 |
Cholesterol ± SD, mmol/L | 5.68 ± 1.32 | 5.88 ± 1.19 | 5.22 ± 1.51 | 0.081 |
HDL ± SD, mmol/L | 1.13 ± 0.26 | 1.12 ± 0.21 | 1.15 ± 0.35 | 0.742 |
LDL ± SD, mmol/L | 3.66 ± 1.15 | 3.86 ± 1.02 | 3.19 ± 1.33 | 0.042 |
Triglycerides (Q1, Q3), mmol/L | 1.7 (1.1–2.3) | 1.7 (1.2–2.5) | 1.3 (1.0–2.0) | 0.303 |
CK-MB (Q1, Q3), U/L | 24.0 (15.0–52.0) | 24.0 (16.2–54.0) | 25.0 (12.2–35.8) | 0.987 |
CRP (Q1, Q3), mg/L | 5.0 (1.5–10.6) | 4.2 (1.2–10.1) | 5.2 (2.7–33.0) | 0.278 |
Troponin T (Q1, Q3), ng/ml | 1.2 (0.2–7.3) | 1.1 (0.3–5.8) | 2.6 (0.1–5.2) | 0.593 |
Pro-BNP (Q1, Q3), pg/ml | 459.5 (239.7–2182.7) | 372.5 (180.2–1979.5) | 2250.0 (275.2–6492.8) | 0.004 |
Glycaemia (Q1, Q3), mmol/L | 6.2 (5.3–8.4) | 6.0 (5.3–7.0) | 8.2 (5.0–12.6) | 0.040 |
Potassium (Q1, Q3), mmol/L | 4.3 (4.0–4.6) | 4.2 (3.9–4.7) | 4.5 (4.1–4.7) | 0.281 |
Sodium (Q1, Q3), mmol/L | 139.0 (137.0–141.0) | 139.0 (137.2–141.0) | 139.5 (136.0–141.2) | 0.680 |
RBC ± SD, ×1012/L | 4.61 ± 0.56 | 4.73 ± 0.51 | 4.30 ± 0.58 | 0.007 |
Hemoglobin ± SD, g/L | 137.43 ± 18.99 | 144.44 ± 14.62 | 120.53 ± 17.91 | <0.001 |
Leukocyte count (Q1, Q3), ×109/L | 9.6 (8.6–12.0) | 9.4 (8.4–11.6) | 10.1 (7.4–12.9) | 0.657 |
Platelet count ± SD, ×109/L | 238.03 ± 65.60 | 232.73 ± 55.37 | 250.822 ± 80.62 | 0.406 |
LVEF ± SD, % | 52 ± 5 | 53 ± 5 | 50 ± 6 | 0.157 |
EDV ± SD, mm | 77.62 ± 22.65 | 76.82 ± 21.73 | 79.53 ± 25.33 | 0.683 |
ESV ± SD, mm | 38.25 ± 13.38 | 38.8 (10.2–45.8) | 38.0 (31.5–45.8) | 0.392 |
E/A ratio (Q1, Q3) | 0.7 (0.6–0.8) | 0.7 (0.6–0.8) | 0.7 (0.6–1.0) | 0.925 |
E/E’ ratio (Q1, Q3) | 7.9 (6.6–10.0) | 7.8 (6.5–9.7) | 8.0 (6.6–12.2) | 0.263 |
LA ± SD, mm | 37.72 ± 4.93 | 38.20 ± 4.95 | 36.59 ± 4.84 | 0.262 |
WMA of anterolateral wall, n (%) | 29 (49) | 23 (59) | 6 (30) | 0.107 |
WMA of inferolateral wall, n (%) | 22 (37) | 13 (33) | 9 (45) | 0.181 |
WMSI | 1.40 ± 0.24 | 1.56 ± 0.29 | 1.33 ± 0.18 | 0.001 |
Number of coronary lesions ± SD | 1.67 ± 0.87 | 1.68 ± 0.82 | 1.65 ± 1.00 | 0.887 |
One-vessel CAD, n (%) | 11 (19) | 8 (21) | 3 (15) | 0.869 |
Two-vessel CAD, n (%) | 20 (34) | 15 (38) | 5 (25) | 0.601 |
three-vessel CAD, n (%) | 28 (47) | 16 (41) | 12 (60) | 0.029 |
Furosemide, n (%) | 18 (31) | 9 (22) | 9 (53) | 0.030 |
Spironolactone, n (%) | 10 (17) | 5 (12) | 5 (29) | 0.139 |
ACE inhibitors, n (%) | 42 (71) | 32 (78) | 10 (59) | 0.197 |
Beta-blockers, n (%) | 43 (73) | 33 (80) | 10 (59) | 0.107 |
Calcium channel antagonists, n (%) | 7 (12) | 3 (7) | 4 (23) | 0.178 |
Amiodarone, n (%) | 13 (22) | 8 (19) | 5 (29) | 0.494 |
DAPT, n (%) | 53 (90) | 39 (95) | 14 (82) | 0.144 |
Ticagrelor, n (%) | 33 (56) | 26 (63) | 7 (41) | 0.151 |
Trimetazidine, n (%) | 25 (42) | 18 (44) | 7 (41) | 0.999 |
Statins, n (%) | 54 (92) | 39 (95) | 15 (88) | 0.573 |
UFH/LMWH, n (%) | 55 (93) | 40 (98) | 15 (94) | 0.999 |
Event | n (%) |
---|---|
MACE, n (%) | 20 (100) |
Death, n (%) | 5 (25) |
Re-AMI, n (%) | 1 (5) |
Cerebrovascular insult, n (%) | 4 (20) |
Re-hospitalization due to heart failure, n (%) | 5 (25) |
Re-hospitalization due to malignant arrhythmias, n (%) | 5 (25) |
Univariate Analysis | OR (95%CI) | p-Value | R2 | HL Test p-Value |
---|---|---|---|---|
Galectin-3 at site: | ||||
Aortic root | 1.277 (1.076–1.517) | 0.005 | 0.255 | 0.581 |
Femoral/radial artery | 1.309 (1.068–1.604) | 0.009 | 0.224 | 0.556 |
Coronary sinus | 1.422 (1.155–1.750) | 0.001 | 0.342 | 0.48695 |
Cubital vein | 1.566 (1.225–2.000) | <0.001 | 0.405 | 0.454 |
Age (years) | 1.089 (1.014–1.169) | 0.018 | 0.145 | 0.289 |
Gender (male) | 0.281 (0.086–0.918) | 0.036 | 0.103 | 0.301 |
STEMI | 3.913 (0.980–15.625) | 0.053 | 0.101 | 0.300 |
NSTEMI | 0.256 (0.064–1.020) | 0.053 | 0.101 | 0.300 |
Three-vessel CAD, n (%) | 3.375 (1.110–12.669) | 0.033 | 0.115 | 0.256 |
Systolic BP (mmHg) | 0.968 (0.945–0.992) | 0.009 | 0.186 | 0.081 |
Diastolic BP (mmHg) | 0.958 (0.922–0.996) | 0.030 | 0.126 | 0.553 |
Urea (mmol/L) | 1.546 (1.167–2.048) | 0.002 | 0.296 | 0.616 |
Creatinine (μmol/L) | 1.034 (1.008–1.061) | 0.010 | 0.264 | 0.004 |
Creatinine clearance (ml/min) | 0.954 (0.927–0.982) | 0.001 | 0.305 | 0.220 |
Cholesterol (mmol/L) | 0.677 (0.432–1.062) | 0.090 | 0.074 | 0.464 |
LDL (mmol/L) | 0.591 (0.349–1.000) | 0.050 | 0.100 | 0.672 |
Pro-BNP (pg/mL) | 1.000 (1.000–1.001) | 0.022 | 0.176 | 0.549 |
Glycaemia (mmol/L) | 1.270 (1.043–1.547) | 0.017 | 0.172 | 0.109 |
RBC count (×1012/L) | 0.227 (0.070–0.739) | 0.014 | 0.167 | 0.913 |
Hemoglobin (g/L) | 0.914 (0.869–0.961) | <0.001 | 0.439 | 0.382 |
WMSI | 87.533 (4.311–1777.291) | 0.004 | 0.254 | 0.791 |
Furosemide | 4.000 (1.198–13.357) | 0.024 | 0.122 | 0.516 |
Multivariate Analysis | OR (95%CI) | p-Value | R2 | HL Test p-Value |
Gal-3 level at aortic root a | 1.228 (1.011–1.491) | 0.038 | 0.621 | 0.440 |
Hemoglobin (g/L) | 0.821 (0.699–0.965) | 0.017 | 0.621 | 0.440 |
Gal-3 level at femoral/radial artery a | 3.438 (1.275–9.265) | 0.015 | 0.846 | 0.943 |
Hemoglobin (g/L) | 0.860 (0.765–0.966) | 0.011 | 0.846 | 0.943 |
Creatinine clearance (ml/min) | 0.908 (0.829–0.994) | 0.036 | 0.846 | 0.943 |
Gal-3 level at coronary sinus a | 1.044 (0.663–1.644) | 0.851 | 0.519 | 0.858 |
Hemoglobin (g/L) | 0.927 (0.874–0.984) | 0.012 | 0.519 | 0.858 |
Gal-3 level at cubital vein a | 1.163 (0.694–1.948) | 0.566 | 0.519 | 0.860 |
Hemoglobin (g/L) | 0.927 (0.874–0.984) | 0.012 | 0.519 | 0.860 |
Urea (mmol/L) | 1.521 (1.039–2.226) | 0.031 | 0.519 | 0.860 |
Gal-3 at Site | AUC (95% CI) | SE | p-Value | Cut-Off (ng/mL) | Sn (%) | Sp (%) | PPV (%) | NPV (%) |
---|---|---|---|---|---|---|---|---|
Aortic root | 0.858 (0.744–0.973) | 0.058 | <0.001 | 10.86 | 80% | 87% | 76% | 89% |
Femoral artery | 0.742 (0.596–0.888) | 0.074 | 0.006 | 10.18 | 70% | 77% | 61% | 83% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vucic, R.M.; Andrejic, O.M.; Stokanovic, D.; Stoimenov, T.J.; McClements, L.; Nikolic, V.N.; Sreckovic, M.; Veselinovic, M.; Aleksandric, S.; Popadic, V.; et al. Galectin-3 as a Prognostic Biomarker in Patients with First Acute Myocardial Infarction without Heart Failure. Diagnostics 2023, 13, 3348. https://doi.org/10.3390/diagnostics13213348
Vucic RM, Andrejic OM, Stokanovic D, Stoimenov TJ, McClements L, Nikolic VN, Sreckovic M, Veselinovic M, Aleksandric S, Popadic V, et al. Galectin-3 as a Prognostic Biomarker in Patients with First Acute Myocardial Infarction without Heart Failure. Diagnostics. 2023; 13(21):3348. https://doi.org/10.3390/diagnostics13213348
Chicago/Turabian StyleVucic, Rada M., Olivera M. Andrejic, Dragana Stokanovic, Tatjana Jevtovic Stoimenov, Lana McClements, Valentina N. Nikolic, Miodrag Sreckovic, Mirjana Veselinovic, Srdjan Aleksandric, Viseslav Popadic, and et al. 2023. "Galectin-3 as a Prognostic Biomarker in Patients with First Acute Myocardial Infarction without Heart Failure" Diagnostics 13, no. 21: 3348. https://doi.org/10.3390/diagnostics13213348
APA StyleVucic, R. M., Andrejic, O. M., Stokanovic, D., Stoimenov, T. J., McClements, L., Nikolic, V. N., Sreckovic, M., Veselinovic, M., Aleksandric, S., Popadic, V., Zdravkovic, M., & Pavlovic, M. (2023). Galectin-3 as a Prognostic Biomarker in Patients with First Acute Myocardial Infarction without Heart Failure. Diagnostics, 13(21), 3348. https://doi.org/10.3390/diagnostics13213348