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Abstract: Photon-counting detector computed tomography (PCD-CT) yields improved spatial res-
olution. The combined use of PCD-CT and a modern iterative reconstruction method, known as
quantum iterative reconstruction (QIR), has the potential to significantly improve the quality of lung
CT images. In this study, we aimed to analyze the impacts of different slice thicknesses and QIR
levels on low-dose ultra-high-resolution (UHR) PCD-CT imaging of the lungs. Our study included
51 patients with different lung diseases who underwent unenhanced UHR-PCD-CT scans. Images
were reconstructed using three different slice thicknesses (0.2, 0.4, and 1.0 mm) and three QIR levels
(2–4). Noise levels were determined in all reconstructions. Three raters evaluated the delineation of
anatomical structures and conspicuity of various pulmonary pathologies in the images compared to
the clinical reference reconstruction (1.0 mm, QIR-3). The highest QIR level (QIR-4) yielded the best
image quality. Reducing the slice thickness to 0.4 mm improved the delineation and conspicuity of
pathologies. The 0.2 mm reconstructions exhibited lower image quality due to high image noise. In
conclusion, the optimal reconstruction protocol for low-dose UHR-PCD-CT of the lungs includes a
slice thickness of 0.4 mm, with the highest QIR level. This optimized protocol might improve the
diagnostic accuracy and confidence of lung imaging.

Keywords: photon-counting detector CT; lung; slice thickness; quantum iterative reconstruction;
ultra-high resolution

1. Introduction

High-resolution computed tomography (HRCT) is now the primary method for vi-
sualizing lung tissue, but traditional energy-integrating detector computed tomography
(EID-CT) has limitations, such as poor depiction of intricate lung details due to spatial
resolution constraints. This can impact diagnostic confidence and clinical judgments [1–4].

Photon-counting detector computed tomography (PCD-CT) offers improved spatial
resolution and noise characteristics, enhancing lung tissue visualization even at lower
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radiation doses [5,6]. Unlike EID-CT, PCD-CT directly transforms X-ray photons into
electronic signals, reducing electronic noise [7].

In thoracic imaging, reduced noise with PCD-CT improves the assessment of intersti-
tial and alveolar lung conditions, which is crucial for detecting subtle changes indicating
disease progression [8]. PCD-CT can minimize radiation exposure while maintaining
image quality, which is especially important in lung cancer screening with HRCT [9]. In
the ultra-high-resolution (UHR) setting, PCD-CT allows for a 1024 × 1024 matrix and a
slice thickness as small as 0.2 mm. Studies show that UHR-PCD-CT improves the depic-
tion of anatomical lung structures, bronchial walls, vessels, and various lung pathologies
compared to EID-CT [10–16].

Image quality depends not only on the established detectors but also on the recon-
struction parameters, i.e., the reconstruction kernel, use of iterative reconstruction, slice
thickness, and in-plane resolution [17]. The first clinically approved PCD-CT scanner was
introduced with a novel iterative reconstruction algorithm known as quantum iterative
reconstruction (QIR, Siemens Healthineers, Forchheim, Germany), which has four strength
levels (QIR-1 to QIR-4) and is specifically designed to match the hardware and software
needs of the PCD-CT system. In a previous study, QIR-3 was identified as the optimal level
for UHR-PCD-CT of the lungs, using a 1.5 mm slice thickness and the sharpest available
lung kernel (Bl64) [18]. In a subsequent study, slice thicknesses were varied to the sub-
millimeter range, while applying different sharpness levels of the lung kernel [19]. There,
the best image quality was observed in the reconstruction with a 0.4 mm slice thickness
using the Bl64 kernel. We hypothesized that the optimal QIR level would be different in
the submillimeter range, especially when combined with a low-dose tin filtration protocol.

In the present study, we investigated UHR-PCD-CT scans from patients with lung
diseases. For the first time, lung image reconstructions with submillimeter slice thicknesses
were combined with different QIR levels and analyzed in terms of the image quality and
its expected diagnostic impact.

2. Materials and Methods
2.1. Study Population

In October 2022, 51 consecutive adult patients were examined using a first-generation
PCD-CT scanner (NAEOTOM Alpha, Siemens Healthineers, Forchheim, Germany) to
undergo clinically indicated unenhanced UHR-CT scans of their lungs. None of these
patients were excluded due to unsuitable image quality or any other reason.

2.2. Imaging Protocol and Radiation Dose

All images were acquired using an ultra-high-resolution protocol (Quantum HD,
Siemens Healthineers, Forchheim, Germany), including scanning with 100 kVp and addi-
tional tin filtration. As recommended in the literature [19], lung images were reconstructed
using the sharpest available lung kernel, i.e., Bl64. A 1024 × 1024 matrix was applied,
with a fixed field-of-view of 330 × 330 mm2, resulting in a constant in-plane resolution
of 0.32 × 0.32 mm2. Images were calculated using a slice thickness of 0.2 mm, 0.4 mm,
and 1.0 mm. We applied the three highest levels of the quantum iterative reconstruction
algorithm: QIR-2; QIR-3; and QIR-4. The clinical reference image was generated with
1.0 mm slice thickness and QIR-level 3 (1.0 mm QIR-3). Eight additional reconstructions
were calculated: 0.2 mm QIR-2; 0.2 mm QIR-3; 0.2 mm QIR-4; 0.4 mm QIR-2; 0.4 mm QIR-3;
0.4 mm QIR-4; 1.0 mm QIR-2; and 1.0 mm QIR-4. The image quality (IQ) level was set to
13, which corresponded to a system-independent image quality definition and determined
the tube current-time product [18]. Table 1 summarizes detailed information about the
acquisition and reconstruction parameters.

For each scan, the CT dose index (CTDIVol) and dose length product (DLP) were
obtained from the patient-dose report. The effective dose was calculated by multiply-
ing the DLP by the conversion factor designated for chest CT of adults at 100 kVp
(0.0144 mSv/mGy × cm) [20].
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Table 1. Technical data for the computed tomography (CT) protocol and image reconstruction
parameters.

Software version syngo CT VA50A
Beam collimation 120 × 0.2 mm
Spiral pitch factor 0.8

Rotation time 0.25 s
Tube voltage 100 kVp

Tin filter on
Tube current modulation CARE Dose4D

Image quality level 13
Convolution kernel Bl64

Slice thickness 0.2 mm, 0.4 mm, and 1.0 mm
Increment 0.15 mm, 0.3 mm, and 0.8 mm

Iterative reconstruction QIR-2, QIR-3, and QIR-4
QIR: quantum iterative reconstruction.

2.3. Image Noise

For each image, the image noise was determined by one board-certified consultant
radiologist with 15 years of experience, using an area-weighted mean of the standard
deviations measured in three regions of interest (ROIs) on the level of the trachea between
the aortic arch and the carina. Two of these ROIs had a 3 cm diameter and were placed
in the surrounding air in the left and right top corners of the images. The remaining ROI
had a 1 cm diameter and was located concentric in the trachea. The ROIs were placed
manually using the institutional picture archiving and communication system (PACS:
Sectra®, Linköping, Sweden). The determination of the noise in the air areas of the image is
based on a previous study, which justified this method as a fast and robust image noise
assessment [21].

2.4. Qualitative Image Analysis

Image quality was independently evaluated by three raters, two board-certified con-
sultant radiologists with 15 and 7 years of experience and one resident with 4 years of
experience. Analogous to a previous study [19], the raters assessed delineation of anatomi-
cal structures and conspicuity of pathologies in the eight additional reconstructions com-
pared to the clinical reference (1.0 mm QIR-3), using a 5-point Likert scale: −2 = worse,
no diagnostic ability; −1 = worse, unclear effect on potential diagnosis; 0 = about the
same, unclear benefit or decrement; +1 = better, unclear effect on potential diagnosis;
and +2 = better, increased diagnostic ability. For this purpose, eight randomly ordered
layouts, with a side-by-side arrangement of the clinical reference on the left and one of the
eight additional reconstructions on the right, were presented within the institutional PACS
(Sectra®, Linköping, Sweden). Image information was blinded for all images. Standard
lung windowing settings were used (W: 1500, L: −500).

The raters evaluated the delineation of three different pulmonary structures: the
4th order bronchial wall; main pulmonary fissures; and peripheral pulmonary vessels,
evaluated in the right lower lobe, approximately 2 cm from the pleural surface.

To evaluate the conspicuity of pulmonary pathologies, the three raters analyzed
the images three weeks before the quality assessment to identify the following groups
of pathologies: lung nodules (up to three per patient); bronchial pathologies, including
bronchiectasis, mucus plugs, bronchial wall thickenings, and tree-in-bud patterns; em-
physema and bullae; ground-glass opacities; mosaic patterns; interstitial abnormalities,
including interlobular and intralobular septal thickenings, pleural thickenings, and den-
dritic calcifications; and pleural effusions. Each identified lung nodule was assigned an
individual score. Each other identified group of pathologies was assigned a single overall
score. In the quality analysis, conspicuity was interpreted as not only the visibility of
the pathology but also the capacity for its characterization, including the examination of
margins and other features.
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2.5. Statistical Analysis

All statistical computations were performed using dedicated statistical software (R, version
4.1.1, R Foundation for Statistical Computing, Vienna, Austria). Categorical and binary baseline
parameters are presented as total counts and percentages, while ordinal-scale variables are
shown as medians and interquartile ranges. Interval-scale variables that exhibit a normal
distribution according to the Shapiro–Wilk test are presented as means and standard deviations.

Statistical differences in noise levels were analyzed using the paired-samples Wilcoxon
rank test, with Bonferroni correction for multiple comparisons. One-sample Wilcoxon
signed-rank tests were used to assess statistical differences among the image quality scores.
We first used a two-tailed test with a theoretical median of 0 to examine the null hypothesis
that the sample is equal to the clinical reference. Next, we applied a one-tailed test with a
theoretical median of +2 to test the increase in diagnostic ability. The corresponding p-values
are denoted as p0 and p+2. A p-value of < 0.05 was considered statistically significant.

To test the inter-reader agreement of the qualitative image analysis, we calculated Krip-
pendorff’s alpha. Alpha values were interpreted as follows: 0.0–0.2 indicate slight agree-
ment; 0.2–0.4 indicate fair agreement; 0.4–0.6 indicate moderate agreement; 0.6–0.8 indicate
substantial agreement; and 0.8–1.0 indicate near-perfect agreement [22,23].

3. Results
3.1. Baseline Characteristics and Radiation Doses

Table 2 presents the baseline characteristics and radiation doses of the 51 included
patients.

Table 2. Baseline characteristics and radiation doses.

Numbers of patients n = 51

Age, years 64 (54.5–72.5)

Sex
Female 20 (39%)
Male 31 (61%)

Body height, cm 174 ± 10
Body weight, kg 76 ± 14

Body mass index, kg/m2 25.1 ± 4.2

CTDIVol, mGy 0.74 ± 0.16
DLP, mGy × cm 23.9 (21.7–26.9)

Effective dose, mSv 0.34 (0.31–0.39)
Values are presented as mean ± standard deviation or median (interquartile range).

The clinical indications justifying the unenhanced UHR-CT scans were primarily
related to identifying pneumonia or therapy-related pneumonitis (over one-third of cases)
and diagnosing pulmonary nodules (slightly less than one-third). In the remaining cases,
UHR-CT scans were attributed to other reasons (Table 3).

Table 3. Clinical indications for computed tomography (CT) lung scans.

Clinical Indications Patients, n (%)

Pneumonia or therapy-related pneumonitis, diagnostic evaluation 10 (20%)
Pneumonia or therapy-related pneumonitis, follow-up 8 (16%)

Pneumonia exclusion before allogeneic stem cell transplantation 3 (6%)
Exclusion of pulmonary graft-versus-host disease after allogeneic stem

cell transplantation 8 (16%)

Pulmonary nodules, diagnostic evaluation 7 (14%)
Pulmonary nodules, follow-up 8 (16%)

Pulmonary involvement of a rheumatic disease 5 (10%)
Others 2 (4%)
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3.2. Image Noise

Noise levels are presented in Table 4 and Figure 1. With constant QIR level, the noise
levels increased by around 45% when slice thickness was reduced from 1.0 mm to 0.4 mm
and by around 50% when slice thickness was reduced from 0.4 mm to 0.2 mm. These
noise increases could be effectively compensated by an increment in the QIR level. For
example, the noise levels were almost equal between the reconstructions between 1.0 mm
QIR-3 and 0.4 mm QIR-4. The small differences in the noise levels between the following
reconstructions—0.2 mm QIR-3 and 0.4 mm QIR-2; 0.2 mm QIR-4, 0.4 mm QIR-3, and
1.0 mm QIR-2; and 0.4 mm QIR-4 and 1.0 mm QIR-3—did not reach statistical significance
(p ≥ 0.270). All other differences in noise levels were statistically significant (p < 0.001).

Table 4. Median noise levels of different reconstructions.

Slice Thickness (mm) QIR Level Noise Level (HU)

0.2
2 240 (220–270)
3 180 (160–200)
4 120 (100–130)

0.4
2 160 (150–180)
3 120 (110–140)
4 80 (72–92)

1.0
2 110 (100–130)
3 84 (76–93)
4 55 (50–62)

Interquartile ranges are given in parentheses.
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Figure 1. Noise level distributions of the nine image reconstructions.

3.3. Qualitative Image Analysis

Evaluation of inter-reader reliability revealed substantial agreement between all raters
(Alpha = 0.61), with moderate agreement between raters 1 and 2 (Alpha = 0.49) and
between raters 1 and 3 (Alpha = 0.48) and a near-perfect agreement between raters 2 and 3
(Alpha = 0.82).

Table 5 summarizes the pulmonary pathologies identified for the qualitative image
analysis.
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Table 5. Pathologies evaluated in the qualitative analysis.

Pathology Patients, n (%)

Number of lung nodules
1 11 (22%)
2 7 (14%)
≥3 16 (31%)

Bronchial pathologies 7 (14%)
Emphysema and bullae 14 (27%)
Ground-glass opacities 30 (59%)

Mosaic pattern 6 (12%)
Interstitial abnormalities 19 (37%)

Pleural effusion 12 (24%)

3.3.1. Delineation

Results of the qualitative delineation analysis are shown in Table 6 and Figure 2.
The delineation of the main pulmonary fissures in the reconstruction of 0.2 mm QIR-3
and the delineation of the fourth-order bronchial walls and peripheral pulmonary vessels
in the reconstruction of 1.0 mm QIR-2 were not statistically distinguishable from the
clinical reference (1.0 mm QIR-3). The delineation ratings of the reconstructions of 0.2 mm
QIR-3, 0.4 mm QIR-2, and 1.0 mm QIR-2 were evaluated as almost equal to the clinical
reference, with no clear benefit or decrement, although the differences partially reached
statistical significance. All three raters observed decreased delineation in the 0.2 mm
QIR-2 reconstruction, caused by a distinct increase in noise (p0 < 0.001). Delineation of
the anatomical structures was found to be improved in the 0.2 mm QIR-4, 0.4 mm QIR-3,
0.4 mm QIR-4, and 1.0 mm QIR-4 reconstructions, with the 0.4 mm QIR-4 reconstruction
achieving the best scores. However, none of the reconstructions yielded an improvement in
diagnostic ability (all p+2 < 0.001). Figure 3 presents an example of the delineation analysis
of the peripheral pulmonary vessels.
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Figure 3. Image example showing the delineation of the peripheral pulmonary vessels. The same
image detail is shown for the nine reconstructions, with 1.0 mm QIR-3 as the clinical reference. In
the 1.0 mm reconstructions, the vessel borders are blurred by the partial volume effect. The 0.2 mm
reconstructions are disturbed by the strong noise.
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3.3.2. Pathologies

The results of the qualitative analysis regarding the conspicuity of pulmonary patholo-
gies are presented in Table 6 and Figure 2. The reconstructions 1.0 mm QIR-2 and 0.2 mm
QIR-4 showed no clear benefit or drawback compared to the clinical reference (1.0 mm
QIR-3).

Consistent with the results of delineation analysis, using the smallest slice thickness
combined with the lowest applied QIR level (0.2 mm QIR-2) decreased the conspicuity of
all pathologies due to the increased noise levels. The 0.2 mm QIR-3 and 0.4 mm QIR-2
reconstructions also showed decreased conspicuity scores due to the increased noise levels.
This finding was most pronounced with regard to the mosaic patterns. Notably, due to the
small number of mosaic patterns (n = 6), these differences should be interpreted cautiously.

Reducing the slice thickness from 1.0 mm to 0.4 mm with QIR-3 led to a slight im-
provement in the conspicuity scores for all pathologies (p0 < 0.001 for all pathologies except
the mosaic patterns). Applying the highest QIR level (QIR-4) improved the conspicuity
in the reconstructions with slice thicknesses of 1.0 mm and 0.4 mm (p0 ≤ 0.002), and this
change was most pronounced with a slice thickness of 0.4 mm, where the median score
was 1 for all pathologies. Notably, the raters found no expected improvement in diagnostic
ability among all reconstructions (p+2 < 0.001 for all pathologies, with the exception of
p+2 = 0.002 for the mosaic patterns in the 0.4 mm QIR-4 reconstruction).

Figure 4 presents an example of the conspicuity analysis of a lung nodule.
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Figure 4. Image example, showing the conspicuity of a lung nodule. The same image detail is
shown for the nine reconstructions. The nodule is marked by a red arrow in the clinical reference
reconstruction (1.0 mm QIR-3).
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Table 6. Median scores and p0 values of the qualitative image analysis.

Slice Thickness, mm 0.2 0.4 1.0

QIR Level 2 3 4 2 3 4 2 4

Delineation

4th order
bronchial

walls

−1
(−1 to −1)
p0 < 0.001

0
(−1 to 0)
p0 < 0.001

1
(0 to 1)

p0 < 0.001

0
(0 to 0)

p0 = 0.001

1
(0 to 1)

p0 < 0.001

1
(1 to 2)

p0 < 0.001

0
(0 to 0)

p0 = 0.066

1
(0 to 1)

p0 < 0.001

Main
pulmonary

fissures

−1
(−1 to −1)
p0 < 0.001

0
(0 to 0)

p0 = 0.895

1
(0 to 1)

p0 < 0.001

0
(0 to 1)

p0 < 0.001

1
(1 to 1)

p0 < 0.001

1
(1 to 2)

p0 < 0.001

0
(0 to 0)

p0 < 0.001

1
(0 to 1)

p0 < 0.001

Peripheral
pulmonary

vessels

−1
(−1 to −1)
p0 < 0.001

0
(0 to 0)

p0 < 0.001

1
(0 to 1)

p0 < 0.001

0
(0 to 0)

p0 < 0.001

1
(1 to 1)

p0 < 0.001

1
(1 to 2)

p0 < 0.001

0
(0 to 0)

p0 = 0.008

1
(0 to 1)

p0 < 0.001

Conspicuity

Lung
nodules

−1
(−1 to −1)
p0 < 0.001

0
(−1 to 0)
p0 < 0.001

0
(0 to 1)

p0 < 0.001

0
(0 to 0)

p0 = 0.891

0
(0 to 1)

p0 < 0.001

1
(0 to 2)

p0 < 0.001

0
(0 to 0)

p0 < 0.001

0
(0 to 1)

p0 < 0.001

Bronchial
patholo-

gies

−1
(−1 to −1)
p0 < 0.001

0
(−1 to 0)
p0 = 0.002

0
(0 to 1)

p0 = 0.003

0
(−0.5 to 0)
p0 = 0.041

0
(0 to 1)

p0 = 0.001

1
(0 to 2)

p0 < 0.001

0
(0 to 0)
p0 = 1

0
(0 to 1)

p0 < 0.001

Emphysema
and bullae

−1
(−1 to −1)
p0 < 0.001

0
(−1 to 0)
p0 = 0.010

0
(0 to 0.75)
p0 = 0.014

0
(0 to 1)

p0 = 0.117

0
(0 to 1)

p0 < 0.001

1
(1 to 2)

p0 < 0.001

0
(0 to 0)

p0 = 0.037

1
(0.25 to 1)
p0 < 0.001

GGOs
−1

(−1 to −1)
p0 < 0.001

0
(−1 to 0)
p0 < 0.001

0
(0 to 0.75)
p0 < 0.001

0
(0 to 0)

p0 < 0.001

0
(0 to 1)

p0 < 0.001

1
(0 to 2)

p0 < 0.001

0
(0 to 0)

p0 < 0.001

1
(0 to 1)

p0 < 0.001

Mosaic
patterns

−1
(−2 to −1)
p0 < 0.001

−1
(−2 to 0)
p0 = 0.005

0
(0 to 0)
p0 = 1

0
(−1 to 0)
p0 = 0.015

1
(−1 to 1)
p0 = 0.336

1
(1 to 2)

p0 = 0.002

0
(−0.5 to 0)
p0 = 0.072

1
(1 to 1)

p0 < 0.001

ILAs
−1

(−1 to 0)
p0 < 0.001

0
(0 to 0)

p0 = 0.182

0
(0 to 0)

p0 = 0.072

0
(0 to 0)

p0 = 0.072

0
(0 to 1)

p0 < 0.001

1
(0 to 1)

p0 < 0.001

0
(0 to 0)
p0 = 1

0
(0 to 1)

p0 < 0.001

Pleural
effusions

−1
(−1 to 0)
p0 < 0.001

0
(0 to 0)

p0 = 0.182

0
(0 to 0)

p0 = 0.149

0
(0 to 0)

p0 = 0.072

0
(0 to 1)

p0 < 0.001

1
(0 to 1)

p0 < 0.001

0
(0 to 0)

p0 = 0.773

0
(0 to 1)

p0 < 0.001

Interquartile ranges are given in parentheses. GGO: ground-glass opacity, ILA: interstitial lung abnormality.

4. Discussion

The present results showed that a slice thickness of 0.4 mm provided the best image
quality for low-dose UHR-PCD-CT of the lungs with regard to the delineation of anatomical
structures and conspicuity of pulmonary pathologies. Thinner slices, such as 0.2 mm,
resulted in increased noise levels, impairing image quality without further improvements.
Additionally, higher QIR levels enhanced image quality across all UHR (sub-)millimeter
reconstructions, with the most favorable outcomes observed at the highest available level
(QIR-4). Consequently, our findings support the recommendation of utilizing a 0.4 mm
QIR-4 reconstruction protocol for low-dose UHR-PCD-CT scans of the lungs.

In a previous study, Milos et al. identified the sharpest lung kernel (Bl64) with a 0.4 mm
slice thickness as the best reconstruction for UHR-PCD-CT of the lungs [19]. Compared to
our present research, their study utilized a 1024 matrix with a constant pixel dimension of
0.34 × 0.34 mm2, which was slightly larger than our pixel size of 0.32 × 0.32 mm2. Milos
et al. applied a QIR level of 3 based on data published by Sartoretti et al. [18]. However,
both of those earlier studies were conducted using a previous software version of the
scanner (VA40A) and not VA50A, with Sartoretti et al. using version VA40A and Milos
et al. using the version VA40A service pack 1. The introduction of this service pack was
accompanied by a reconfiguration in the naming sequence, where the previous QIR-2 level
was redesignated as QIR-1; the former QIR-3 was retitled as QIR-2, and so on. Additionally,
the new QIR-4 level was introduced. According to this new nomenclature, QIR-2 was
favored in the study by Sartoretti et al., and QIR-3 was applied by Milos et al. Their use of a
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lower QIR level might explain why a much higher radiation dose was applied in the study
by Milos et al. [19]; they applied an IQ level of 80 (we used a level of 13). This resulted in a
median CTDIVol of 5.2 mGy, which was seven times higher than the median CTDIVol in our
present study.

In the study by Sartoretti et al. [18], which favored the QIR-2 level (according to the
current naming convention), they also applied a low-dose protocol with an IQ level of
15. However, their study utilized a standard protocol with 140 × 0.4 mm collimation,
1.5 mm slice thickness, and a 512 × 512 matrix. The resulting pixel sizes were not explicitly
mentioned but are estimated to be around 0.7 × 0.7 mm2. As we hypothesized, this
standard HR recommendation for the QIR level should not be directly adopted for UHR
protocols. Our present results suggested that the highest QIR level (QIR-4) was most
favorable for UHR-PCD-CT of the lungs. This is consistent with previous PCD-CT studies,
which also recommend the highest QIR level for coronary CT angiography [24,25].

Several studies have demonstrated the superiority of PCD-CT over EID-CT for low-
dose HRCT [9,16,26,27]. They have reported preserved or better image quality, with
significantly reduced radiation doses, for PCD-CT operated in the standard mode (beam
collimation, 140 × 0.4 mm). The radiation doses used in our low-dose UHR-PCD-CT study
were within the same range. As recently published, the UHR mode (120 × 0.2 mm) of the
PCD-CT scanner allows for dose reduction compared to the standard mode (140 × 0.4 mm)
if images are reconstructed with the same slice thickness, which is based on the small pixel
effect [28]. Because the detector elements are smaller in the fan direction, the small pixel
effect enables superior image quality in ultra-low-dose examinations. Nevertheless, in this
low-dose range, images with a 0.2 mm slice thickness are disturbed by increasing noise
levels. This might be improved by the application of higher radiation doses.

In our low-dose study, although we observed improved image quality in the submil-
limeter (0.4 mm) reconstructions, we did not find the expected improvement in diagnostic
ability. This might have been because the clinical reference images with 1.0 mm slice
thickness were still in ultra-high-resolution since all images were reconstructed using a
1024 matrix. Another reason might be the low-dose protocol. Previous studies reporting
improvements in UHR-PCD-CT for the diagnosis of interstitial lung diseases (ILD) have
applied higher radiation doses. For example, a study of rheumatoid-arthritis ILD used
a median CTDIVol of 8.18 mGy in the UHR-PCD-CT scans, with 0.2 mm slice thickness
reconstructions [29]. However, for screening purposes, a low-dose UHR-PCD-CT protocol
should be applied, as described in our study, which can be complemented by a higher-dose
protocol in selected cases. For example, subtle interstitial changes in early ILD/interstitial
lung abnormalities might require a minimum radiation dose to provide high diagnostic
accuracy [29–31].

Lung cancer screening is being introduced in a rising number of countries. A low-dose
UHR protocol is favored, especially in the context of this screening application, which
requires a great increase in the number of lung examinations for the population. This
protocol enables minimal dose exposure for potentially healthy individuals in the screening
program while still providing satisfactory image quality to ensure high diagnostic reliability.

In addition to the improved detectability of well-known pulmonary pathologies, UHR-
CT has the potential to reveal discreet anatomical alterations that enable earlier and more
precise detection of lung diseases. This feature might be accessible through improved
radiomics features with better cluster separation [32–34].

The present study has several limitations. Notably, it was a single-center investigation.
Additionally, some lung pathologies had only a small sample size, and only two submillime-
ter slice thicknesses were evaluated. Also, the heterogeneity of the patient collective limits
the results to a general reconstruction protocol. Specific clinical pictures could possibly
benefit from deviating reconstruction parameters examined with higher radiation doses.
Another limitation is that the diagnostic ability was only estimated and not measured based
on the readers’ sensitivity and specificity. Finally, the images were evaluated relative to the
clinical reference, and not all possible pairwise comparisons were analyzed.
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In conclusion, our present results obtained from a small number of patients provide
an optimized reconstruction protocol for low-dose ultra-high-resolution PCD-CT of the
lungs for the first time in the field. These images scanned with a CTDIvol around 0.7 mGy
should be reconstructed with a 1024 matrix, a slice thickness of 0.4 mm, the sharpest lung
kernel (Bl64), and the highest QIR level (QIR-4). Applying these optimized reconstruction
settings can enable the full potential of low-dose UHR-PCD-CT for future applications.
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