Clinical Evaluation of Direct Reverse Transcription PCR for Detection of SARS-CoV-2 Compared to Conventional RT-PCR in Patients with Positive Rapid Antigen Test Results during Circulation of Emerging Viral Variants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Clinical Specimens
2.2. RT-PCR Testing for SARS-CoV-2 Detection
2.3. Direct RT-PCR Assay
2.4. RT-PCR Detection of SARS-CoV-2 VOC
2.5. Point-of-Care Nucleic Acid Testing for SARS-CoV-2
2.6. Statistical Analyses
3. Results
3.1. Confirmation of At-Home RAT Positive Results with RT-PCR Test Results
3.2. Variant of Concern Real-Time RT-PCR Typing
3.3. Clinical Performance of Direct RT-PCR Assay
3.4. Establishing a Flowchart for Diagnosis of RAT-Positive Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davies, N.G.; Jarvis, C.I.; Group, C.C.-W.; Edmunds, W.J.; Jewell, N.P.; Diaz-Ordaz, K.; Keogh, R.H. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature 2021, 593, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Thye, A.Y.; Law, J.W.; Pusparajah, P.; Letchumanan, V.; Chan, K.G.; Lee, L.H. Emerging SARS-CoV-2 variants of concern (VOCs): An impending global crisis. Biomedicines 2021, 9, 1303. [Google Scholar] [CrossRef]
- Boehm, E.; Kronig, I.; Neher, R.A.; Eckerle, I.; Vetter, P.; Kaiser, L. Novel SARS-CoV-2 variants: The pandemics within the pandemic. Clin. Microbiol. Infect. 2021, 27, 1109–1117. [Google Scholar] [CrossRef]
- van Ogtrop, M.L.; van de Laar, T.J.W.; Eggink, D.; Vanhommerig, J.W.; van der Reijden, W.A. Comparison of the performance of the PanBio COVID-19 antigen test in SARS-CoV-2 B.1.1.7 (alpha) variants versus non-B.1.1.7 variants. Microbiol. Spectr. 2021, 9, e0088421. [Google Scholar] [CrossRef] [PubMed]
- Alkhatib, M.; Salpini, R.; Carioti, L.; Ambrosio, F.A.; D’Anna, S.; Duca, L.; Costa, G.; Bellocchi, M.C.; Piermatteo, L.; Artese, A.; et al. Update on SARS-CoV-2 Omicron variant of concern and its peculiar mutational profile. Microbiol. Spectr. 2022, 10, e0273221. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, J. Researchers tie severe immunosuppression to chronic COVID-19 and virus variants. JAMA 2021, 325, 2033–2035. [Google Scholar] [CrossRef]
- Tiecco, G.; Storti, S.; Degli Antoni, M.; Focà, E.; Castelli, F.; Quiros-Roldan, E. Omicron genetic and clinical peculiarities that may overturn SARS-CoV-2 pandemic: A literature review. Int. J. Mol. Sci. 2022, 23, 1987. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, Y.; Niu, Z.; Jiang, X.; Sun, Q. The virological impacts of SARS-CoV-2 D614G mutation. J. Mol. Cell Biol. 2021, 13, 712–720. [Google Scholar] [CrossRef]
- Uddin, M.; Mustafa, F.; Rizvi, T.A.; Loney, T.; Suwaidi, H.A.; Al-Marzouqi, A.H.H.; Kamal Eldin, A.; Alsabeeha, N.; Adrian, T.E.; Stefanini, C.; et al. SARS-CoV-2/COVID-19: Viral genomics, epidemiology, vaccines, and therapeutic interventions. Viruses 2020, 12, 526. [Google Scholar] [CrossRef]
- Viana, R.; Moyo, S.; Amoako, D.G.; Tegally, H.; Scheepers, C.; Althaus, C.L.; Anyaneji, U.J.; Bester, P.A.; Boni, M.F.; Chand, M.; et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 2022, 603, 679–686. [Google Scholar] [CrossRef]
- Brandal, L.T.; MacDonald, E.; Veneti, L.; Ravlo, T.; Lange, H.; Naseer, U.; Feruglio, S.; Bragstad, K.; Hungnes, O.; Ødeskaug, L.E.; et al. Outbreak caused by the SARS-CoV-2 Omicron variant in Norway, November to December 2021. Eurosurveillance 2021, 26, 2101147. [Google Scholar] [CrossRef] [PubMed]
- Karim, S.S.A.; Karim, Q.A. Omicron SARS-CoV-2 variant: A new chapter in the COVID-19 pandemic. Lancet 2021, 398, 2126–2128. [Google Scholar] [CrossRef] [PubMed]
- Maslo, C.; Friedland, R.; Toubkin, M.; Laubscher, A.; Akaloo, T.; Kama, B. Characteristics and outcomes of hospitalized patients in South Africa during the COVID-19 Omicron wave compared with previous waves. JAMA 2022, 327, 583–584. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Choy, K.T.; Gu, H.; Sia, S.F.; Cheng, K.M.; Nizami, S.I.N.; Krishnan, P.; Ng, Y.M.; Chang, L.D.J.; Liu, Y.; et al. Omicron BA.1 and BA.2 sub-lineages show reduced pathogenicity and transmission potential than the early SARS-CoV-2 D614G variant in Syrian hamsters. J. Infect. Dis. 2022, 1, jiac276. [Google Scholar]
- Tegally, H.; Moir, M.; Everatt, J.; Giovanetti, M.; Scheepers, C.; Wilkinson, E.; Subramoney, K.; Makatini, Z.; Moyo, S.; Amoako, D.G.; et al. Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa. Nat. Med. 2022, 28, 1785–1790. [Google Scholar] [CrossRef] [PubMed]
- Callaway, E. What Omicron’s BA.4 and BA.5 variants mean for the pandemic. Nature 2022, 606, 848–849. [Google Scholar] [CrossRef] [PubMed]
- Jian, M.J.; Perng, C.L.; Chung, H.Y.; Chang, C.K.; Lin, J.C.; Yeh, K.M.; Chen, C.W.; Hsieh, S.S.; Pan, P.C.; Chang, H.T.; et al. Clinical assessment of SARS-CoV-2 antigen rapid detection compared with RT-PCR assay for emerging variants at a high-throughput community testing site in Taiwan. Int. J. Infect. Dis. 2022, 115, 30–34. [Google Scholar] [CrossRef]
- Loeffelholz, M.J.; Tang, Y.W. Laboratory diagnosis of emerging human coronavirus infections—The state of the art. Emerg. Microbes Infect. 2020, 9, 747–756. [Google Scholar] [CrossRef]
- Russo, A.; Minichini, C.; Starace, M.; Astorri, R.; Calò, F.; Coppola, N.; Vanvitelli COVID-19 Group. Current status of laboratory diagnosis for COVID-19: A narrative review. Infect. Drug Resist. 2020, 13, 2657–2665. [Google Scholar] [CrossRef]
- Ward, S.; Lindsley, A.; Courter, J.; Assa’ad, A. Clinical testing for COVID-19. J. Allergy Clin. Immunol. 2020, 146, 23–34. [Google Scholar] [CrossRef]
- Yang, B.H.; Chung, H.Y.; Kao, L.T.; Jian, M.J.; Chang, C.K.; Lin, J.C.; Yeh, K.M.; Chen, C.W.; Yang, Y.S.; Hsieh, S.S.; et al. Emergency SARS-CoV-2 variants of concern: Rapidly direct RT-qPCR detection without RNA extraction, clinical comparison, cost-effective, and high-throughput. Aging 2022, 14, 4624–4633. [Google Scholar] [CrossRef] [PubMed]
- Harmon, A.; Chang, C.; Salcedo, N.; Sena, B.; Herrera, B.B.; Bosch, I.; Holberger, L.E. Validation of an at-home direct antigen rapid test for COVID-19. JAMA Netw. Open 2021, 4, e2126931. [Google Scholar] [CrossRef] [PubMed]
- Navero-Castillejos, J.; Casals-Pascual, C.; Narváez, S.; Cuesta, G.; Hurtado, J.C.; Fernandez, M.; Navarro, M.; Peiró-Mestres, A.; Lasheras, M.V.; Rodriguez, P.; et al. Diagnostic performance of six rapid antigen tests for SARS-CoV-2. Microbiol. Spectr. 2021, 10, e0235121. [Google Scholar] [CrossRef] [PubMed]
- Rader, B.; Gertz, A.; Iuliano, A.D.; Gilmer, M.; Wronski, L.; Astley, C.M.; Sewalk, K.; Varrelman, T.J.; Cohen, J.; Parikh, R.; et al. Use of at-home COVID-19 tests—United States, August 23, 2021–March 12, 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Rubin, R. COVID-19 testing moves out of the clinic and into the home. JAMA 2021, 326, 1362–1364. [Google Scholar] [CrossRef] [PubMed]
- Kost, G.J. Home antigen test recall affects millions: Beware false positives, but also uncertainty and potential false negatives. Arch. Pathol. Lab. Med. 2022, 146, 403. [Google Scholar] [CrossRef] [PubMed]
- Procop, G.W.; Kadkhoda, K.; Rhoads, D.D.; Gordon, S.G.; Reddy, A.J. Home testing for COVID-19: Benefits and limitations. Cleve Clin. J. Med. 2021. [Google Scholar] [CrossRef]
- Esbin, M.N.; Whitney, O.N.; Chong, S.; Maurer, A.; Darzacq, X.; Tjian, R. Overcoming the bottleneck to widespread testing: A rapid review of nucleic acid testing approaches for COVID-19 detection. RNA 2020, 26, 771–783. [Google Scholar] [CrossRef]
- Chang, C.K.; Jian, M.J.; Chung, H.Y.; Lin, J.C.; Hsieh, S.S.; Tang, S.H.; Perng, C.L.; Chen, C.W.; Hung, K.S.; Chang, F.Y.; et al. Clinical comparative evaluation of the LabTurbo(TM) AIO((R)) reverse transcription-polymerase chain reaction and World Health Organization-recommended assays for the detection of emerging SARS-CoV-2 variants of concern. Infect. Drug Resist. 2022, 15, 595–603. [Google Scholar] [CrossRef]
- Chung, H.Y.; Jian, M.J.; Chang, C.K.; Lin, J.C.; Yeh, K.M.; Chen, C.W.; Hsieh, S.S.; Hung, K.S.; Tang, S.H.; Perng, C.L.; et al. Emergency SARS-CoV-2 variants of concern: Novel multiplex real-time RT-PCR assay for rapid detection and surveillance. Microbiol. Spectr. 2022, 10, e0251321. [Google Scholar] [CrossRef]
- Jian, M.J.; Chung, H.Y.; Chang, C.K.; Lin, J.C.; Yeh, K.M.; Chen, C.W.; Li, S.Y.; Hsieh, S.S.; Liu, M.T.; Yang, J.R.; et al. Clinical comparison of three sample-to-answer systems for detecting SARS-CoV-2 in B.1.1.7 lineage emergence. Infect. Drug Resist. 2021, 14, 3255–3261. [Google Scholar] [CrossRef]
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 1 October 2023).
- Hoffmann, M.; Krüger, N.; Schulz, S.; Cossmann, A.; Rocha, C.; Kempf, A.; Nehlmeier, I.; Graichen, L.; Moldenhauer, A.S.; Winkler, M.S.; et al. The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell 2022, 185, 447–456.e11. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, J.; Jian, F.; Xiao, T.; Song, W.; Yisimayi, A.; Huang, W.; Li, Q.; Wang, P.; An, R.; et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2022, 602, 657–663. [Google Scholar] [CrossRef]
- Saravolatz, L.D.; Depcinski, S.; Sharma, M. Molnupiravir and nirmatrelvir-ritonavir: Oral COVID antiviral drugs. Clin. Infect. Dis. 2022, 76, 165–171. [Google Scholar] [CrossRef]
- Gandhi, R.T.; Malani, P.N.; Del Rio, C. COVID-19 therapeutics for nonhospitalized patients. JAMA 2022, 327, 617–618. [Google Scholar] [CrossRef]
All Patients (n = 5652) | ||
---|---|---|
RT-PCR result | ||
Negative, no, (%) | 362 (6.4%) | |
Positive, no, (%) | 5290 (93.6%) | |
All positive patients (n = 5290) | Ct Value, Mean (SD) | |
Variant | ||
Omicron BA.2.3, no, (%) | 5290 (100%) | 16.78 ± 4.30 |
Sex | ||
Male, no, (%) | 2367 (44.7%) | 16.72 ± 4.09 |
Female, no, (%) | 129 (55.3%) | 16.84 ± 4.46 |
Age, median (SD), y | 66 ± 17.6 | |
<12, no, (%) | 301 (5.7%) | 17.64 ± 3.61 |
12–17, no, (%) | 44 (0.8%) | 17.75 ± 4.51 |
18–49, no, (%) | 3142 (59.4%) | 17.03 ± 4.41 |
50–70, no, (%) | 1544 (29.2%) | 16.23 ± 4.11 |
>70, no, (%) | 259 (4.9%) | 15.96 ± 4.19 |
Ct Value | Conventional RT-PCR (n = 5652) | Direct RT-PCR (n = 5652) | p Value |
---|---|---|---|
<11, no, (%) | 68 (1.2%) | 59 (1.1%) | 0.4462 |
11–20, no, (%) | 4277 (75.7%) | 4247 (75.1%) | |
21–30, no, (%) | 853 (15.1%) | 858 (15.2%) | |
>30, no, (%) | 92 (1.6%) | 19 (0.3%) | |
Negative, no, (%) | 362 (6.4%) | 469 (8.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jian, M.-J.; Chen, C.-S.; Chung, H.-Y.; Chang, C.-K.; Perng, C.-L.; Shang, H.-S. Clinical Evaluation of Direct Reverse Transcription PCR for Detection of SARS-CoV-2 Compared to Conventional RT-PCR in Patients with Positive Rapid Antigen Test Results during Circulation of Emerging Viral Variants. Diagnostics 2023, 13, 3668. https://doi.org/10.3390/diagnostics13243668
Jian M-J, Chen C-S, Chung H-Y, Chang C-K, Perng C-L, Shang H-S. Clinical Evaluation of Direct Reverse Transcription PCR for Detection of SARS-CoV-2 Compared to Conventional RT-PCR in Patients with Positive Rapid Antigen Test Results during Circulation of Emerging Viral Variants. Diagnostics. 2023; 13(24):3668. https://doi.org/10.3390/diagnostics13243668
Chicago/Turabian StyleJian, Ming-Jr, Chi-Sheng Chen, Hsing-Yi Chung, Chih-Kai Chang, Cherng-Lih Perng, and Hung-Sheng Shang. 2023. "Clinical Evaluation of Direct Reverse Transcription PCR for Detection of SARS-CoV-2 Compared to Conventional RT-PCR in Patients with Positive Rapid Antigen Test Results during Circulation of Emerging Viral Variants" Diagnostics 13, no. 24: 3668. https://doi.org/10.3390/diagnostics13243668
APA StyleJian, M. -J., Chen, C. -S., Chung, H. -Y., Chang, C. -K., Perng, C. -L., & Shang, H. -S. (2023). Clinical Evaluation of Direct Reverse Transcription PCR for Detection of SARS-CoV-2 Compared to Conventional RT-PCR in Patients with Positive Rapid Antigen Test Results during Circulation of Emerging Viral Variants. Diagnostics, 13(24), 3668. https://doi.org/10.3390/diagnostics13243668