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Abstract: Background: Gastric cancer (GC), a significant health burden worldwide, is typically
diagnosed in the advanced stages due to its non-specific symptoms and complex morphological
features. Deep learning (DL) has shown potential for improving and standardizing early GC detection.
This systematic review aims to evaluate the current status of DL in pre-malignant, early-stage,
and gastric neoplasia analysis. Methods: A comprehensive literature search was conducted in
PubMed/MEDLINE for original studies implementing DL algorithms for gastric neoplasia detection
using endoscopic images. We adhered to the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines. The focus was on studies providing quantitative diagnostic
performance measures and those comparing AI performance with human endoscopists. Results: Our
review encompasses 42 studies that utilize a variety of DL techniques. The findings demonstrate
the utility of DL in GC classification, detection, tumor invasion depth assessment, cancer margin
delineation, lesion segmentation, and detection of early-stage and pre-malignant lesions. Notably, DL
models frequently matched or outperformed human endoscopists in diagnostic accuracy. However,
heterogeneity in DL algorithms, imaging techniques, and study designs precluded a definitive
conclusion about the best algorithmic approach. Conclusions: The promise of artificial intelligence in
improving and standardizing gastric neoplasia detection, diagnosis, and segmentation is significant.
This review is limited by predominantly single-center studies and undisclosed datasets used in AI
training, impacting generalizability and demographic representation. Further, retrospective algorithm
training may not reflect actual clinical performance, and a lack of model details hinders replication
efforts. More research is needed to substantiate these findings, including larger-scale multi-center
studies, prospective clinical trials, and comprehensive technical reporting of DL algorithms and
datasets, particularly regarding the heterogeneity in DL algorithms and study designs.

Keywords: gastric cancer; deep learning; artificial intelligence; systematic review; endoscopy

1. Introduction

Gastric cancer (GC) is a significant health issue worldwide [1]. The global prevalence
of gastric cancer is increasing significantly, emphasizing the need for improved detection
methods. Currently, gastric cancer ranks as the fifth most common malignant cancer
and the fourth leading cause of cancer-related mortality worldwide. Despite a decline in
incidence rates, the global burden of this malignancy is projected to increase by 62% by
2040 [2]. This escalation is further highlighted by predictions from the International Agency
for Research on Cancer (IARC), which forecasts an increase to about 1.8 million new cases
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and approximately 1.3 million deaths by 2040, representing increases of about 63% and
66%, respectively, compared with 2020 [3].

The five-year survival rate for stage Ia cancer is over 95%, compared to 66.5% and
46.9% for stages II and III, respectively [4]. These survival differences underscore the
importance of detecting treatable early-stage neoplastic lesions in the stomach. However,
subtle surface changes suggestive of gastric neoplasias can be very challenging to identify
endoscopically [5]. An estimated 5–10% of individuals diagnosed with gastric cancer
had a negative upper endoscopy within 3 years, suggesting a failure to diagnose early-
stage gastric neoplasias [5–7]. Procedures performed by non-expert endoscopists have an
additional 14% decrease in the absolute gastric neoplasia detection rate compared to those
performed by expert endoscopists [6]. Recent advancements in artificial intelligence (AI)-
assisted endoscopy offer hope. Computer-aided detection (CADe) and diagnosis (CADx)
AI systems aim to improve the real-time detection of gastric neoplasias by detecting subtle
neoplastic changes in gastric mucosa with high accuracy [8,9].

Deep learning is a sophisticated branch of artificial intelligence that uses algorithms
inspired by the human brain, known as artificial neural networks. These networks consist
of layers of nodes that transform input data, enabling the machine to learn from large
datasets. The learning process involves adjusting the network’s internal parameters to
reduce prediction errors, utilizing methods like backpropagation and gradient descent.
Deep learning is distinguished by its use of numerous layers that enable the recognition of
complex patterns, making it ideal for applications in image and speech recognition, among
others [10].

The proliferation of AI tools can be largely attributed to advances in computational
power, algorithmic improvements, and the abundance of data available in the digital
age. These tools have found applications across various sectors, including healthcare,
automotive, finance, and customer service. The development of accessible frameworks
like TensorFlow and PyTorch has democratized AI, allowing a broader range of users to
develop AI models. Additionally, the integration of AI into products and services by many
companies has fueled further demand for these tools.

Convolutional neural networks (CNNs) are a type of deep learning (DL) model used
in computer vision. CNNs are trained using vast quantities of annotated images and videos
that are labelled to facilitate particular tasks such as image classification or segmentation.
Via the segmentation process, which begins with the collecting and preprocessing of gastric
images, followed by expert annotation to mark cancerous tissues, the AI model is trained
on these annotated images to learn the distinguishing features of neoplastic tissue. Once
trained, the model can segment neoplastic areas in new images, aiding in diagnosis and
treatment planning [11].

Once trained, these models can independently analyze new visual data, effectively
detecting (CADe) or diagnosing (CADx) gastric neoplasias [12]. The real-world use of CNN-
assisted endoscopy has shown encouraging results for identifying upper gastrointestinal
neoplasms, including GC [7]. AI-based systems can also estimate GC’s invasion depth,
which is crucial for treatment planning [13,14].

In many cases, endoscopic AI systems match or surpass the diagnostic performance of
experienced endoscopists [15–18].

Real-time segmentation models have also successfully distinguished between gastric
intestinal metaplasia (GIM) and healthy stomach tissue [17]. AI technology has the potential
to revolutionize gastrointestinal endoscopy, improving patient outcomes. Yet, integrat-
ing CADe/CADx systems into clinical workflows is not without challenges. Algorithm
training bias, the management of human–AI interaction complexities, and dealing with
false-positive outcomes all need to be addressed to ensure successful AI implementation [9].



Diagnostics 2023, 13, 3613 3 of 22

This review aims to probe the current literature on DL’s role in gastric neoplasia
detection and diagnosis. We aim to analyze the strengths and weaknesses of CNN-based
systems used for endoscopic evaluation of gastric neoplasias, and to discuss the challenges
of integrating these systems into clinical practice.

2. Methods

We carried out this systematic review following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

2.1. Search Strategy

We conducted a comprehensive search of PubMed/MEDLINE from their inception
until May 2023. We used a combination of Medical Subject Headings (MeSH) and free-text
terms related to “gastric cancer”, “gastric neoplasm”, “stomach neoplasm”, “stomach
cancer”, “gastric carcinoma”, “artificial intelligence”, “deep learning”, “machine learning”,
and “endoscopy”. We restricted the search to articles published in English. We manually
checked the reference lists of eligible articles for any additional relevant studies.

2.2. Selection Criteria

We included studies that met the following criteria: 1—original research articles,
2—application of DL algorithms for gastric neoplasia detection or diagnosis, 3—use of
endoscopic images for analysis, 4—provided quantitative diagnostic performance measures,
and 5—compared AI performance with that of human endoscopists where possible.

We excluded studies if they: 1—were reviews, case reports, editorials, letters, or
conference abstracts, 2—did not independently assess gastric neoplasias, 3—did not use
endoscopic imaging, or 4—lacked sufficient performance measures.

2.3. Data Extraction

Two reviewers independently extracted data using a pre-defined extraction form using
Microsoft Excel. The data included variables like the first author’s name, publication year,
and study design, among others. Disagreements were resolved through discussion or
consultation with a third reviewer.

2.4. Data Synthesis and Analysis

We performed a narrative synthesis to summarize the studies’ findings. Because of
the expected heterogeneity in AI algorithms, imaging techniques, and study designs, we
did not plan a meta-analysis. We presented the results in a tabular format and discussed
the key findings.

3. Results

We identified 42 studies that met the inclusion criteria. The designs, sample sizes,
and algorithms used varied across the studies. Table 1 summarizes all studies included in
the review and offers data on the research subject, clinical task, study design, sample size,
detection/classification, objective, AI model/algorithm, AI model performance, clinical
implication, and subject. The flowchart delineating the selection procedure of the studies
included is depicted in Figure 1.

All sensitivity, specificity, and accuracy values represent the AI models’ performance.
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Table 1. Research characteristics of all studies included in this review.

REF Subject Clinical Task Study Design Sample Size Detection/Classification
Objective AI Model/Algorithm AI Model Performance Clinical Implications

Liu L et al. [11] Pre-malignant
lesions

Diagnosis and
segmentation of
GNLs

Retrospective, two
centers

3757 images from
392 patients with
GNLs and 2420 images
from 568 patients
with non-GNLs

Diagnosis and segmentation
of GNLs under magnifying
endoscopy with
narrow-band imaging
(ME-NBI)

Two convolutional
neural network
(CNN) modules

Accuracy: 90.8%,
Sensitivity: 92.5%,
Specificity: 89.0%

CAD system can assist
endoscopists in more accurately
diagnosing GNLs and delineating
their extent

Hu H et al. [12] Early gastric cancer Diagnosis of EGC
under ME-NBI

Multicenter,
randomized 295 cases Diagnosis of EGC VGG-19

AUC: 0.808 (ITC), 0.813
(ETC), Accuracy: 0.770,
Sensitivity: 0.792,
Specificity: 0.745

The model exhibited comparable
performance with senior
endoscopists in the diagnosis of
EGC and showed potential value in
aiding and improving the
diagnosis of EGC by endoscopists.

Zhu Y et al. [13] Gastric cancer Prediction of
invasion depth

Retrospective and
prospective

790 images in the
development dataset,
203 images in the test
dataset

Determination of invasion
depth of gastric cancer ResNet50 Area under the ROC

curve: 0.94

Assists in screening patients for
endoscopic resection by accurately
predicting invasion depth.

Goto A et al. [14] Early gastric cancer Invasion depth
determination Retrospective single

250 intramucosal
cancers and
250 submucosal
cancers

Differentiating intramucosal
and submucosal gastric
cancers

Not specified

Accuracy: 77%,
Sensitivity: 76%,
Specificity: 78%,
F1 measure: 0.768

Improvement in diagnostic ability
to determine invasion depth of
early gastric cancer

DU H et al. [16] Detection of gastric
pathologies Real-time diagnosis Retrospective and

prospective

4201 images,
7436 image-pairs,
162 videos

Real-time diagnosing of
gastric neoplasms ENDOANGEL-MM

Accuracy: 86.54% for
images, 90.00% for
videos, 93.55% for
prospective patients

ENDOANGEL-MM identifies
gastric neoplasms with good
accuracy and has potential role in
real-clinic

Pornvoraphat P
et al. [17]

Pre-malignant
lesions

Real-time
segmentation of GIM

Retrospective,
single-center,
case–control

940 GIM images and
1239 non-GIM
images

Segmentation of GIM from a
healthy stomach BiSeNet-based model

Sensitivity: 91%,
Specificity: 96%,
Accuracy: 96%,
Mean IoU: 55%

Real-time detection of GIM for
improved diagnostic precision

Gong EG et al. [18] Detection of gastric
pathologies

Automated detection
and classification of
gastric neoplasms

Prospective,
multicenter

5017 images for training,
2524 procedures for
internal testing,
3976 images from
five institutions for
external testing

Automated detection and
classification of gastric
neoplasms in real-time
endoscopy

Clinical decision
support system
(CDSS) based on
deep learning

Detection rate: 95.6%
(internal test),
Accuracy: 81.5% in
four-class classification
and 86.4% in binary
classification (external
test)

CDSS has potential for real-life
clinical application and high
performance in terms of lesion
detection and classification

Lee JH et al. [19] Classification of
gastric pathologies

Classification of
benign ulcer and
cancer

Retrospective, single
center, case control

200 normal,
367 cancer, and
220 ulcer cases

Classification of normal,
benign ulcer, and cancer
images

Inception, ResNet,
and VGGNet

AUC for the three
classifiers: 0.95, 0.97,
and 0.85, respectively

Automatic classification can
complement manual inspection
efforts to minimize risks of missing
positives due to repetitive sequence
of endoscopic frames.
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Table 1. Cont.

REF Subject Clinical Task Study Design Sample Size Detection/Classification
Objective AI Model/Algorithm AI Model Performance Clinical Implications

Cho BJ et al. [20] Classification of
gastric pathologies

Classification of
gastric neoplasms

Retrospective and
prospective case and
control, two centers

5017 images from
1269 patients for
training, 812 images
from 212 patients for
testing, and 200 images
from 200 patients for
validation

Automatic classification of
gastric neoplasms Inception-Resnet-v2

Weighted average
accuracy: 84.6%; AUC
for differentiating
gastric cancer and
neoplasm: 0.877 and
0.927, respectively

Potentially useful for clinical
application in classifying gastric
cancer or neoplasm using
endoscopic white-light images.

Ueyama H et al.
[21] Gastric cancer Diagnosis Retrospective and

prospective

5574 ME-NBI images
(3797 EGCs,
1777 non-cancerous)

Diagnosis of early gastric
cancer (EGC) ResNet50

Accuracy: 98.7%,
Sensitivity: 98%,
Specificity: 100%

The AI-assisted CNN-CAD system
for ME-NBI diagnosis of EGC
could process many stored ME-NBI
images in a short period of time
and had a high diagnostic ability.
This system may have great
potential for future application to
real clinical settings.

Horiuchi Y et al.
[22] Early gastric cancer Differentiating EGC

from gastritis
Retrospective and
prospective single

pre-trained using
1492 EGC and
1078 gastritis images
from ME-NBI. A
separate test dataset
(151 EGC and
107 gastritis images
based on ME-NBI)
was used to evaluate
the diagnostic ability

Differentiating EGC from
gastritis 22-layer CNN

Accuracy: 85.3%,
Sensitivity: 95.4%,
Specificity: 71.0%

May provide rapid and sensitive
differentiation between EGC and
gastritis

Klang E et al. [23] Gastric ulcers Malignancy
detection Retrospective 1978 GU images

Discrimination between
benign and malignant
gastric ulcers

CNN AUC: 0.91, Sensitivity:
92%, Specificity: 75%

The algorithm may improve the
accuracy of differentiating benign
from malignant ulcers during
endoscopies and assist in patients’
stratification, allowing accelerated
patient management and an
individualized approach towards
surveillance endoscopy.

Liu Y et al. [24] Gastric ulcers

Classification of
benign and
malignant gastric
ulcer lesions

Retrospective,
single-center,
case–control

109 cases in the
benign group, 69 in
malignant

Automatic classification and
diagnosis of benign and
malignant gastric ulcer
lesions

Convolutional neural
network, Xception
model with residual
attention module

Accuracy: 81.411%, F1
score: 81.815%,
Sensitivity: 83.751%,
Specificity: 76.827%,
Precision: 80.111%

Residual attention mechanism can
improve the classification effect of
Xception CNN on benign and
malignant lesions of gastric ulcers

Zhang X et al. [25] Detection of gastric
pathologies Polyp detection Single center,

retrospective, cases 404 cases Automatic detection of
gastric polyps

Single Shot MultiBox
Detector
(SSD-GPNet)

mAP: 90.4%; Improved
polyp detection recall
by over 10%

Assists in reducing gastric polyp
miss rate and potentially decreases
the burden on physicians.
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Table 1. Cont.

REF Subject Clinical Task Study Design Sample Size Detection/Classification
Objective AI Model/Algorithm AI Model Performance Clinical Implications

Durak S et al. [26] Detection of gastric
pathologies

Detection of gastric
polyps Retrospective study

2195 endoscopic
images and
3031 polyp labels

Automatic gastric polyp
detection

YOLOv4, CenterNet,
EfficientNet, Cross
Stage ResNext50-SPP,
YOLOv3,
YOLOv3-SPP, Single
Shot Detection,
Faster Regional CNN

YOLOv4 had 87.95%
mean average precision

YOLOv4 can be used effectively in
gastrointestinal CAD systems for
polyp detection

Wu L et al. [27] Detection of gastric
pathologies

Detection of gastric
neoplasms

Single-center,
randomized
controlled, tandem
trial

1812 patients AI-assisted detection of
gastric neoplasms Not specified

Lower gastric
neoplasm miss rate in
the AI-first group

AI can reduce the miss rate of
gastric neoplasms in clinical
practice

Xu M et al. [28] Detection of gastric
pathologies

Detecting gastric
precancerous
conditions

Retrospective,
multicenter 760 patients

Detecting gastric atrophy
(GA) and intestinal
metaplasia (IM)

ENDOANGEL (a
deep CNN)

Diagnostic accuracy of
GA was 0.901

The model shows potential for
real-time detection of gastric
precancerous conditions in clinical
practice.

Hirasawa T et al.
[29] Gastric cancer Gastric cancer

detection
Retrospective and
prospective

69 patients with
77 gastric cancer
lesions. Trained using
13,584 endoscopic
images of gastric
cancer. To evaluate
the diagnostic
accuracy, an
independent test set
of 2296 stomach
images collected
from 69 consecutive
patients with 77 gastric
cancer lesions was
applied to the
constructed CNN.

Automatic detection of
gastric cancer

Single Shot MultiBox
Detector (SSD)

Sensitivity: 92.2%;
Positive Predictive
Value: 30.6%

Reduces the burden on
endoscopists by processing
numerous stored endoscopic
images in a very short time.

Ikenoyama Y et al.
[30] Gastric cancer Early detection Retrospective and

prospective single

13,584 images from
2639 lesions. The CNN
was constructed using
13,584 endoscopic
images from
2639 lesions of gastric
cancer. Subsequently,
its diagnostic ability
was compared to that
of 67 endoscopists
using an independent
test dataset (2940 images
from 140 cases).

Detecting early gastric
cancer CNN Sensitivity: 58.4%,

Specificity: 87.3%

The CNN detected more early
gastric cancer cases in a shorter
time than the endoscopists. A
diagnostic support tool for gastric
cancer using a CNN will be
realized in the near future.
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Table 1. Cont.

REF Subject Clinical Task Study Design Sample Size Detection/Classification
Objective AI Model/Algorithm AI Model Performance Clinical Implications

Bang CS et al. [31] Classification of
gastric pathologies

Classify the invasion
depth of gastric
neoplasms

Prospective,
multicenter

a total of 5017 images
from 1269 individuals;
of these, 812 images
from 212 subjects
were used

Classifying the invasion
depth of gastric neoplasms

AutoDL models
(Neuro-T, Create ML
Image Classifier,
AutoML Vision)

Accuracy: 89.3%

AutoDL models showed high
accuracy in classifying invasion
depth of gastric neoplasms,
suggesting their potential for
improving diagnostic accuracy and
efficiency in clinical practice.

Yoon HJ et al. [32] Early gastric cancer Tumor invasion
depth prediction Retrospective single 11,539 images Classification of endoscopic

images as EGC or non-EGC VGG-16
AUC for EGC detection:
0.981, AUC for depth
prediction: 0.851

May improve depth prediction in
EGC, particularly in
undifferentiated-type histology,
requiring further validation

Hamada K et al.
[33] Early gastric cancer

Evaluating the depth
of invasion of early
gastric cancer

Retrospective 200 cases
Evaluating the depth of
invasion of early gastric
cancer

ResNet152

Sensitivity, specificity,
and accuracy for
diagnosing M cancer
were 84.9%

Assist in endoscopic diagnosis of
early gastric cancer

Tang D et al. [34] Gastric cancer Diagnosis of
intramucosal GC

Retrospective
single-center

666 gastric
cancer patients
3407 endoscopic
images

Discrimination of
intramucosal GC from
advanced GC

DCNN AUC: 0.942

The model achieved high accuracy
in discriminating intramucosal GC
from advanced GC, indicating its
potential to assist endoscopists in
diagnosing intramucosal GC.

An P et al. [35] Early gastric cancer Delineation of cancer
margins

Retrospective and
prospective

A total of 546 CE
images from
67 patients were
included, and 34 CE
images from
14 patients were
included in the test
dataset. In the WLE
dataset, the training
dataset consisted of
343 images from
260 patients, and the
test dataset consisted
of 321 images from
218 patients

Delineating the resection
margin of early gastric
cancer

Fully convolutional
networks
(ENDOANGEL)

Accuracy: 85.7% in CE
images, 88.9% in WLE
images

Assisting endoscopists in
delineating the resection extent of
EGC during ESD

Du W et al. [36] Early gastric cancer
Automatic
segmentation of EGC
lesions

Retrospective and
prospective

7169 images from
2480 patients

Segmentation of EGC
lesions in gastroscopic
images

Co-spatial attention
and channel
attention-based
triple-branch
ResUnet (CSA-CA-
TB-ResUnet)

Jaccard similarity index
(JSI) of 84.54%

Accurate segmentation of EGC
lesions for aiding clinical diagnosis
and treatment

Ling T et al. [37] Gastric cancer Margin delineation Retrospective

2217 images from
145 EGC patients,
1870 images from
139 EGC patients

Identification of
differentiation status and
delineation of margins of
EGC

CNN Accuracy: 83.3%

The AI system accurately identifies
the differentiation status of EGCs
and may assist in determining the
surgical strategy and achieving
curative resection in EGC patients.
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Table 1. Cont.

REF Subject Clinical Task Study Design Sample Size Detection/Classification
Objective AI Model/Algorithm AI Model Performance Clinical Implications

Teramoto A et al.
[38] Gastric cancer

Detection and
segmentation of
invasive gastric
cancer

Retrospective
single-center

2378 images from
different patients

Classification of endoscopic
images and identification of
the extent of cancer invasion

Cascaded deep
learning model,
U-Net

Sensitivity: 97.0%,
Specificity: 99.4%,
Case-based evaluation:
100%

The method could be useful for the
classification of endoscopic images
and identification of the extent of
cancer invasion

Lin N et al. [39] Pre-malignant
lesions

Recognition of AG
and GIM

Retrospective
multicenter

A total of
7037 endoscopic
images from
2741 participants
were used to develop
the CNN

Simultaneous recognition of
AG and GIM

Deep Convolutional
Neural Network
(CNN) using
TResNet

Not specified CNN model could be used for
diagnosing AG and GIM

Wu L et al. [40] Early gastric cancer

Detecting gastric
neoplasm,
identifying EGC, and
predicting EGC
invasion depth and
differentiation status

Multicenter,
prospective,
real-time,
competitive
comparative,
diagnostic study

100 videos Detecting neoplasms and
diagnosing EGCs Not specified

Sensitivity rates of the
system for detecting
neoplasms and
diagnosing EGCs were
87.81% and 100%,
respectively

AI system can enhance the
performance of endoscopists in
diagnosing EGC

Hirai K et al. [41] Pre-malignant
lesions

Differentiating
gastrointestinal
stromal tumors from
benign subepithelial
lesions

Retrospective 631 cases Classifying SELs on EUS
images CNN

Accuracy of 86.1% for
five-category
classification,
sensitivity and
accuracy of 98.8% and
89.3%, respectively, for
differentiating GISTs
from non-GISTs

Assist in improving the diagnosis
of SELs in clinical practice

Sakai Y et al. [42] Early gastric cancer Early gastric cancer
detection

Retrospective single
center 1000 images Automatic detection of early

gastric cancer Not provided
Accuracy: 87.6%;
Balanced sensitivity
and specificity

Assists endoscopists in
decision-making by providing a
heat map of candidate regions of
early gastric cancer.

Li L et al. [43] Early gastric cancer Diagnosis of early
gastric cancer

Retrospective and
prospective

A total of 386 images
of non-cancerous
lesions and
1702 images of early
gastric cancer were
collected to train and
establish a CNN
model (Inception-v3).
Then, a total of
341 endoscopic
images (171 non-
cancerous lesions
and 170 early gastric
cancer) were selected
to evaluate the
diagnostic
capabilities of CNN
and endoscopists.

Diagnosis of early gastric
cancer Inception-v3

Sensitivity: 91.18%,
Specificity: 90.64%,
Accuracy: 90.91%

May enhance the diagnostic
efficacy of non-experts in
differentiating early gastric cancer
from non-cancerous lesions
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Table 1. Cont.

REF Subject Clinical Task Study Design Sample Size Detection/Classification
Objective AI Model/Algorithm AI Model Performance Clinical Implications

Tang D et al. [44] Early gastric cancer Detection of early
gastric cancer

Retrospective and
prospective,
multicenter

All 45,240 endoscopic
images from
1364 patients were
divided into a
training dataset
(35,823 images from
1085 patients) and a
validation dataset
(9417 images from
279 patients).
Another 1514 images
from three other
hospitals were used
as external
validation.

Detection of early gastric
cancer

Deep Convolutional
Neural Networks
(DCNNs)

Accuracy: 85.1%–91.2%,
Sensitivity:
85.9%–95.5%,
Specificity:
81.7%–90.3%

Multicenter prospective validation
needed for clinical application

Wu L et al. [45] Pre-malignant
lesions

Detecting gastric
lesions and
predicting neoplasms

Retrospective and
prospective Over 10,000

Assisting in detecting
gastric lesions and
predicting neoplasms by
WLE

ENDOANGEL-LD

Sensitivity of 96.9% for
detecting gastric lesions
and 92.9% for
diagnosing neoplasms
in internal patients

Assisting endoscopists in screening
gastric lesions and suspicious
neoplasms in clinical work

He X et al. [46] Early gastric cancer

Diagnosing EGC in
magnifying
image-enhanced
endoscopy

Retrospective and
prospective 3099 cases Diagnosing EGC in M-IEE ENDOANGEL-ME

Diagnostic accuracy of
88.44% and 90.49% in
internal and external
images, respectively

Assist in diagnosing early gastric
cancer

Yao Z et al. [47] Early gastric cancer Diagnosing early
gastric cancer Prospective 1653 cases

Rapid and accurate
diagnosis of endoscopic
images from early gastric
cancer

YOLO

Accuracy, sensitivity,
specificity, and positive
predictive value of
85.15%, 85.36%, 84.41%,
and 95.22%, respectively,
for Test Set 1

Assist in the efficient, accurate, and
rapid detection of early gastric
cancer lesions

Li J et al. [48] Early gastric cancer Diagnosis of EGC
under M-IEE Retrospective 692 patients

Develop a logical
anthropomorphic AI
diagnostic system for EGCs
under M-IEE

ENDOANGEL-LA,
based on feature
extraction, deep
learning (DL), and
machine learning
(ML)

Accuracy of
ENDOANGEL-LA in
images was 88.76% and
in videos was 87.00%

ENDOANGEL-LA has the
potential to increase interactivity
between endoscopists and CADs,
and improve trust and acceptability
of CADs for endoscopists

Jin Z et al. [49] Early gastric cancer
Automatic detection
of early gastric
cancer

Controlled trials 7133 images from
different patients

Automatic detection of early
gastric cancer Mask R-CNN

WLI test—Accuracy:
90.25%, Sensitivity:
91.06%, Specificity:
89.01%, NBI
test—Accuracy: 95.12%,
Sensitivity: 97.59%

Can be effectively applied to
clinical settings for the detection of
EGC, especially for the real-time
analysis of WLIs
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Table 1. Cont.

REF Subject Clinical Task Study Design Sample Size Detection/Classification
Objective AI Model/Algorithm AI Model Performance Clinical Implications

Zhou B et al. [50] Early gastric cancer Detection of early
gastric cancer

Single-center
retrospective study

5770 images from 194
patients

Automatic detection of early
gastric cancer EfficientDet

Case-based Sensitivity:
98.4%, Image-based
Accuracy: 88.3%,
Sensitivity: 84.5%,
Specificity: 90.5%

Shows great potential in assisting
endoscopists with the detection of
EGC

Su X et al. [51] Early gastric cancer EGC detection Retrospective
single-center 3659 cases Detection of early gastric

cancer

Faster RCNN,
Cascade RCNN,
Mask RCNN

Accuracy: 0.935 (Faster
RCNN), 0.938 (Cascade
RCNN), 0.935 (Mask
RCNN), Specificity:
0.908 (Faster RCNN,
Mask RCNN), 0.946
(Cascade RCNN)

These deep learning methods can
assist in early gastric cancer
diagnosis using endoscopic
images.

Nakahira H et al.
[52] Gastric cancer Risk stratification of

GC
Retrospective
single-center 107,284 images Stratification of GC risk Not explicitly stated Not explicitly stated

Could provide effective
surveillance for GC, stratifying GC
risk based on endoscopic
examinations

Igarashi S et al.
[53] Gastric cancer

Automated
localization of
digestive lesions and
prediction of cancer
invasion depth

Retrospective 441 patients
Classification of upper GI
organ images into
anatomical categories

AlexNet
Accuracy: Training
dataset 0.993,
Validation dataset 0.965

Facilitating data collection and
assessment of EGD images,
potentially useful for both expert
and non-expert endoscopists
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3.1. Gastric Neoplasm Classification

Several studies utilized DL to classify gastric endoscopic images. Lee JH et al. [19] used
Inception, ResNet, and VGGNet to differentiate between normal, benign ulcer, and cancer
images, achieving high areas under the curves (AUCs) of 0.95, 0.97, and 0.85, respectively.

Notably, Inception, ResNet, and VGGNet are influential architectures in the field of
deep learning, particularly for image processing tasks:

Inception: Known for its efficiency and depth, the Inception architecture, especially its
popular version Inception v3, uses a combination of different-sized convolutional filters
within the same layer (called a “network in network” approach). This allows it to capture
spatial hierarchies at different scales and reduces computational cost.

ResNet (Residual Network): This architecture introduces residual learning to alleviate
the vanishing gradient problem in very deep networks. By using skip connections that by-
pass one or more layers, ResNet can effectively train networks with many layers, including
popular variants like ResNet50 and esNet101.

VGGNet (Visual Geometry Group Network): VGGNet, particularly VGG16 and
VGG19, is known for its deep but simple architecture, using multiple convolutional layers
with small-sized filters (3 × 3) before pooling layers. Its uniform architecture makes it
easy to understand and implement, and it has been highly influential in demonstrating the
effectiveness of depth in convolutional neural networks [19].

Cho BJ et al. [20] used Inception-Resnet-v2 for gastric neoplasm classification, reaching
84.6% accuracy. Three studies focused on diagnosing GC.

The ResNet50 model is a variant of the ResNet architecture, which is widely used in
deep learning for image recognition and processing tasks. It is 50 layers deep, hence the ‘50’
in its name. One of the key features of ResNet is the use of “residual blocks” that help in
combatting the vanishing gradient problem in deep neural networks, enabling the training
of much deeper networks.

In a ResNet50 model, these residual blocks consist of layers with skip connections
that allow the activation from one layer to be fast-forwarded to a later layer, bypassing
one or more layers in between. This design helps in preserving the learning and signal
from the initial layers to the deeper layers in the network. ResNet50, specifically, is known
for its balance between depth and complexity, making it a popular choice for many image
recognition tasks [21].

ResNet50 was applied to Magnifying Endoscopy with Narrow-Band Imaging (ME-
NBI) images [21], resulting in 98.7% accuracy. Yusuke Horiuchi et al. [22] achieved 85.3%
accuracy in differentiating early gastric cancer (EGC) from gastritis using a 22-layer CNN.
Another study [23] achieved 92% sensitivity and 75% specificity in distinguishing malignant
from benign gastric ulcers using a CNN.

Liu Y et al. [24] used the CNN Xception model enhanced by a residual attention
mechanism to automatically classify benign and malignant gastric ulcer lesions in digestive
endoscopy images.

The Xception model is an advanced convolutional neural network (CNN) architecture
that builds upon the principles of Inception networks. The key innovation in Xception is
the concept of depthwise separable convolutions. This approach separates the convolution
process into two parts: a depthwise convolution that applies a single filter per input
channel, followed by a pointwise convolution that applies a 1 × 1 convolution to combine
the outputs of the depthwise convolution.

This architecture allows Xception to have fewer parameters and computations than a
traditional convolutional approach, while maintaining or improving model performance.
Xception is particularly effective for tasks in computer vision, demonstrating strong perfor-
mance in image classification and other related tasks.

The enhanced Xception model achieved an accuracy of 81.4% and F1 score of 81.8% in
diagnosing benign and malignant gastric ulcers.
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3.2. Gastric Neoplasm Detection

Two studies [25,26] used SSD-GPNet and YOLOv4 for detecting gastric polyps, both
achieving high mean average precision (mAP). YOLO, which stands for “You Only Look
Once”, is a revolutionary AI algorithm used for real-time object detection in computer
vision. It streamlines the traditional two-step object detection process into a single step
utilizing a single convolutional neural network. This approach allows YOLO to quickly
identify and classify multiple objects within an image by dividing it into a grid and
predicting bounding boxes and class probabilities for each grid cell. Renowned for its
speed, YOLO also maintains a commendable level of accuracy, although it is slightly less
effective with small objects. Its applications range from autonomous vehicles to real-time
surveillance. Over time, various iterations of YOLO have emerged, each enhancing its
speed, accuracy, and detection capabilities, making it a crucial tool in the field of AI-assisted
object detection.

The SSD-GPNet was shown to significantly increase polyp detection recalls by more
than 10% (p < 0.001), particularly in the detection of small polyps [25], and YOLOv4 was
shown to have an 88.0% mean average precision [26].

With respect to gastric neoplasm detection, Lianlian Wu et al. [27] showed a decreased
miss rate using AI: the incidence of missed gastric neoplasms was significantly reduced
in the AI-first group compared to the routine-first group (6.1%, [3 out of 49 patients]
versus 27.3%, [12 out of 44 patients]; p = 0.015). Hongliu Du et al. [16] achieved the highest
accuracy using a multimodal (white light and weak magnification) model, achieving 93.55%
accuracy in prospective validation and outperforming endoscopists in the evaluation
of multimodal data (90.0% vs. 76.2%, p = 0.002). Furthermore, when assisted by the
multimodal ENDOANGEL-MM model, non-experts experienced a significant improvement
in accuracy (85.6% versus 70.8%, p = 0.020), reaching a level not significantly different from
that of experts (85.6% versus 89.0%, p = 0.159).

Xu M et al. [28] retrospectively analyzed endoscopic images from five Chinese hospi-
tals to evaluate the efficacy of a computer-aided detection (CADe) system in diagnosing
precancerous gastric conditions. The CADe system demonstrated high accuracy, ranging
between 86.4% and 90.8%. This was on par with expert endoscopists and notably better
than non-experts. A single-shot multibox detector (SSD) was used by one study [29] for
gastric cancer detection, achieving 92.2% sensitivity. Another study [30] achieved 58.4%
sensitivity and 87.3% specificity in early detection using a CNN.

Leheng Liu et al. [11] developed a computer-aided diagnosis (CAD) system to assist
in diagnosing and segmenting Gastric Neoplastic Lesions (GNLs). The study utilized
two CNNs: CNN1 for diagnosing GNLs and CNN2 for segmenting them. CNN1 demon-
strated excellent diagnostic performance with an accuracy of 90.8%. It also achieved an
impressive area under the curve (AUC) of 0.928. The use of CNN1 improved the accuracy
rates for all participating endoscopists compared to their individual diagnostic methods.
CNN2, focused on segmentation, also performed well, achieving an average intersection
over union (IOU) of 0.584 and high values for precision, recall, and the Dice coefficient.

3.3. Assessment of Tumor Invasion Depth

Bang CS et al. [31] utilized AutoDL for classifying the invasion depth of gastric
neoplasms with 89.3% accuracy.

VGG-16 is a convolutional neural network model proposed by the Visual Graphics
Group (VGG) from the University of Oxford. It is composed of 16 layers (hence the name
VGG-16), including 13 convolutional layers and 3 fully connected layers. One of the key
characteristics of VGG-16 is its use of a large number of convolutional layers with small-
sized filters (3 × 3), which allows it to capture complex patterns in the data while keeping
the computational complexity manageable [32].

Hong Jin Yoon et al. [32] used VGG-16 for assessing tumor invasion depth in EGC,
achieving highly discriminative AUC values of 0.981 and 0.851 for EGC detection and
depth prediction, respectively. Of the potential factors influencing AI performance when
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predicting tumor depth, only histologic differentiation showed a significant association.
Undifferentiated-type histology was associated with lower-accuracy AI predictions.

Kenta Hamada et al. [33] used ResNet152 for and achieved 78.9% accuracy in diag-
nosing mucosal cancers. Yan Zhu et al. [13] achieved an AUC of 0.94 using ResNet50.
When using a threshold value of 0.5, the system demonstrated a sensitivity of 76.47%
and a specificity of 95.56%. The overall accuracy of the CNN-CAD system was measured
at 89.2%.

Notably, the CNN-CAD system exhibited a significantly higher accuracy (by 17.3%)
and specificity (by 32.2%) when compared to human endoscopists.

Dehua Tang et al. [34] differentiated between intramucosal and advanced gastric
cancer using a deep convolutional neural network (DCNN). The DCNN model exhibited
notable discrimination between intramucosal gastric cancer (GC) and advanced GC, as
indicated by an area under the curve (AUC) of 0.942. The model achieved a sensitivity of
90.5% and a specificity of 85.3%. When comparing the diagnostic performance of novice
and expert endoscopists, it was observed that their accuracy (84.6% vs. 85.5%), sensitivity
(85.7% vs. 87.4%), and specificity (83.3% vs. 83.0%) were all similar when assisted by the
DCNN model. Furthermore, the mean pairwise kappa (a measure of agreement) among
endoscopists significantly increased with the assistance of the DCNN model, improving
from 0.430–0.629 to 0.660–0.861. The utilization of the DCNN model was also associated
with a reduction in diagnostic duration, from 4.4 s to 3.0 s. Furthermore, the correlation
between the perseverance of effort and diagnostic accuracy among endoscopists dimin-
ished with the use of the DCNN model, with the correlation coefficient decreasing from
0.470 to 0.076. This suggests that the DCNN model’s assistance helps mitigate the influence
of subjective factors, such as perseverance, on diagnostic accuracy.

In a recent study, Gong EJ et al. [18] used 5017 endoscopic images to train two models:
one for lesion detection and another for lesion classification in the stomach. In a randomized
pilot study, the lesion detection rate for the computer decision support system (CDSS) was
95.6% in internal tests. Although not statistically significant, CDSS-assisted endoscopy
showed a higher lesion detection rate (2.0%) compared to conventional screening (1.3%).
In a prospective multicenter external test, the CDSS achieved an 81.5% accuracy rate for
four-class lesion classification and an 86.4% accuracy rate for invasion depth prediction.

Goto A et al. [14] aimed at differentiating between intramucosal and submucosal early
gastric cancers. The performance of this AI classifier was then compared to a majority
vote by endoscopists. The results demonstrated that the AI classifier had better internal
evaluation scores, with an accuracy of 77%, sensitivity of 76%, specificity of 78%, and an
F1 measure of 0.768. Notably, the F1 score is a statistical measure used to evaluate the
accuracy of a test. It considers both the precision (the number of correct positive results
divided by the number of all positive results) and the recall (the number of correct positive
results divided by the number of positive results that should have been identified). The F1
score is the harmonic mean of precision and recall, providing a balance between them. It is
especially useful in situations where the class distribution is imbalanced.

In contrast, the endoscopists had lower performance measures, with 72.6% accuracy,
53.6% sensitivity, 91.6% specificity, and an F1 measure of 0.662. Importantly, the diagnostic
accuracy improved when the AI and endoscopists collaborated, achieving 78% accuracy,
76% sensitivity, 80% specificity, and an F1 measure of 0.776 on the test images. The
combined approach yielded a higher F1 measure compared to using either the AI or
endoscopists individually.

3.4. Gastric Neoplasm Segmentation

The ENDOANGEL system demonstrated commendable performance with both cap-
sule endoscopy (CE) images and white-light endoscopy (WLE) images, achieving accuracy
rates of 85.7% and 88.9%, respectively, when compared to the manual markers labeled by
experts. Notably, these results were obtained using an overlap ratio threshold of 0.60 [35].
In the case of endoscopic submucosal dissection (ESD) videos, the resection margins pre-
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dicted by ENDOANGEL effectively encompassed all areas characterized by high-grade
intraepithelial neoplasia and cancers. The minimum distance between the predicted mar-
gins and the histological cancer boundary was measured at 3.44 ± 1.45 mm, outperforming
the resection margin based on ME-NBI.

Wenju Du et al. [36] validated the use of correlation information among gastroscopic
images as a means to enhance the accuracy of EGC segmentation. The authors used the
Jaccard similarity index and the Dice similarity coefficient for validation. The Jaccard
similarity index is a statistic that measures the similarity and diversity of sample sets. It
is defined as the size of the intersection divided by the size of the union of the sample
sets. The Jaccard coefficient is widely used in computer science, ecology, genomics, and
other sciences where binary or binarized data are used. It is a ratio of Intersection over
Union, taking values between 0 and 1, where 0 indicates no similarity and 1 indicates
complete similarity.

Similar to the Jaccard index, the Dice similarity coefficient is a measure of the overlap
between two samples. For image segmentation, it is calculated as twice the area of overlap
between the predicted segmentation and the ground truth divided by the sum of the areas
of the predicted segmentation and the ground truth. It is a common metric for evaluating
the performance of image segmentation algorithms, particularly in medical imaging.

When applied to an unseen dataset, the EGC segmentation method demonstrated a
Jaccard similarity index (JSI) of 84.54%, a threshold Jaccard index (TJI) of 81.73%, a Dice
similarity coefficient (DSC) of 91.08%, and a pixel-wise accuracy (PA) of 91.18%. Tingsheng
Ling et al. [37] achieved a high accuracy of 83.3% when correctly predicting the differentia-
tion status of EGCs. Notably, in the man–machine contest, the CNN1 model significantly
outperformed the five human experts, achieving an accuracy of 86.2% compared to the
experts’ accuracy of 69.7%. When delineating EGC margins while utilizing an overlap
ratio of 0.80, the model achieved high levels of accuracy for both differentiated EGCs and
undifferentiated EGCs, with accuracies of 82.7% and 88.1%, respectively.

For invasive gastric cancer detection and segmentation, Atsushi Teramoto et al. [38]
reported 97.0% sensitivity and 99.4% specificity using U-Net. In a case-based evaluation,
the approach achieved flawless sensitivity and specificity scores of 100%.

3.5. Pre-Malignant Lesion Detection, Classification, and Segmentation

Several studies used AI to detect and classify gastric lesions associated with an in-
creased risk of progression to cancer. A CNN with TResNet [39] was used to classify
atrophic gastritis and gastric intestinal metaplasia (GIM). The AUC for atrophic gastri-
tis classification was determined to be 0.98 CI, indicating high discriminatory power.
The sensitivity, specificity, and accuracy rates for atrophic gastritis classification were
96.2%, 96.4%, and 96.4%, respectively. Similarly, the AUC for GIM classification was
0.99 (95% CI 0.98–1.00), indicating excellent discriminatory ability. The sensitivity, speci-
ficity, and accuracy rates for GIM diagnosis were 97.9%, 97.5%, and 97.6%, respectively.
ENDOANGEL-LD [40] achieved 96.9% sensitivity for pre-malignant lesion detection.

Hirai K et al. [41] investigated the yield of CNN in classifying subepithelial lesions
in endoscopic ultrasonography (EUS) images. The results showed that the AI system
exhibited a commendable 86.1% accuracy when classifying lesions into five distinct cate-
gories: Gastrointestinal Stromal Tumors (GIST), leiomyoma, schwannoma, Neuroendocrine
Tumors (NET), and ectopic pancreas. Notably, this accuracy rate surpassed that achieved
by all endoscopists by a significant margin. Furthermore, the AI system demonstrated a
sensitivity of 98.8%, specificity of 67.6%, and an overall accuracy of 89.3% in distinguishing
GISTs from non-GISTs, vastly surpassing the sensitivity and accuracy of all endoscopists in
the study at the expense of slightly decreased specificity.

Lastly, Passin Pornvoraphat et al. [17] aimed to create a real-time GIM segmentation
system using a BiSeNet-based model. This model was able to process images at a rate of
173 frames per second (FPS). The system achieved sensitivity, specificity, positive predictive
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value (PPV), negative predictive value (NPV), accuracy, and mean intersection over union
(IoU) values of 91%, 96%, 91%, 91%, 96%, and 55%, respectively.

3.6. Early Gastric Cancer Detection

In recent years, the early detection of GC has gained significant attention [42–51]. Sakai
Y et al. [42] employed transfer learning techniques and achieved a commendable accuracy
of 87.6% in detecting EGC. Similarly, Lan Li et al. [43] used Inception-v3 (CNN model),
reporting a high sensitivity of 91.2% and a specificity of 90.6%. Tang D et al. [44] evaluated
DCNNs and their system demonstrated accuracy rates ranging from 85.1% to 91.2%.

Hu H et al. [12] developed an EGC model based on the VGG-19 architecture. The
model was found to be comparable to senior endoscopists in performance but showed
significant improvements over junior endoscopists. Wu L et al. [45] conducted a comprehen-
sive study, reporting a sensitivity rate of 87.8% for detecting EGCs, thereby outperforming
human endoscopists.

HE X et al. [46] developed ENDOANGEL-ME, which achieved a diagnostic accuracy
of 88.4% on internal images and 90.5% on external images. Yao Z et al. [47] introduced a
system called EGC-YOLO, achieving accuracy rates of 85.2% and 86.2% in two different test
sets. Li J et al. [48] developed another system called ENDOANGEL-LA that significantly
outperformed single deep learning models and was on par with expert endoscopists.

Jin J et al. [49] used Mask R-CNN technology and showed high accuracy and sensitivity
in both white light images (WLIs) and NBIs. Another noteworthy study [50] utilized the
EfficientDet architecture within CNN and achieved a sensitivity of 98.4% and an accuracy
of 88.3% in detecting EGC. Finally, Su X et al. [51] assessed three typical Region-based
Convolutional Neural Network models, each showing similar accuracy rates, although
Cascade RCNN showed a slightly higher specificity of 94.6%.

Figure 2 shows the typical morphological features of malignant (A) and benign (B)
ulcers used for AI application.
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Figure 2. Morphological attributes of malignant (A) and benign (B) ulcers are as follows:
(A) Malignant gastric ulcers exhibit typically larger dimensions, measuring over 1 cm, and possess
irregular borders. These borders display elevation in comparison to the ulcer base, and discol-
oration of the base is frequently observed. (B) Conversely, benign gastric ulcers tend to be smaller
in size, measuring less than 1 cm, and feature a clean unblemished base with consistently flat and
regular borders.
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4. Discussion

AI-assisted endoscopy promises to improve the detection rates of pre-malignant and
early gastric neoplasias. The addition of computationally efficient DL computer vision
models allows endoscopists to identify more potentially treatable gastric lesions during
real-time upper endoscopy [15–18]. AI also shows promise in diagnosing and managing
GC, as supported by two recent systematic reviews [8,9]. Our review delves into the use
of deep learning (DL) models to detect gastric pre-malignant, early-stage, and neoplastic
lesions. This review explores the potential benefits and implications of employing advanced
AI techniques in this context.

DL models like Inception, ResNet, and VGGNet demonstrated high accuracy in
identifying gastric pathologies [54,55]. However, their real-world performance depends on
the quality and diversity of the training data. Training these models on diverse datasets
is essential to account for patient demographic factors and subtle differences in disease
presentation. AI systems like SSD-GPNet and YOLOv4 are good at detecting gastric
pathologies, particularly polyps [24,25,56,57]. However, their real-world effectiveness
remains uncertain, as variables like endoscopy lighting conditions, image quality, and
inter-operator variability can impact performance.

As a group, the studies reviewed in this analysis have consistently demonstrated
promising results in utilizing AI models for GC detection and segmentation. The accuracy
achieved by the addition of these AI systems to standard endoscopy has shown significant
improvements over un-assisted endoscopy, even outperforming human experts in some
cases. The use of CNNs and other DL architectures has proven to be particularly effective
in handling the complexity and variability of GC images [19,52,53,58].

In terms of GC detection, the AI models have exhibited high sensitivity and specificity,
with values ranging between 80 and 92% in different studies [26–30]. These results suggest
that AI has the potential to serve as a reliable tool for the initial screening and detection
of GC.

Furthermore, AI-based real-time segmentation systems have shown great promise
in segmenting the boundaries of gastric tumors. The segmentation accuracy achieved by
these models has consistently surpassed that of traditional endoscopist-based approaches,
providing reproducibly and accurately delineated tumor margins [18,36]. This capability
is crucial for resection planning, treatment evaluation, and follow-up assessments. The
high performance of AI models in differentiating between differentiated and undifferenti-
ated GCs further highlights their potential in guiding treatment decisions and predicting
prognoses [49–52].

Notably, the use of AI-assisted endoscopy significantly improved diagnostic perfor-
mance and reduced diagnostic variability of endoscopic examinations of the stomach. This
was particularly true for less-experienced practitioners. The AI-assisted diagnostic process
not only enhanced the sensitivity and specificity of gastric lesion diagnosis, but also reduced
the diagnostic duration and enhanced interobserver agreement among endoscopists.

Future ventures for algorithms can be to process and understand a wide range of
medical data, from patient records and medical images to genetic data and biomarker
profiles. This vast data set can provide AI models a deep understanding of GC patterns.
This may allow the models to identify subtle signs and predictive markers that may be
missed by human analysis [8–10].

AI has shown potential for early GC detection, as shown in multiple studies [42–51].
Improved endoscopic detection rates of pre-malignant gastric lesions and early GC could
make large-scale screening more effective. Using a screening-based approach, earlier
diagnosis of premalignant gastric lesions and gastric neoplasias would allow a greater
proportion of patients to be treated with endoscopic interventions that have high cure rates
and low complication rates [8,51]. Further studies are necessary to assess the feasibility and
structure of such screening programs across different populations.

Despite these promising results, there are still challenges that need to be addressed
before widespread clinical implementation of AI-assisted endoscopy for pre-malignant and
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early-stage GC detection and segmentation. One such challenge is the need for larger and
more diverse datasets to ensure robust model performance across different populations
and imaging conditions. Additionally, there is a requirement for rigorous validation and
standardization of AI models to ensure their reliability and generalizability.

Another challenge is the explainability of DL models that plays a pivotal role in clinical
acceptance and decision-making. These DL models, trained on vast datasets of endoscopic
images, have demonstrated high proficiency in identifying early signs of gastric cancer.
However, the challenge lies in deciphering how these models arrive at their conclusions.
For gastroenterologists, understanding the rationale behind a model’s prediction is crucial
for diagnosis and treatment planning. Explainability in this context involves the model
highlighting specific features in endoscopic images, such as subtle changes in tissue texture,
color, or vascular patterns, that signify pre-malignant or malignant changes. Techniques
like Gradient-weighted Class Activation Mapping (Grad-CAM) [53] can be employed to
visualize these decisive image regions, providing clinicians with a visual explanation of
the model’s diagnostic process. This level of transparency is essential, as it not only builds
trust in the AI system but also aids in the educational aspect, helping clinicians to identify
and understand subtle early signs of gastric cancer. Thus, enhancing the explainability of
DL models in AI-assisted endoscopy is a crucial step towards integrating these advanced
tools into routine clinical practice for more effective and early detection of gastric cancer.

The AI models explored in this review echo the promise of a time when early cancer
detection is common, not exceptional. Thus, AI may be a transformative force in the
prevention and treatment of early-stage GC in the near future.

In AI-assisted endoscopy for gastric neoplasia, researchers could focus on develop-
ing algorithms for enhanced detection and classification of early-stage lesions, offering
real-time procedural assistance to endoscopists, and automating pathology correlation to
potentially reduce biopsy needs. Further exploration could involve patient-specific risk as-
sessments incorporating personal and genetic data, developing AI-driven post-endoscopic
surveillance recommendations, and creating training tools for endoscopists. Additionally,
the integration of endoscopic data with other imaging modalities like CT or MRI could
provide a more comprehensive diagnostic approach to gastric neoplasia.

We acknowledge the limitations of this review. Most of the included studies were
single-center, potentially limiting their scope of patient demographics and disease presen-
tations. Additionally, AI model training and validation often used undisclosed datasets,
raising generalizability concerns. The retrospective training and validation of AI algorithms
may not fully reflect prospective clinical performance. Furthermore, the lack of disclosure
of models’ technical details can make study reproduction difficult [53,59–61]. Lastly, we
selected PubMed/MEDLINE for its relevance in biomedical research, recognizing that
this choice narrows our review’s scope. This might exclude studies from other databases,
possibly limiting diverse insights. This limitation was considered to balance focus and
comprehensiveness in our review.

In conclusion, AI’s potential in diagnosing and managing pre-malignant early-stage
gastric neoplasia is significant due to several reasons. Firstly, AI algorithms, powered by
machine learning, can analyze complex medical data at unprecedented speeds and with
high accuracy. This ability enables the early detection of gastric neoplasia, which is crucial
for successful treatment outcomes.

Secondly, AI can assist in differentiating between benign and malignant gastric le-
sions, which is often a challenging task in medical practice. By doing so, AI can help
reduce unnecessary biopsies and surgeries, leading to better patient outcomes and reduced
healthcare costs.

Thirdly, AI can continuously learn from new data, enhancing its diagnostic capabilities
over time. This aspect is particularly important in the field of oncology, where early and
accurate diagnosis can significantly impact patient survival rates.

However, further research, larger-scale studies, and prospective clinical trials are
necessary to confirm these findings. Future research should also focus on transparency,
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providing detailed reports on models’ technical details and the datasets used for training
and validation.
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CNN Convolutional Neural Network
CADe Computer-Aided Detection
CADx Computer-Aided Diagnosis
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GIM Gastric Intestinal Metaplasia
DL Deep Learning
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SSD Single Shot MultiBox Detector
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CE Capsule Endoscopy
WLE White Light Endoscopy
CSA-CA-TB-ResUnet Co-spatial attention and channel attention-based triple-branch resunet
ME-NBI Magnifying Endoscopy with Narrow-Band Imaging
DCNN Deep Convolutional Neural Network
TResNet Tensor Residual Network
BiSeNet Bilateral Segmentation Network
ResNet Residual Network
VGGNet Visual Geometry Group Network
ResNet152 Residual Network 152 Layers
ResNet50 Residual Network 50 Layers
CAD Computer-aided Diagnosis
GNLs Gastric Neoplastic Lesions

EUS Endoscopic Ultrasonography
EGCM Early Gastric Cancer Model
Grad-CAM Gradient-weighted Class Activation Mapping
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