Hyperglycaemia and Chronic Obstructive Pulmonary Disease
Abstract
:1. Introduction
2. T2DM in Patients with COPD
3. COPD in Patients with T2DM
4. Potential Mechanisms of the Links between COPD and T2DM
5. COPD and T2DM: Mutual Pharmacological Interferences
6. Potential Impact on T2DM of Drugs Used to Treat COPD
7. Potential Impact on COPD of Drugs Used to Treat T2DM
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rogliani, P.; Lucà, G.; Lauro, D. Chronic obstructive pulmonary disease and diabetes. COPD Res. Pract. 2015, 1, 3. [Google Scholar] [CrossRef]
- Cazzola, M.; Bettoncelli, G.; Sessa, E.; Cricelli, C.; Biscione, G. Prevalence of comorbidities in patients with chronic obstructive pulmonary disease. Respiration 2010, 80, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.W.; Huang, C.T.; Ruan, S.Y.; Tsai, Y.J.; Lai, F.; Yu, C.J. Diabetes mellitus in chronic obstructive pulmonary disease patients—The impact on mortality. PLoS ONE 2017, 12, e0175794. [Google Scholar]
- Gayle, A.; Dickinson, S.; Poole, C.; Pang, M.; Fauconnot, O.; Quint, J.K. Incidence of type II diabetes in chronic obstructive pulmonary disease: A nested case-control study. NPJ Prim. Care Respir. Med. 2019, 29, 28. [Google Scholar] [CrossRef] [PubMed]
- Hersh, C.P.; Make, B.J.; Lynch, D.A.; Barr, R.G.; Bowler, R.P.; Calverley, P.M.; Castaldi, P.J.; Cho, M.H.; Coxson, H.O.; DeMeo, D.L.; et al. Non-emphysematous chronic obstructive pulmonary disease is associated with diabetes mellitus. BMC Pulm. Med. 2014, 14, 164. [Google Scholar]
- Rogliani, P.; Calzetta, L.; Segreti, A.; Barrile, A.; Cazzola, M. Diabetes mellitus among outpatients with COPD attending a university hospital. Acta Diabetol. 2014, 51, 933–940. [Google Scholar] [CrossRef]
- Lee, C.T.; Mao, I.C.; Lin, C.H.; Lin, S.H.; Hsieh, M.C. Chronic obstructive pulmonary disease: A risk factor for type 2 diabetes: A nationwide population-based study. Eur. J. Clin. Investig. 2013, 43, 1113–1119. [Google Scholar] [CrossRef]
- Mao, X.; Liang, C.; Niu, H.; Dong, F.; Huang, K.; Chen, Y.; Huang, K.; Zhan, Q.; Zhang, Y.; Huang, Y.; et al. Outcomes associated with comorbid diabetes among patients with COPD exacerbation: Findings from the ACURE registry. Respir. Res. 2021, 22, 7. [Google Scholar] [CrossRef]
- Caughey, G.E.; Roughead, E.E.; Vitry, A.I.; McDermott, R.A.; Shakib, S.; Gilbert, A.L. Comorbidity in the elderly with diabetes: Identification of areas of potential treatment conflicts. Diabetes Res. Clin. Pract. 2010, 87, 385–393. [Google Scholar] [CrossRef]
- Hsu, I.L.; Lu, C.L.; Li, C.C.; Tsai, S.H.; Chen, C.Z.; Hu, S.C.; Li, C.Y. Population-based cohort study suggesting a significantly increased risk of developing chronic obstructive pulmonary disease in people with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2018, 138, 66–74. [Google Scholar] [CrossRef]
- Su, J.; Li, M.; Wan, X.; Yu, H.; Wan, Y.; Hang, D.; Lu, Y.; Tao, R.; Wu, M.; Zhou, J.; et al. Associations of diabetes, prediabetes and diabetes duration with the risk of chronic obstructive pulmonary disease: A prospective UK Biobank study. Diabetes Obes. Metab. 2023, 25, 2575–2585. [Google Scholar] [CrossRef] [PubMed]
- Walter, R.E.; Beiser, A.; Givelber, R.J.; O'Connor, G.T.; Gottlieb, D.J. Association between glycemic state and lung function: The Framingham Heart Study. Am. J. Respir. Crit. Care Med. 2003, 167, 911–916. [Google Scholar] [CrossRef]
- Raslan, A.S.; Quint, J.K.; Cook, S. All-cause, cardiovascular and respiratory mortality in people with type 2 diabetes and chronic obstructive pulmonary disease (COPD) in England: A cohort study using the Clinical Practice Research Datalink (CPRD). Int. J. Chron. Obstruct. Pulmon. Dis. 2023, 18, 1207–1218. [Google Scholar] [CrossRef] [PubMed]
- Lange, P.; Groth, S.; Kastrup, J.; Mortensen, J.; Appleyard, M.; Nyboe, J.; Jensen, G.; Schnohr, P. Diabetes mellitus, plasma glucose and lung function in a cross-sectional population study. Eur. Respir. J. 1989, 2, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Litonjua, A.A.; Lazarus, R.; Sparrow, D.; Demolles, D.; Weiss, S.T. Lung function in type 2 diabetes: The Normative Aging Study. Respir. Med. 2005, 99, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ning, Y.; Ma, Y.; Lin, X.; Man, S.; Wang, B.; Wang, C.; Yang, T. Association of lung function and blood glucose level: A 10-year study in China. BMC Pulm. Med. 2022, 22, 444. [Google Scholar] [CrossRef]
- Zhang, R.H.; Zhou, J.B.; Cai, Y.H.; Shu, L.P.; Simó, R.; Lecube, A. Non-linear association between diabetes mellitus and pulmonary function: A population-based study. Respir. Res. 2020, 21, 292. [Google Scholar] [CrossRef]
- Chiu, H.T.; Li, T.C.; Li, C.I.; Liu, C.S.; Lin, W.Y.; Lin, C.C. Visit-to-visit glycemic variability is a strong predictor of chronic obstructive pulmonary disease in patients with type 2 diabetes mellitus: Competing risk analysis using a national cohort from the Taiwan diabetes study. PLoS ONE 2017, 12, e0177184. [Google Scholar] [CrossRef]
- Fontaine-Delaruelle, C.; Viart-Ferber, C.; Luyton, C.; Couraud, S. Fonction pulmonaire du patient diabétique. Rev. Pneumol. Clin. 2016, 72, 10–16. [Google Scholar] [CrossRef]
- Vestbo, J. Epidemiological studies in mucus hypersecretion. Novartis Found. Symp. 2002, 248, 3–12. [Google Scholar]
- Chen, G.; Lin, Q.; Zhuo, D.; Cui, J. Elevated blood glucose is associated with severe exacerbation of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2022, 17, 2453–2459. [Google Scholar] [CrossRef] [PubMed]
- Baker, E.H.; Janaway, C.H.; Philips, B.J.; Brennan, A.L.; Baines, D.L.; Wood, D.M.; Jones, P.W. Hyperglycaemia is associated with poor outcomes in patients admitted to hospital with acute exacerbations of chronic obstructive pulmonary disease. Thorax 2006, 61, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Figueira Gonçalves, J.M.; García Bello, M.Á.; Golpe, R.; Alonso Jerez, J.L.; García-Talavera, I. Impact of diabetes mellitus on the risk of severe exacerbation in patients with chronic obstructive pulmonary disease. Clin. Respir. J. 2020, 14, 1208–1211. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Rogliani, P.; Calzetta, L.; Lauro, D.; Page, C.; Matera, M.G. Targeting mechanisms linking COPD to type 2 diabetes mellitus. Trends Pharmacol. Sci. 2017, 38, 940–951. [Google Scholar] [CrossRef]
- Wells, C.E.; Baker, E.H. Metabolic syndrome and diabetes mellitus in COPD. In COPD and Comorbidity; Rabe, K.F., Wedzicha, J.A., Wouters, E.F.M., Eds.; European Respiratory Society: Sheffield, UK, 2013; pp. 117–134. [Google Scholar]
- Ora, J.; Laveneziana, P.; Ofir, D.; Deesomchok, A.; Webb, K.A.; O'Donnell, D.E. Combined effects of obesity and chronic obstructive pulmonary disease on dyspnea and exercise tolerance. Am. J. Respir. Crit. Care Med. 2009, 180, 964–971. [Google Scholar] [CrossRef]
- Cecere, L.M.; Littman, A.J.; Slatore, C.G.; Udris, E.M.; Bryson, C.L.; Boyko, E.J.; Pierson, D.J.; Au, D.H. Obesity and COPD: Associated symptoms, health-related quality of life, and medication use. COPD 2011, 8, 275–284. [Google Scholar] [CrossRef]
- Jordan, J.G., Jr.; Mann, J.R. Obesity and mortality in persons with obstructive lung disease using data from the NHANES III. South Med. J. 2010, 103, 323–330. [Google Scholar] [CrossRef]
- George, C.; Ducatman, A.M.; Conway, B.N. Increased risk of respiratory diseases in adults with Type 1 and Type 2 diabetes. Diabetes Res. Clin. Pract. 2018, 142, 6–55. [Google Scholar] [CrossRef]
- Oh, J.Y.; Sin, D.D. Lung inflammation in COPD: Why does it matter? F1000 Med. Rep. 2012, 4, 23. [Google Scholar] [CrossRef]
- Rayner, L.H.; McGovern, A.P.; Sherlock, J.; Gatenby, P.; Correa, A.; Creagh-Brown, B.; de Lusignan, S. Type 2 diabetes: A protective factor for COPD? Prim. Care Diabetes 2018, 12, 438–444. [Google Scholar] [CrossRef]
- Yeh, H.C.; Duncan, B.B.; Schmidt, M.I.; Wang, N.Y.; Brancati, F.L. Smoking, smoking cessation, and risk for type 2 diabetes mellitus: A cohort study. Ann. Intern. Med. 2010, 152, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2016, 138, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Calzetta, L.; Lauro, D.; Bettoncelli, G.; Cricelli, C.; Di Daniele, N.; Rogliani, P. Asthma and COPD in an Italian adult population: Role of BMI considering the smoking habit. Respir. Med. 2013, 107, 1417–1422. [Google Scholar] [CrossRef] [PubMed]
- Spranger, J.; Kroke, A.; Möhlig, M.; Hoffmann, K.; Bergmann, M.M.; Ristow, M.; Boeing, H.; Pfeiffer, A.F. Inflammatory cytokines and the risk to develop type 2 diabetes: Results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 2003, 52, 812–817. [Google Scholar] [CrossRef]
- Cyphert, T.J.; Morris, R.T.; House, L.M.; Barnes, T.M.; Otero, Y.F.; Barham, W.J.; Hunt, R.P.; Zaynagetdinov, R.; Yull, F.E.; Blackwell, T.S.; et al. NF-κB-dependent airway inflammation triggers systemic insulin resistance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 309, R1144–R1152. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, R.; Sparrow, D.; Weiss, S.T. Baseline ventilatory function predicts the development of higher levels of fasting insulin and fasting insulin resistance index: The Normative Aging Study. Eur. Respir. J. 1998, 12, 641–645. [Google Scholar] [CrossRef]
- Barnes, P.J. Oxidative stress in chronic obstructive pulmonary disease. Antioxidants 2022, 11, 965. [Google Scholar] [CrossRef]
- Rains, J.L.; Jain, S.K. Oxidative stress, insulin signaling, and diabetes. Free Radic. Biol. Med. 2011, 50, 567–575. [Google Scholar] [CrossRef]
- González, P.; Lozano, P.; Ros, G.; Solano, F. Hyperglycemia and oxidative stress: An integral, updated and critical overview of their metabolic interconnections. Int. J. Mol. Sci. 2023, 24, 9352. [Google Scholar] [CrossRef]
- Lange, P.; Groth, S.; Mortensen, J.; Appleyard, M.; Nyboe, J.; Schnohr, P.; Jensen, G. Diabetes mellitus and ventilatory capacity: A five years follow-up study. Eur. Respir. J. 1990, 3, 288–292. [Google Scholar] [CrossRef]
- Cazzola, M.; Calzetta, L.; Rogliani, P.; Lauro, D.; Novelli, L.; Page, C.P.; Kanabar, V.; Matera, M.G. High glucose enhances responsiveness of human airways smooth muscle via the Rho/ROCK pathway. Am. J. Respir. Cell Mol. Biol. 2012, 47, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, D.; McNeill, K.D.; Stelmack, G.L.; Gosens, R.; Baarsma, H.A.; Dekkers, B.G.; Frohwerk, E.; Penninks, J.M.; Sharma, P.; Ens, K.M.; et al. Insulin increases the expression of contractile phenotypic markers in airway smooth muscle. Am. J. Physiol. Cell Physiol. 2007, 293, C429–C439. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Prakash, Y.S.; Linneberg, A.; Agrawal, A. Insulin and the lung: Connecting asthma and metabolic syndrome. J. Allergy 2013, 2013, 627384. [Google Scholar] [CrossRef] [PubMed]
- Gasparotto, J.; Ribeiro, C.T.; da Rosa-Silva, H.T.; Bortolin, R.C.; Rabelo, T.K.; Peixoto, D.O.; Moreira, J.C.F.; Gelain, D.P. Systemic inflammation changes the site of RAGE expression from endothelial cells to neurons in different brain areas. Mol. Neurobiol. 2019, 56, 3079–3089. [Google Scholar] [CrossRef]
- Sparvero, L.J.; Asafu-Adjei, D.; Kang, R.; Tang, D.; Amin, N.; Im, J.; Rutledge, R.; Lin, B.; Amoscato, A.A.; Zeh, H.J.; et al. RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation. J. Transl. Med. 2009, 7, 17. [Google Scholar] [CrossRef]
- Bierhaus, A.; Schiekofer, S.; Schwaninger, M.; Andrassy, M.; Humpert, P.M.; Chen, J.; Hong, M.; Luther, T.; Henle, T.; Klöting, I.; et al. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 2001, 50, 2792–2808. [Google Scholar] [CrossRef]
- Clerk, L.H.; Vincent, M.A.; Jahn, L.A.; Liu, Z.; Lindner, J.R.; Barrett, E.J. Obesity blunts insulin-mediated microvascular recruitment in human forearm muscle. Diabetes 2006, 55, 1436–1442. [Google Scholar] [CrossRef]
- Vlassara, H.; Cai, W.; Crandall, J.; Goldberg, T.; Oberstein, R.; Dardaine, V.; Peppa, M.; Rayfield, E.J. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc. Natl. Acad. Sci. USA 2002, 99, 15596–15601. [Google Scholar] [CrossRef]
- Ferhani, N.; Letuve, S.; Kozhich, A.; Thibaudeau, O.; Grandsaigne, M.; Maret, M.; Dombret, M.C.; Sims, G.P.; Kolbeck, R.; Coyle, A.J.; et al. Expression of high-mobility group box 1 and of receptor for advanced glycation end products in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2010, 181, 917–927. [Google Scholar] [CrossRef]
- Cazzola, M.; Rogliani, P.; Ora, J.; Calzetta, L.; Matera, M.G. Cardiovascular diseases or type 2 diabetes mellitus and chronic airway diseases: Mutual pharmacological interferences. Ther. Adv. Chronic Dis. 2023, 14, 20406223231171556. [Google Scholar] [CrossRef]
- Miravitlles, M. Improving outcomes of COPD through the treatment of comorbidities: One step beyond. Am. J. Respir. Crit. Care Med. 2023. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Naqvi, S.A.; Griffiths, C.; Bloom, C.I. Systemic adverse effects from inhaled corticosteroid use in asthma: A systematic review. BMJ Open Respir. Res. 2020, 7, e000756. [Google Scholar] [CrossRef] [PubMed]
- Pu, X.; Liu, L.; Feng, B.; Zhang, Z.; Wang, G. Association between ICS use and risk of hyperglycemia in COPD patients: Systematic review and meta-analysis. Respir. Res. 2021, 22, 201. [Google Scholar] [CrossRef]
- Price, D.B.; Voorham, J.; Brusselle, G.; Clemens, A.; Kostikas, K.; Stephens, J.W.; Park, H.Y.; Roche, N.; Fogel, R. Inhaled corticosteroids in COPD and onset of type 2 diabetes and osteoporosis: Matched cohort study. NPJ Prim. Care Respir. Med. 2019, 29, 38. [Google Scholar] [CrossRef]
- Price, D.B.; Russell, R.; Mares, R.; Burden, A.; Skinner, D.; Mikkelsen, H.; Ding, C.; Brice, R.; Chavannes, N.H.; Kocks, J.W.; et al. Metabolic effects associated with ICS in patients with COPD and comorbid Type 2 Diabetes: A historical matched cohort study. PLoS ONE 2016, 11, e0162903. [Google Scholar] [CrossRef] [PubMed]
- Kalinovich, A.; Dehvari, N.; Åslund, A.; van Beek, S.; Halleskog, C.; Olsen, J.; Forsberg, E.; Zacharewicz, E.; Schaart, G.; Rinde, M.; et al. Treatment with a β-2-adrenoceptor agonist stimulates glucose uptake in skeletal muscle and improves glucose homeostasis, insulin resistance and hepatic steatosis in mice with diet-induced obesity. Diabetologia 2020, 63, 1603–1615. [Google Scholar] [CrossRef]
- Cazzola, M.; Rogliani, P.; Calzetta, L.; Matera, M.G. Bronchodilators in subjects with asthma-related comorbidities. Respir. Med. 2019, 151, 43–48. [Google Scholar] [CrossRef]
- Guhan, A.R.; Cooper, S.; Oborne, J.; Lewis, S.; Bennett, J.; Tattersfield, A.E. Systemic effects of formoterol and salmeterol: A dose-response comparison in healthy subjects. Thorax 2000, 55, 650–656. [Google Scholar] [CrossRef]
- Scheidegger, K.; Robbins, D.C.; Danforth, E., Jr. Effects of chronic beta receptor stimulation on glucose metabolism. Diabetes 1984, 33, 1144–1149. [Google Scholar] [CrossRef]
- Philipson, L.H. β-Agonists and metabolism. J. Allergy Clin. Immunol. 2002, 110 (Suppl. 6), S313–S317. [Google Scholar] [CrossRef]
- Burgess, C.; Ayson, M.; Rajasingham, S.; Crane, J.; Della Cioppa, G.; Till, M.D. The extrapulmonary effects of increasing doses of formoterol in patients with asthma. Eur. J. Clin. Pharmacol. 1998, 54, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Noh, H.; Yu, M.R.; Kim, H.J.; Lee, J.H.; Park, B.W.; Wu, I.H.; Matsumoto, M.; King, G.L. Beta 2-adrenergic receptor agonists are novel regulators of macrophage activation in diabetic renal and cardiovascular complications. Kidney Int. 2017, 92, 101–113. [Google Scholar] [CrossRef]
- Kesten, S.; Jara, M.; Wentworth, C.; Lanes, S. Pooled clinical trial analysis of tiotropium safety. Chest 2006, 130, 1695–1703. [Google Scholar] [CrossRef] [PubMed]
- Sicras-Mainar, A.; Velasco-Velasco, S.; Llopart-López, J.R.; Navarro-Artieda, R.; de Haro-Martí, L. Estimación de la morbilidad, el uso de recursos y los costes de los sujetos en tratamiento con bromuro de tiotropio para la enfermedad pulmonar obstructiva crónica en un ámbito poblacional español. Aten. Primaria 2007, 39, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.; Rodriguez-Diaz, R.; Fachado, A.; Jacques-Silva, M.C.; Berggren, P.O.; Caicedo, A. Control of insulin secretion by cholinergic signaling in the human pancreatic islet. Diabetes 2014, 63, 2714–2726. [Google Scholar] [CrossRef]
- Selig, D.J.; Brown, A.J.; DeLuca, J.P.; Kress, A.T.; Livezey, J.R.; Oliver, T.G.; Por, E.D. Risk of type 2 diabetes mellitus by antimuscarinic agents among adult females receiving care in the military health system. Pharmacoepidemiol. Drug Saf. 2020, 29, 1605–1615. [Google Scholar] [CrossRef]
- Lahiry, S.; Chatterjee, M.; Chatterjee, S. Impact of oral anticholinergic on insulin response to oral glucose load in patients with impaired glucose tolerance. Indian J. Pharmacol. 2021, 53, 294–297. [Google Scholar]
- Mansuy-Aubert, V.; Zhou, Q.L.; Xie, X.; Gong, Z.; Huang, J.Y.; Khan, A.R.; Aubert, G.; Candelaria, K.; Thomas, S.; Shin, D.J.; et al. Imbalance between neutrophil elastase and its inhibitor α1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metab. 2013, 17, 534–548. [Google Scholar] [CrossRef]
- Park, S.S.; Rodriguez Ortega, R.; Agudelo, C.W.; Perez Perez, J.; Perez Gandara, B.; Garcia-Arcos, I.; McCarthy, C.; Geraghty, P. Therapeutic potential of alpha-1 antitrypsin in type 1 and type 2 diabetes mellitus. Medicina 2021, 57, 397. [Google Scholar] [CrossRef]
- Yen, F.S.; Chang, S.H.; Wei, J.C.; Shih, Y.H.; Hwu, C.M. Respiratory outcomes of insulin use in patients with COPD: A nationwide population retrospective cohort study. Pharmaceuticals 2023, 16, 643. [Google Scholar] [CrossRef]
- Tseng, C.H. Human insulin therapy is associated with an increased risk of lung cancer: A population-based retrospective cohort study. Front. Endocrinol. 2019, 10, 443. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Bodas, M.; Bhatraju, N.K.; Pattnaik, B.; Gheware, A.; Parameswaran, P.K.; Thompson, M.; Freeman, M.; Mabalirajan, U.; Gosens, R.; et al. Hyperinsulinemia adversely affects lung structure and function. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016, 310, L837–L845. [Google Scholar] [CrossRef] [PubMed]
- Jansen, S.R.; Van Ziel, A.M.; Baarsma, H.A.; Gosens, R. β-Catenin regulates airway smooth muscle contraction. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010, 299, L204–L214. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Jacoby, D.B.; Fryer, A.D. Hyperinsulinemia potentiates airway responsiveness to parasympathetic nerve stimulation in obese rats. Am. J. Respir. Cell Mol. Biol. 2014, 51, 251–261. [Google Scholar] [CrossRef]
- Wang, M.T.; Lai, J.H.; Huang, Y.L.; Kuo, F.C.; Wang, Y.H.; Tsai, C.L.; Tu, M.Y. Use of antidiabetic medications and risk of chronic obstructive pulmonary disease exacerbation requiring hospitalization: A disease risk score-matched nested case-control study. Respir. Res. 2020, 21, 319. [Google Scholar] [CrossRef]
- Yen, F.S.; Wei, J.C.; Yu, T.S.; Hsu, C.Y.; Hsu, C.C.; Hwu, C.M. Sulfonylurea use in patients with type 2 diabetes and COPD: A nationwide population-based cohort study. Int. J. Environ. Res. Public Health 2022, 19, 15013. [Google Scholar] [CrossRef]
- Yen, F.S.; Wei, J.C.; Yang, Y.C.; Hsu, C.C.; Hwu, C.M. Respiratory outcomes of metformin use in patients with type 2 diabetes and chronic obstructive pulmonary disease. Sci. Rep. 2020, 10, 10298. [Google Scholar] [CrossRef]
- Hitchings, A.W.; Lai, D.; Jones, P.W.; Baker, E.H.; Metformin in COPD Trial Team. Metformin in severe exacerbations of chronic obstructive pulmonary disease: A randomised controlled trial. Thorax 2016, 71, 587–593. [Google Scholar] [CrossRef]
- Ho, T.W.; Huang, C.T.; Tsai, Y.J.; Lien, A.S.; Lai, F.; Yu, C.J. Metformin use mitigates the adverse prognostic effect of diabetes mellitus in chronic obstructive pulmonary disease. Respir. Res. 2019, 20, 69. [Google Scholar] [CrossRef]
- Mendy, A.; Gopal, R.; Alcorn, J.F.; Forno, E. Reduced mortality from lower respiratory tract disease in adult diabetic patients treated with metformin. Respirology 2019, 24, 646–651. [Google Scholar] [CrossRef]
- Zhu, A.; Teng, Y.; Ge, D.; Zhang, X.; Hu, M.; Yao, X. Role of metformin in treatment of patients with chronic obstructive pulmonary disease: A systematic review. J. Thorac. Dis. 2019, 11, 4371–4378. [Google Scholar] [CrossRef] [PubMed]
- Polverino, F.; Wu, T.D.; Rojas-Quintero, J.; Wang, X.; Mayo, J.; Tomchaney, M.; Tram, J.; Packard, S.; Zhang, D.; Cleveland, K.H.; et al. Metformin: Experimental and clinical evidence for a potential role in emphysema treatment. Am. J. Respir. Crit. Care Med. 2021, 204, 651–666. [Google Scholar] [CrossRef] [PubMed]
- Rogliani, P.; Matera, M.G.; Calzetta, L.; Hanania, N.A.; Page, C.; Rossi, I.; Andreadi, A.; Galli, A.; Coppola, A.; Cazzola, M.; et al. Long-term observational study on the impact of GLP-1R agonists on lung function in diabetic patients. Respir. Med. 2019, 154, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Yen, F.S.; Wei, J.C.; Yang, Y.C.; Hsu, C.C.; Hwu, C.M. Thiazolidinedione use in individuals with type 2 diabetes and chronic obstructive pulmonary disease. Front. Med. 2021, 8, 729518. [Google Scholar] [CrossRef]
- Tseng, C.H. Pioglitazone and risk of chronic obstructive pulmonary disease in patients with type 2 diabetes mellitus: A retrospective cohort study. Int. J. Chron. Obstruct. Pulmon. Dis. 2022, 17, 285–295. [Google Scholar] [CrossRef]
- Rinne, S.T.; Liu, C.F.; Feemster, L.C.; Collins, B.F.; Bryson, C.L.; O'Riordan, T.G.; Au, D.H. Thiazolidinediones are associated with a reduced risk of COPD exacerbations. Int. J. Chron. Obstruct. Pulmon. Dis. 2015, 10, 1591–1597. [Google Scholar] [CrossRef]
- Chen, K.Y.; Wu, S.M.; Tseng, C.H.; Lee, K.Y.; Lin, Y.H.; Liu, H.Y.; Chien, L.N. Combination therapies with thiazolidinediones are associated with a lower risk of acute exacerbations in new-onset COPD patients with advanced diabetic mellitus: A cohort-based case-control study. BMC Pulm. Med. 2021, 21, 141. [Google Scholar] [CrossRef]
- Qiu, M.; Ding, L.L.; Zhan, Z.L.; Liu, S.Y. Use of SGLT2 inhibitors and occurrence of noninfectious respiratory disorders: A meta-analysis of large randomized trials of SGLT2 inhibitors. Endocrine 2021, 73, 31–36. [Google Scholar] [CrossRef]
- Zou, H.T.; Yang, G.H.; Cai, Y.J.; Chen, H.; Zheng, X.Q.; Hu, R. Are high- or low-dose SGLT2 inhibitors associated with cardiovascular and respiratory adverse events? A Meta-analysis. J. Cardiovasc. Pharmacol. 2022, 79, 655–662. [Google Scholar] [CrossRef]
- Gerards, M.C.; Venema, G.E.; Patberg, K.W.; Kross, M.; Potter van Loon, B.J.; Hageman, I.M.G.; Snijders, D.; Brandjes, D.P.M.; Hoekstra, J.B.L.; Vriesendorp, T.M.; et al. Dapagliflozin for prednisone-induced hyperglycaemia in acute exacerbation of chronic obstructive pulmonary disease. Diabetes Obes. Metab. 2018, 20, 1306–1310. [Google Scholar] [CrossRef]
- Pradhan, R.; Lu, S.; Yin, H.; Yu, O.H.Y.; Ernst, P.; Suissa, S.; Azoulay, L. Novel antihyperglycaemic drugs and prevention of chronic obstructive pulmonary disease exacerbations among patients with type 2 diabetes: Population based cohort study. BMJ 2022, 379, e071380. [Google Scholar] [CrossRef] [PubMed]
- Au, P.C.M.; Tan, K.C.B.; Lam, D.C.L.; Cheung, B.M.Y.; Wong, I.C.K.; Kwok, W.C.; Sing, C.W.; Cheung, C.L. Association of sodium-glucose cotransporter 2 inhibitor vs dipeptidyl peptidase-4 inhibitor use with risk of incident obstructive airway disease and exacerbation events among patients with type 2 diabetes in Hong Kong. JAMA Netw. Open. 2023, 6, e2251177. [Google Scholar] [CrossRef] [PubMed]
- Nader, M.A. Inhibition of airway inflammation and remodeling by sitagliptin in murine chronic asthma. Int. Immunopharmacol. 2015, 29, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Tai, H.; Wang, M.Y.; Zhao, Y.P.; Li, L.B.; Dong, Q.Y.; Liu, X.G.; Kuang, J.S. The effect of alogliptin on pulmonary function in obese patients with type 2 diabetes inadequately controlled by metformin monotherapy. Medicine 2016, 95, e4541. [Google Scholar] [CrossRef] [PubMed]
- Rogliani, P.; Calzetta, L.; Capuani, B.; Facciolo, F.; Cazzola, M.; Lauro, D.; Matera, M.G. Glucagon-like peptide 1 receptor: A novel pharmacological target for treating human bronchial hyperresponsiveness. Am. J. Respir. Cell Mol. Biol. 2016, 55, 804–814. [Google Scholar] [CrossRef]
- Ojima, A.; Ishibashi, Y.; Matsui, T.; Maeda, S.; Nishino, Y.; Takeuchi, M.; Fukami, K.; Yamagishi, S. Glucagon-like peptide-1 receptor agonist inhibits asymmetric dimethylarginine generation in the kidney of streptozotocin-induced diabetic rats by blocking advanced glycation end product-induced protein arginine methyltranferase-1 expression. Am. J. Pathol. 2013, 182, 132–141. [Google Scholar] [CrossRef]
- López-Cano, C.; Ciudin, A.; Sánchez, E.; Tinahones, F.J.; Barbé, F.; Dalmases, M.; García-Ramírez, M.; Soto, A.; Gaeta, A.M.; Pellitero, S.; et al. Liraglutide improves forced vital capacity in individuals with type 2 diabetes: Data from the randomized crossover LIRALUNG study. Diabetes 2022, 71, 315–320. [Google Scholar] [CrossRef]
- Foer, D.; Strasser, Z.H.; Cui, J.; Cahill, K.N.; Boyce, J.A.; Murphy, S.N.; Karlson, E.W. Association of GLP-1 receptor agonists with COPD exacerbations among patients with type 2 diabetes. Am. J. Respir. Crit. Care Med. 2023. [Google Scholar] [CrossRef]
- Wang, W.; Mei, A.; Qian, H.; Li, D.; Xu, H.; Chen, J.; Yang, H.; Min, X.; Li, C.; Cheng, L.; et al. The role of glucagon-like peptide-1 receptor agonists in chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2023, 18, 129–137. [Google Scholar] [CrossRef]
Obesity that is associated with increased adipose and systemic inflammation and reduced insulin sensitivity. Cigarette smoke that directly impairs insulin action and reduces peripheral glucose uptake. Oxidative stress from both environmental and cellular sources that promotes insulin resistance and alters energy production. Decrease in endogenous antioxidants. Lung inflammation that induces insulin resistance by blocking signalling through the insulin receptor of proinflammatory cytokines. Chronic low-grade inflammation. Activation of the innate immune system. Impaired adaptive responses to hypoxia due to insufficient activation of hypoxia-inducible factors signalling. Low lung function values that have a higher risk of developing insulin resistance. High glucose concentrations that increase the responsiveness of ASM to contractile agents. Microangiopathy of lung vasculature. Glucotoxicity that activates nonenzymatic glycosylation of lung collagen and elastin by AGEs resulting in reduced lung elasticity. Insulin that induces ASM contraction. |
Risks |
---|
Increased risk of diabetes, diabetes progression and osteoporosis was observed in diabetic subjects when they were treated with long-term ICS therapy for COPD at a mean daily exposure of ≥500 µg fluticasone propionate equivalent. Acute administration of β2-agonists induces rapid plasma glucose and insulin concentration increases. These effects appear to decline over time. At least oral antimuscarinic agents may reduce late-phase insulin action to various degrees of diabetic state. |
Benefits |
Combining an ICS with a β2-agonist can reduce the odds of developing T2DM in COPD patients. β2-agonists protect against the vascular effects of diabetes, which results in a decrease in inflammatory stimuli and tissue protection. Augmentation therapy with AAT may favourably impact DM. |
Risks |
---|
Insulin shows potentiation of ASM contraction. Hyperinsulinemia potentiates vagally induced bronchoconstriction. Insulin therapy may have an increased risk of AECOPDs, pneumonia, ventilator use and severe hypoglycaemia without significantly increasing the risk of death. Insulin therapy plays a role in lung cancer development. Metformin use associated with higher risks of bacterial pneumonia, hospitalisation for COPD and use of invasive mechanical ventilation. Thiazolidinedione use associated with higher risks of cardiovascular events, ventilation use, pneumonia, and lung cancer. Dapagliflozin did not result in better glycaemic control than placebo in participants with prednisone-induced hyperglycaemia during AECOPD. |
Benefits |
Sulfonylureas associated with significantly lower risks of AECOPD, cardiovascular events, ventilation use, bacterial pneumonia and mortality. Metformin may improve health status and symptoms, hospitalisations and mortality. Metformin use associated with lesser emphysema progression over time and with a numerical increase in FEV1 and significant improvement in FVC in T2DM population without coexisting COPD. Exposure to thiazolidinediones associated with a small but significant reduction in risk for AECOPD. SGLT2 inhibitors associated with decreased risks of COPD regardless of whether they are used in high or low doses. In patients with T2DM and no underlying COPD, treatment with GLP-1R agonists improves airway function regardless of blood glucose levels. GLP-1R agonist use associated with a significantly reduced risk of severe exacerbations compared to DPP-4. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cazzola, M.; Rogliani, P.; Ora, J.; Calzetta, L.; Lauro, D.; Matera, M.G. Hyperglycaemia and Chronic Obstructive Pulmonary Disease. Diagnostics 2023, 13, 3362. https://doi.org/10.3390/diagnostics13213362
Cazzola M, Rogliani P, Ora J, Calzetta L, Lauro D, Matera MG. Hyperglycaemia and Chronic Obstructive Pulmonary Disease. Diagnostics. 2023; 13(21):3362. https://doi.org/10.3390/diagnostics13213362
Chicago/Turabian StyleCazzola, Mario, Paola Rogliani, Josuel Ora, Luigino Calzetta, Davide Lauro, and Maria Gabriella Matera. 2023. "Hyperglycaemia and Chronic Obstructive Pulmonary Disease" Diagnostics 13, no. 21: 3362. https://doi.org/10.3390/diagnostics13213362
APA StyleCazzola, M., Rogliani, P., Ora, J., Calzetta, L., Lauro, D., & Matera, M. G. (2023). Hyperglycaemia and Chronic Obstructive Pulmonary Disease. Diagnostics, 13(21), 3362. https://doi.org/10.3390/diagnostics13213362