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Abstract: Schizophrenia is a major psychiatric disorder that significantly reduces the quality of life.
Early treatment is extremely important in order to mitigate the long-term negative effects. In this
paper, a machine learning based diagnostics of schizophrenia was designed. Classification models
were applied to the event-related potentials (ERPs) of patients and healthy subjects performing the
visual cued Go/NoGo task. The sample consisted of 200 adult individuals ranging in age from
18 to 50 years. In order to apply the machine learning models, various features were extracted from
the ERPs. The process of feature extraction was parametrized through a special procedure and the
parameters of this procedure were selected through a grid-search technique along with the model
hyperparameters. Feature extraction was followed by sequential feature selection transformation in
order to prevent overfitting and reduce the computational complexity. Various models were trained
on the resulting feature set. The best model was support vector machines with a sensitivity and
specificity of 91% and 90.8%, respectively.

Keywords: electroencephalogram; event-related potential; schizophrenia; machine learning models;
support vector machine

1. Introduction

Schizophrenia is a complex, heterogeneous behavioral and cognitive syndrome that
seems to originate from the disruption of brain development caused by genetic or envi-
ronmental factors, or both [1]. It is extremely important to treat schizophrenia as soon
as possible after onset. With a delay in effective treatment, patients may be at increased
risk for brain volume loss with adverse implications for long-term treatment outcomes [2].
Schizophrenia is diagnosed mainly using standard psychiatric questionnaires and clinical
interviews. Due to these reasons, various tools that could help psychiatrists to diagnose
schizophrenia are of huge importance.

It is well-known that the decline in cognitive function is the core symptom of
schizophrenia [3]. Most patients with schizophrenia will report executive attention deficits
and a significant decrease in goal-directed behavior [4,5], including poor inhibitory
control [6] and altered error- and conflict-monitoring ability [7]. Cognitive control im-
pairments in schizophrenia have been associated with disturbances in the fronto-striatal
brain network including the dorso-lateral, ventro-medial prefrontal cortex, and anterior
cingulate cortex (ACC). Abnormal dopamine transmission may contribute to this dysfunc-
tion, as L-DOPA administration and dopamine depletion are associated with changes in the
fronto-striatal connectivity [8]. The main cognitive manifestations that suggest prefrontal
dysfunction are deficits in response initiation and suppression, focused attention, rule
deduction, and problem solving as well as difficulties in planning, information generation,
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maintaining a response pattern, and changing a response pattern to another. Patients
also exhibit disorders of sustained attention, task coordination, and divided attention,
related memory disorders as well as deficit in social cognition expressed as difficulties in
understanding the mental states of others and attributing intentions [4].

One of the most important executive functions that is affected in schizophrenia is
response inhibition, which underlies behavioral flexibility by allowing highly automated,
yet contextually inappropriate, actions to be stopped [9]. The processes associated with
inhibition are considered to be critical for top–down cognitive control and its translation
into real everyday behavior including self-regulation and the regulation of emotions. In
addition, inhibition-related features are essential for efficient working memory, restricting
access to and deleting information that is no longer needed [10].

Poor inhibitory control in schizophrenia has typically been associated with reduced
activation in the lateral prefrontal cortices during response inhibition in Go/NoGo and
stop-signal tasks [6], reduced sensorimotor and supplementary motor cortex (SMA) activ-
ity during movements [11], and altered pre-SMA/SMA activity during proactive motor
inhibition tasks [6].

Since cognitive functioning reflected in the parameters of spontaneous and event-
related EEG activity, one of the possibilities of improving the reliability of diagnosis is to
apply machine learning to the EEG data in order to separate individuals with schizophrenia
from a control group. In [12], it was observed that the EEG of patients with schizophrenia
had lower complexity values compared to healthy people, especially in the left frontal (F3)
and parietal (P3) regions, which could be used for classification. EEG complexity analysis
from [13] led to a similar conclusion. In [14], patients performed a sensory task and features
extracted from the event-related potentials (ERP) were used as the input to the machine
learning models.

In the present work, we applied machine learning models to the event-related poten-
tials of subjects performing a modification of the visual cued Go/NoGo task [15,16]. Tests
of the Go/NoGo paradigm are widely used in research on cognitive functions [17]. This
type of task requires responding (for example, by pressing a button) to certain stimuli and
refraining from pressing others. Previous studies of schizophrenia patients in this and
similar task paradigms have shown a decrease in the amplitude of P300 and contingent
negative variation (CNV) ERP waves, associated with cognitive control processes [18–21].
In the present study, we selected 18 ERP signals of 200 ms on average in the four test
conditions for the analysis. Intervals and topography of the selected signals corresponded
to the P300 and CNV waves.

A set of simple features was extracted from these signals such as average, maximum,
and minimum values. Features were extracted using sliding windows analogously to [22]
and optimal parameters of these windows were found using grid-search procedure along
with the model hyperparameters. In order to prevent models from overfitting by reduc-
ing the model complexity, sequential features selection was applied to the ERP features.
These features were combined with additionally recorded behavior data, which led to an
improvement in performance. Various models were evaluated on the extracted features.

A similar approach to the classification of ADHD was implemented in [22,23].

2. Materials and Methods
2.1. Subjects

Data from 132 healthy subjects (53 males, mean age 31.8 ± 8.26; range 18–50) were
included in the study. Healthy subjects were recruited during the HBImed Database Col-
lection Project in Chur, Switzerland, at the Saint Petersburg State University, and the N.P.
Bechtereva Institute of the Human Brain RAS. None of the subjects had a neurological
history including head injuries with loss of consciousness or any systemic medical illness
diagnoses. None of the subjects were taking medication at the time of the EEG recording.
Subjects were tested within a single session lasting approximately two and a half hours.
During this session, a series of questionnaires such as the Brief Symptom Inventory [24],
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Health History questionnaire, and Current Symptoms Scales [25] were filled out. Further-
more, the control subjects had to score lower than the level of clinical significance on the
symptom checklists.

The schizophrenic group consisted of 68 patients (47 males, mean age 30.6 ± 7.17;
range 18–50). Patients were diagnosed on the basis of a clinical interview by senior staff
psychiatrists at the psychiatric department of the Clinic of the N.P. Bechtereva Institute of
the Human Brain RAS and met the ICD-10 criteria for the diagnosis of schizophrenia at
least 6 months prior to the study. All patients presented with moderate to severe degree of
social and cognitive impairment at the time of EEG recording. The staff psychiatrists also
assessed the participants’ positive and negative symptom severity by using the positive
and negative symptoms scale (PANSS) [26]. The mean value of the negative symptoms
scale was 20.1 ± 4.4 (mean ± SD) and the positive symptoms scale was 26.1 ± 4.6. On the
general psychopathology scale, the patients had a score of 47.9 ± 5.9. Eighteen patients
received atypical antipsychotic medication (risperidone, aripiprazole, clozapine, quetiapine,
amisulpride), 19 patients received typical antipsychotic medication (Haloperidol), and
31 patients received no neuroleptic medication.

Groups of participants did not differ significantly in age, gender, handedness, and
years of education.

The study was approved by the local ethics committee and written informed consent
was obtained from all participants after an explanation of the procedure.

2.2. EEG Recording and Processing

A 19-channel EEG was recorded in the frequency band of 0.53–30 Hz and sampling
at a frequency of 250 Hz. The electrodes were placed according to the International
10–20 system in the Fp1, Fp2, Fz, F3, F4, F7, F8, C3, Cz, C4, T3, T4, P3, Pz, P4, T5, T6, O1,
O2 places. The electrode resistance did not exceed 5 kΩ. The EEG was recorded relative
to the physically connected ears. The recordings of healthy subjects and patients used the
same equipment and software under the same conditions. The equipment included the
Mitsar-201 electroencephalographic system (KE 0537), controlled by a PC, manufactured
by Mitsar LLC (http://www.mitsar-eeg.com, accessed on 1 January 2022), electrode cap
ELECTROCAP with 19 tin electrodes (http://www.electro-cap.com/caps.htm, accessed
on 1 January 2022), ECI ELECTRO-Gel for electrode contact with the scalp, and skin prep
gel NuPrep for preparing the skin of ear lobes (https://www.weaverandcompany.com/,
accessed on 1 January 2022). The software included the WinEEG program (https://mitsar-
eeg.com/eeg-system-solutions/wineeg-research-software/, accessed on 1 January 2022)
for EEG collection and analysis and Psytask software for the stimulus presentation.

Blink artifacts were corrected by independent component analysis (ICA) applied to
the raw EEG fragments (i.e., by the zeroing of independent component activation curves
associated with individual eye blinks as described in [27]). Furthermore, to eliminate other
types of artifacts (muscle tension, lateral eye movements, slow drifts, etc.), epochs with an
EEG amplitude above the threshold were automatically excluded from further analysis.
The thresholds were set as follows: (1) 100 µV for all EEG frequencies; (2) 50 µV for slow
EEG waves in the range of 0.53–1 Hz; and (3) 35 µV for fast frequency waves for EEG
in the range of 20–35 Hz. These threshold values were selected empirically by multiple
processing with different parameters and subsequent visual analysis of the results [28].

The ERPs were calculated for each channel, each type of trial, and each subject separately.

2.3. Experimental Setup

A modification of the visual cued Go/NoGo paradigm described in [15,16] was used.
Three categories of visual stimuli were selected: (a) 20 different images of animals, referred
to as “A”; (b) 20 different images of plants, referred to as “P”; (c) 20 different images of
people of different professions, and this was presented together with an artificial “novel”
sound, referred to as “H.” All visual stimuli were selected to have similar size and luminos-
ity. The randomly varying novel sounds consisted of five 20-ms fragments filled with tones
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of different frequencies (500, 1000, 1500, 2000, and 2500 Hz). Stimulus intensity was about
70 dB SPL, measured at the patient’s head.

The trials consisted of presentations of two stimuli with an exposition of 100 ms,
interstimulus interval of 1000 ms, and inter-trial intervals of 3000 ms. Four categories of
trials were used: A-A, A-P, P-P, and P-H. The trials were grouped into four blocks with
100 trials each. In each block, a unique set of five A, five P, and five H stimuli was selected.
Each block consisted of a pseudo-random presentation of 100 pairs of stimuli with equal
probability for each stimulus category and for each trial category.

Participants practiced the task before the recording started. Subjects rested for a
few minutes after each 200 trials. Subjects sat upright in a comfortable chair looking at a
computer screen. The instruction was to press a button with the right hand to all A-A pairs
as fast as possible and to withhold from button pressing the other pairs.

2.4. Event-Related Potentials

Event-related potentials were selected for the groups of healthy individuals and
individuals with diagnosed schizophrenia in the following conditions:

• ‘Plus1’: Condition with an image of an animal as the first stimulus in the trial and
arbitrary second stimulus. For channels T5, O1, O2, and T6, the interval from 320 ms to
520 ms after the first stimulus was taken. This interval and localization corresponded
to the P3Cue wave of the ERPs (Figure 1) [29,30].

Figure 1. Grand average 19-channel ERPs for the two groups for the cue condition when the first
stimulus in a trial was an image of the animal and the subjects had to prepare for the follow-
ing stimulus. Green lines—patients with schizophrenia (SZ). Red lines—healthy controls (HC).
Blue lines—difference waves SZ-HC. Marks below ERPs on each channel—statistically significant
(p < 0.05) differences between the clusters (indicated by different colors).
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• ‘Plus2’: Condition with an image of an animal as the first stimulus in the trial and
arbitrary second stimulus. For channels P3, Pz, and P4, the interval was from 900 ms
to 1080 ms. The selected interval corresponded to the contingent negative variation
(CNV) wave of the ERPs observed just before the expected stimulus presentation
(Figure 1) [31].

• ‘NoGo’: Condition with an image of an animal as the first stimulus and an image of a
plant as the second one. Selected channels were C3, Cz, C4, P3, Pz, and P4 with an
interval from 300 ms to 500 ms after the second stimuli (Figure 2).

Figure 2. Grand average 19-channel ERPs for the two groups for the NoGo condition. Abbreviations
are the same as in Figure 1.

• ‘Go’: Condition with an image of an animal as both stimuli. Channels of interest
were C3, Cz, C4, P3, Pz, and P4 with an interval from 250 ms to 450 ms after the
second stimuli. Selected intervals for NoGo and Go conditions corresponded to
the P300 wave for NoGo stimuli (P300 NOGO) and P300 wave for Go stimuli (P3b)
observed within 300–500 ms over the frontal and parietal cortex correspondingly
(Figures 2 and 3) [32–34].
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Figure 3. Grand average 19-channel ERPs for the two groups for the GO condition. Abbreviations
are the same as in Figure 1.

• ‘P-H’: Condition with an image of a plant as the first stimulus and an image of a human
as the second stimulus. Selected channels were C3, Cz, and C4 with an interval from
160 ms to 220 ms after the second stimuli. The interval and localization corresponded
to P3a wave elicited by infrequent unpredictable stimuli [32].

2.5. Behavioral Data

Aside from the collection of EEG data during the experiment, the subject’s responses
were also recorded using a separate channel. The response was considered correct if it
was made within the 200–1000 ms time interval after the target stimulus. Behavioral data
included the number of target stimuli misses, number of false pressings, reaction time, and
reaction time variability. Misses referred to the absence of response in the A-A trials, and
false clicks referred to the wrong response in A-P trials. The individual error rates and
mean reaction times were averaged over the groups of subjects and compared using the
analysis of variance (one-way ANOVA, factor with two levels).

All EEG epochs corresponding to trials with erroneous responses were automatically
excluded from further analysis.

2.6. Algorithm Description

The problem of schizophrenia diagnostics can be formulated as a binary classification
task where classes are the control group and experimental group. In this section, we
describe the steps taken for model training.

2.6.1. Feature Engineering

In order to apply machine learning models, one should define features that will be
extracted from ERPs. These ERP features will be concatenated with the behavior data and
passed through data scaling.
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Each ERP signal for a given condition was split into overlapping time windows as
suggested in [22]. For each time window, we calculated the minimum, maximum, and
average values. Additionally, for each signal, we extracted the global average, global
maximum, and global minimum as well as the serial numbers of windows where these
extreme values were reached. Since all window features depend on the size of the window
and on the shift between windows, the process of feature extraction becomes parametrized.
These parameters were selected independently for each paradigm and were treated the
same way as the model hyperparameters, and their selection will be described in the last
subsection in this section.

All features will be named using the following template: {condition}_{channel}_{type
of feature}_{window number if applicable}, where {type of feature} is one of ‘min’, ‘max’,
‘mean’. For example, feature ‘plus1_T6_min_1′ means the minimal value of the first window
of the channel T6 for a condition ‘plus1′.

The resulting number of features can be pretty high depending on the chosen window
parameters and can reach up to 1443 features for the considered set of parameters. In order
to prevent overfitting, we applied the following techniques for the feature selection:

1. The random normally distributed feature was added to the training dataset. After
fitting, the model shap-values [35] were calculated for each feature. All features that
had a shap-value less than the random feature were eliminated;

2. Sequential feature selection where the model was trained on the full set of features
and after that, the features were eliminated one by one in greedy fashion so that the
performance of the model does not decrease;

3. Combination of the above approaches: features with non-random shap-values were
selected with successive sequential feature selection;

4. Truncated SVD, which performs the linear dimensionality reduction. The number of
features to leave was calculated based on their cumulative explained variance.

Experiments showed that truncated SVD performed worse in our particular case
while sequential feature selection could improve the metrics on the hold-out dataset in
most cases.

Figure 4 depicts a flowchart showing the stages of data processing for a particular
condition ‘P–H’. The ERPs and behavior data were collected during the experiment. There
is a set of conditions that dictate what signals and what intervals should be taken from the
ERPs for further analysis. These chosen signals were passed through the feature selection
step, which extracts features according to the parametrized procedure described above.
Finally, the extracted features were passed to a classification model.

Figure 4. Flowchart showing the stages of data processing for a particular condition ‘P–H’.
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2.6.2. Considered Models

We considered logistic regression (LR) with L1/L2 regularizations as a baseline model
due to its simplicity and ease of interpretation. More complex models that we considered
were k-nearest neighbors (kNN), support vector machines (SVM) with various nonlinear
kernels, and the stacking model. All models were trained on features described in the
previous subsection.

The stacking model uses logistic regressions as the base classifier. Each logistic regres-
sion was trained on features from the particular paradigm or on behavior data. The SVM
model was trained on probabilities output from logistic regressions as features. Parameters
for all of the base models and SVMs were selected through the grid search procedure. The
advantage of the stacking model is that we can analyze the feature importance for each
paradigm separately. This approach is also more scalable: it allows one to add more feature
sources and train models on them without the full retraining of other models. For example,
one could consider adding features based on the independent components extracted from
the ERPs.

Since our classes were imbalanced (132 individuals in control group vs. 68 individuals
in the experimental group), class weighing for all models was used. Aside from class
weighing, the use of loss function with class weighing and balancing using upsampling
was also implemented for comparison. Obtained results were roughly equivalent so that
there was no division between these approaches in the metrics reports.

2.6.3. Pipeline Training

Parameters of the whole pipeline consist of several hyperparameters: parameters of
the feature extractor (window size and shift between windows), parameters of the data
scaler (what kind of a scaling method to use), and hyperparameters that are specific to a
particular model. In order to find the optimal hyperparameters, the grid search technique
was applied.

Grid search is a standard tuning technique in machine learning that aims to compute
the optimum values of parameters by iterating over the given grid of all possible values of
the parameters and training the model on them. The optimal parameters are defined as
parameters that lead to better metrics. Grid search was performed on k-fold cross validation
in order to obtain a better estimate of the metrics of interest [36]. The number of folds in
our case was 10.

During each grid search step after the features were extracted and scaled according
to the current set of parameters, there was an optional step of feature selection before
fitting these features to the model. As seen from the experimental results, feature selection
improved the model performance in most cases. Sequential feature selection was performed
on additional inner cross-validation, that is, the train set of the current fold was additionally
split into several folds in order to find the optimal set of features.

All models were trained in Python using the sklearn package [37].

3. Results
3.1. Behavioral Parameters

Table 1 shows the behavioral data for each trial type and each experimental group.

Table 1. Behavioral data statistics.

Subject Group Mean Age Misses in %
Mean ± SE

False Clicks in %
Mean ± SE

Reaction Time in %
Mean ± SE

Reaction Time Variance
Mean ± SE

Healthy 31.8 1.6 ± 2.8 0.7 ± 1.3 379 ± 79 8.4 ± 2.6
Schizophrenia 30.6 9.4 ± 11.4 2.0 ± 6.7 416 ± 92 12.0 ± 4.8

Difference
F [1, 198], p< 1, 0.32 56.7, 0.001 ns 8.9, 0.01 48.5, 0.001
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The patient group, on average, showed higher miss rates, reaction time, and its
variance in comparison to the healthy subjects. An excess of miss rates in patients with
schizophrenia had been previously shown [38,39] and it was assumed to indicate a low level
of attention to the task and the inability to form a strong prepotent model of response to the
target stimuli [38]. Increased reaction time variances in patients with schizophrenia was
also described in [40] and might reflect attention lapses [41]. Moreover, in line with [18,19],
the present study also found that patients had longer reaction time in Go probes than the
healthy controls. Together with the increased miss rate, it might indicate that schizophrenia
patients have inefficient cognitive processing.

3.2. Model Performance Metrics

In this subsection, the metrics of the resulting models are presented. All metrics were
averaged between 10 folds in order to obtain a better estimate.

The main metrics of our interest were sensitivity and specificity. Sensitivity was a true
positive rate (TRP), which is a proportion of individuals diagnosed with schizophrenia, who
were correctly identified as schizophrenics by the model. Specificity was a true negative
rate (TNR) that showed a proportion of healthy people to people who were classified
as healthy. Since we needed a single metric in order to be able to compare models with
different hyperparameters, the F1 metric was evaluated additionally. Probability thresholds
for all models were chosen in such a way that the sensitivity and specificity were roughly
the same. Area under the ROC curve (ROC AUC) is another metric that we used that is
independent of the probability threshold. The accuracy metric was not evaluated for our
models due to class imbalance.

Each model has its own set of features since the number of features is dependent
on the parameters selected by grid search for feature extractor and also depends on the
features selected by sequential features selection (SFS) and/or features selected after the
elimination of features with random shap-value.

In Table 2, the metrics for the models with the best hyperparameters are presented.

Table 2. Classification performance metrics.

Model Sensitivity Specificity F1 AUC

LR 0.848 ± 0.166 0.855 ± 0.159 0.806 ± 0.159 0.851 ± 0.125

LR (behavior) 0.862 ± 0.132 0.863 ± 0.149 0.820 ± 0.127 0.862 ± 0.097

LR
(behavior, SFS) 0.890 ± 0.128 0.885 ± 0.099 0.846 ± 0.079 0.888 ± 0.060

kNN 0.833 ± 0.186 0.856 ± 0.093 0.783 ± 0.134 0.845 ± 0.101

kNN (behavior) 0.867 ± 0.175 0.871 ± 0.098 0.815 ± 0.137 0.869 ± 0.102

kNN
(behavior, SFS) 0.895 ± 0.130 0.916 ± 0.054 0.867 ± 0.098 0.906 ± 0.075

Stacking
(behavior) 0.862 ± 0.116 0.871 ± 0.118 0.822 ± 0.124 0.866 ± 0.093

SVM 0.893 ± 0.121 0.886 ± 0.103 0.849 ± 0.125 0.890 ± 0.090

SVM (SFS) 0.912 ± 0.096 0.908 ± 0.083 0.877 ± 0.098 0.910 ± 0.074

SVM (shap, SFS) 0.895 ± 0.094 0.901 ± 0.103 0.863 ± 0.079 0.898 ± 0.055

SVM (SFSB) 0.907 ± 0.124 0.910 ± 0.091 0.872 ± 0.108 0.909 ± 0.080

SVM
(behavior) 0.907 ± 0.107 0.902 ± 0.082 0.866 ± 0.091 0.904 ± 0.067

SVM
(behavior, SFS) 0.895 ± 0.114 0.896 ± 0.097 0.854 ± 0.107 0.895 ± 0.080



Diagnostics 2023, 13, 509 10 of 16

Table 2. Cont.

Model Sensitivity Specificity F1 AUC

SVM
(behavior, shap, SFS) 0.876 ± 0.138 0.878 ± 0.116 0.833 ± 0.095 0.877 ± 0.072

SVM
(behavior, SFSB) 0.910 ± 0.074 0.908 ± 0.083 0.877 ± 0.091 0.909 ± 0.067

The word ‘behavior’ in the parentheses after the name of the model means that the
model was trained on a combination of ERP features and behavior data, otherwise, the
model was trained on the ERP features only. The abbreviation ‘SFS’ means that feature
extraction was followed by sequential features selection, while ‘shap’ means that there was
a random feature added to the dataset during the training, and all features with shap-values
lower than the shap-value of this random feature were excluded. SFS and shap could be
used simultaneously, meaning that sequential feature selection was performed on features
with a non-random shap-value. Sequential feature selection can be conducted in a forward
fashion where we start training with no features and add features one by one, and in a
backward fashion where we start training with a full set of features and eliminate them one
by one. Backward SFS is denoted as ‘SFSB’.

Table 2 contains various metric values for the models described in the previous section.
For each metric, there were two values in the table: the metric mean value among the
cross-validation folds and its standard deviation among folds. The best performance was
shown by SVM with no behavioral data and sequential feature selection, and SVM with
behavioral data with backward sequential feature selection.

All model hyperparameters were selected through the grid search procedure. The best
hyperparameters for each model from Table 2 were as follows: logistic regression had L1
regularization with regularization parameter equal to 1; the kNN model had 11 neighbors;
the SVM model had a RBF kernel with the coefficient gamma scaled as 1/(number of
features × variance of features) and L2 penalty as a regularization with parameter 1/3.

The model SVM (behavior, SFSB) is described in more detail. The window parameters
for various conditions for this model are presented in Table 3.

Table 3. Window parameters of the model SVM (behavior, SFSB) with the best hyperparameters.

Condition Window Size in ms Window Shift in %

plus 1 49 50
plus 2 5 50

NO-GO 49 100
GO 20 100
P-H 5 100

Figure 5 represents a confusion matrix for SVM (behavior, SFSB) that was also cal-
culated on the cross-validation. The procedure of its calculation was as follows: on each
fold, the model with the best parameters was trained on the training set and counts of
true/false negatives/positives were calculated on the test set. Afterward, these counts
were summed up. In this way, the resulting confusion matrix takes into account all of
data and uses metrics from the test sets only. As can be seen from the matrix, the model
correctly identified 121 out of 132 healthy individuals as healthy, classified correctly 62
out of 68 individuals with diagnosed schizophrenia, misclassified 12 healthy people as
people with schizophrenia, and six times mistakenly classified individuals diagnosed with
schizophrenia as healthy people.
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Figure 5. Classification confusion matrix for the model SVM (behavior, SFSB).

3.3. Interpretation

One of the drawbacks of nonlinear models is the complexity of their interpretation.
While one can make decisions on the feature importance of linear models by looking at its
coefficients for nonlinear models, it requires more effort. In this subsection, the analysis of
the resulting models using SHAP (Shapley additive explanations) [35] will be presented.
For SHAP calculation, the shap Python library was used [42].

The SHAP method allows for the global variance importance to be calculated for each
feature. The variance importance of 15 of the most important features of the model SVM
(behavior, SFSB) is depicted in Figure 6. Features were sorted by a decrease in their impor-
tance on the Y-axis. The X-axis shows the mean absolute value of SHAP. Names of the ERP
features are presented using the template {condition}_{channel}_{type of feature}_{window
number if applicable}, where {type of feature} is one of ‘min’, ‘max’, ‘mean’.

Figure 6. Features sorted based on their shap-value.

Aside from the absolute values of the feature importance, it is interesting to analyze
the direction in which each feature has an influence. This visualization is presented in
Figure 7. On the Y-axis were again the top 15 features sorted by their importance, and on
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the X-axis were the SHAP values. Values to the right from the zero point on the X-axis
represent a class of schizophrenics, and values to the left are healthy individuals. A red
color means a larger value of the feature. The redder the value of the feature, the larger its
value. The width of the lines means more observation points. For example, we can see that
a small number of misses was more typical for healthy people, while a smaller value of the
channel T6 minimum for paradigm ‘plus1′ increased the probability of being diagnosed
with schizophrenia.

Figure 7. Influence of the feature values on the model output.

4. Discussion

Most of the studies on the application of machine learning techniques in the diagnosis
of schizophrenia used the ERP parameters obtained in the oddball paradigm such as a
mismatch negativity, and P300 with accuracy varied between 0.7 and 0.9 [43,44]. Although
several studies have explored the late ERP waves in a Go/NoGo paradigm as parame-
ters for discriminating schizophrenic patients from the healthy controls [45], we did not
find any papers that had used machine-learning tools to assess the diagnostic power of
these parameters.

In the present study, we found that the miss rates had the greatest impact in differ-
entiation between the groups of the healthy control and schizophrenia patients. It was
assumed that this indicates a low level of attention to the task and the inability to form a
strong prepotent model of response to the target stimuli [38], which are the most obvious
symptoms of schizophrenia.

From the ERP parameters, the amplitude of the P3cue wave measured at the T5 and
T6 electrodes had a large value in the classification efficacy. This component has been
associated with the re-activation of stimulus–response links [46,47].

Many papers have described a decrease in the CNV wave in schizophrenia patients [48,49].
These findings support the claim that CNV amplitude can be used as a criterion for detecting a
motivation in patients with schizophrenia.

The decrease in P300 waves in schizophrenia has been reported in numerous stud-
ies [18–20]. Moreover, the P3b wave, given its association with the allocation of attentional
resources to relevant stimuli, is considered as an optimal electrophysiological candidate
biomarker of neurocognitive impairment in schizophrenia [50]. The decrease in the P3b
amplitude indicate that the effortful allocation of attention to task-relevant stimuli, an
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important component of decision-making, is compromised in patients with schizophrenia.
P300 NOGO modulation is generally considered to reflect an inhibitory process of the
prepared action [34], so its decrease in schizophrenia patients is associated with impaired
inhibitory control [18,19]. Notably, P300 NOGO over the parietal area (electrode P4) had
the greatest impact on classification efficacy between the patients and healthy control,
prompting that it was mainly distributed over the frontal-central region.

The P3a wave is usually observed within 200–400 ms after the presentation of infre-
quent or novel stimuli over the frontal-central cortex. It has been proposed to reflect the
redirection of attention toward the rare, distracting stimuli [51] as well as broader alerting.
Since this wave is elicited by the presence of new information, it also might represent an
updating of the environmental context in light of this new information [52]. P3a deficits in
schizophrenia have been reported in several previous papers [52,53]. Furthermore, some
studies have demonstrated that the P3a amplitude is reduced in patients with longer illness
duration [21]. Therefore, these data suggest that the P3a wave may represent a marker of
disease progression, although this suggestion requires further testing [53].

The decrease in the NOGO N2 wave as an index of conflict detection decline in
schizophrenia was observed in several studies [45]. However, in the present study, we
did not replicate this result. In our previous study, it required the use of a blind
source separation method to demonstrate the N2 NOGO reduction in the same group of
schizophrenic patients [21].

5. Conclusions

We described a novel approach for the classification of schizophrenia from healthy
controls using machine learning. Features were extracted from the ERPs of patients per-
forming the visual cued Go/NoGo test. Feature extraction was parametrized and these
parameters were selected using the grid search procedure along with the model hyper-
parameters, followed by the selection of significant features using sequential features
selection procedure.

The best model led to values of 91% and 90.8% of sensitivity and specificity, respectively.
The number of misses of the target stimuli, amplitude of the P3cue, and expectancy

waves had the greatest impact in group differentiation, which is consistent with the assump-
tion that sustained attention deficit is one of the most significant symptoms of schizophrenia.
Surprisingly, the ERP waves with the greatest impact had parietal and temporo-occipital
topography, despite the fact that schizophrenia is associated primarily with dysfunction of
the frontal cortex. We can hypothesize that in the present study, we observed the result of
top–down regulation deficit due to reduced frontal lobe function.

A relatively high percentage of correct classifications allowed us to consider the applied
methodology as promising for the development of a tool for diagnosing schizophrenia.

6. Limitations and Future Directions

1. Some of the patients were under medication at the time of the EEG recording. Unfor-
tunately, the interruption of medication in patients with severe symptoms could not
be implemented due to ethical issues.

2. Another limitation was that the sources of the brain signals were located far from the
scalp surface and the respective EEG sensors. Together with volume conductance,
it led to overlapping of the brain signals in the EEG recordings. Therefore, we were
not able to identify the specific localization of the observed effects based only on the
topographies of the EEG potentials. In future studies, we intend to apply the method
of extracting latent components of the ERPs [54] to isolate signals from individual
brain sources. As shown in the previous papers of the authors [20], the analysis of
latent components has the advantage of revealing differences in the parameters of
brain responses between groups in intergroup comparisons.
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