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Abstract: Despite therapeutic advancements, stroke remains a leading cause of death and long-term
disability. The quality of current stroke prognostic models varies considerably, whereas prediction
models of post-stroke disability and mortality are restricted by the sample size, the range of clinical
and risk factors and the clinical applicability in general. Accurate prognostication can ease post-
stroke discharge planning and help healthcare practitioners individualize aggressive treatment or
palliative care, based on projected life expectancy and clinical course. In this study, we aimed to
develop an explainable machine learning methodology to predict functional outcomes of stroke
patients at discharge, using the Modified Rankin Scale (mRS) as a binary classification problem.
We identified 35 parameters from the admission, the first 72 h, as well as the medical history of
stroke patients, and used them to train the model. We divided the patients into two classes in
two approaches: “Independent” vs. “Non-Independent” and “Non-Disability” vs. “Disability”.
Using various classifiers, we found that the best models in both approaches had an upward trend,
with respect to the selected biomarkers, and achieved a maximum accuracy of 88.57% and 89.29%,
respectively. The common features in both approaches included: age, hemispheric stroke localization,
stroke localization based on blood supply, development of respiratory infection, National Institutes
of Health Stroke Scale (NIHSS) upon admission and systolic blood pressure levels upon admission.
Intubation and C-reactive protein (CRP) levels upon admission are additional features for the first
approach and Erythrocyte Sedimentation Rate (ESR) levels upon admission for the second. Our results
suggest that the said factors may be important predictors of functional outcomes in stroke patients.

Keywords: stroke; prognosis; functional outcome; poststroke disability; blood biomarkers; clinical
data; artificial intelligence; explainability

1. Introduction

Despite significant breakthroughs in early detection, due to high-quality imaging and
therapeutic interventions such as thrombolysis and thrombectomy, stroke continues to
be a major cause of acquired disability in adults and the second leading cause of death
worldwide, for individuals of all ages [1,2]. Approximately twenty-five percent of people
over the age of twenty-five will experience a stroke in their lives and more than fifty percent
of stroke survivors continue to have adverse outcomes, including chronic functional reliance
and even death, despite the standard care provided in specialized stroke units. Therefore, it
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is evident that the development of new rehabilitation-improving therapies is necessary [3,4].
Currently, there are several data points about the factors that affect the prognosis and
functional results of stroke. These variables pertain to the patients’ concurrent conditions,
genetic and demographic traits, as well as the data collected during the acute phase of the
stroke and connected to the stroke as an entity. More specifically, it is well documented and
described in numerous studies that the vascular profile of such patients is determined by
the presence of diseases such as hypertension, diabetes, hypercholesterolemia, a previous
transient ischemic attack, atrial fibrillation, a history of ischemic heart disease (angina
or myocardial infarction), internal carotid artery hemodynamically significant stenosis
and peripheral arterial disease [5–7]. In terms of demography, age and gender have been
identified as key prognostic risk factors. In addition, elevated CRP and creatinine values, the
number of cardiovascular disease sites (cerebrovascular, coronary and peripheral arterial
disease) and the presence of an infection at the onset of stroke appear to be independent
risk factors for a high risk of early stroke recurrence during hospitalization [8–11]. Using
MRI and, more specifically, the DWI sequence, which can be used to measure the cerebral
infarct volume, it is further possible to anticipate the patient’s disability, thus serving as an
independent predictor of the 90-day modified Rankin scale (mRS) outcome for neurologic
disability in the acute ischemic stroke (AIS) [12].

To date, there have been no significant breakthroughs comparable to those noticed
in acute stroke treatment. We understand what causes a stroke considerably better than
what promotes recovery of function. Hence, it becomes vital to comprehend the underlying
pathophysiological processes, in order to support rehabilitation. Rehabilitation therapies
and services are essential for restoring patients’ abilities, independence and quality of life.
However, a lack of consensus among measurements hinders the ability to fully maximize
clinical findings and define a sufficient level of evidence for treatments, given the expanding
availability of rehabilitation therapies. Thus, in order to study in depth the factors that
influence patients’ recovery and to support the clinical choice regarding tailored treatment,
a precise and comprehensive assessment is required [13–15].

In this direction, blood biomarkers have emerged as a useful diagnostic tool and a new
method for accurately predicting functional outcomes following stroke [16], while several
risk-prediction models have been developed thus far for detecting functional outcomes
following an acute stroke. The majority of the latter base their prognosis on comparable
input factors such as age, the severity of the first stroke, and comorbidities. However, none
of these predictive models has been generally utilized in clinical practice, most probably
due to implementation challenges [17–20]. As a result, the most difficult aspect of stroke
rehabilitation research is the optimizing of rehabilitation regimens, based on an early
prognosis [21,22]. A precise prognosis may aid in post-stroke discharge planning and the
development of a more individualized rehabilitation program. However, it may be difficult
to accurately predict the patients’ results, most particularly in the early post-admission
period [23–25].

The far more recent rise in the respective studies’ interest might be ascribed to the
growing complexity and quantity of data, as well as to the existence of multivariate data
with heterogeneous origins, for which conventional approaches have proven incapable of
delivering accurate results [22,26,27]. In recent years, machine learning (ML) methodologies
have been widely used to address complex problems in a range of scientific fields, including
medicine [28–32]. Machine learning is a subset of artificial intelligence in which a computer
acquires knowledge from data, without explicit programming of rules. Machine learning
algorithms identify patterns within data and use them to make predictions on new data.
These models are beneficial for utilizing enormous datasets, due to the computers’ capacity
to rapidly process vast volumes of electronic data. Where people are expected to become
overwhelmed by ever-growing volumes and complexities of data inputs, machine learning
models frequently thrive. To develop machine-learning solutions for clinical usage, one
must have a solid grasp of clinical care, data science and implementation science. The idea
that machine learning might quickly and drastically improve health care by automating
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routine processes and increasing clinical decision-making is enticing today. Finding effec-
tive machine-learned solutions necessitates careful consideration of poor classification and
collection of health care data, as well as the complexity of clinical choices and workflows. In
fact, machine learning has the potential to significantly improve health care. To genuinely
assist the patients we serve, however, a disciplined, inclusive, collaborative and iterative
approach to the development and use of new technologies is essential. Nonetheless, the
practice of medicine will remain relatively unchanged at its foundation. Medicine entails
communicating with patients and assisting them at, frequently, the most difficult phases
of their life. These higher cognitive activities, such as understanding a patient’s goals and
assessing competing priorities, are unlikely to be delegated to a computer. The future
will likely be characterized by augmented intelligence, in which computers may become
indispensable instruments for patient care, allowing physicians to dedicate more time to
the patient care [33,34].

Hence, in its attempt to prevent strokes, the scientific community focuses on the
creation of models that can anticipate their occurrence. In this context and since its imple-
mentation, artificial intelligence (AI) has played a key role in disease prevention and is now
ubiquitous [35–37]; a growing number of studies indicate that the ML technique is more
accurate in predicting stroke outcomes than statistical methods or scoring systems [38–40].
According to a recent review, numerous studies have been undertaken to generate models
for stroke diagnosis [41–43] or predict treatment responses and clinical outcomes, with
the aim of developing tailored rehabilitation regimens [44–47]. The emergence of machine
learning (ML) and deep learning has facilitated the incorporation of a wide variety of
structured data for the data-driven prediction of clinically meaningful outcomes in stroke
patients [20,48,49].

To this end, the aim of the study at hand is to collect and analyze data from the
hyperacute and acute phases of stroke, with the goal of developing an explainable machine
learning model for predicting functionality at discharge, as measured by the mRS. Even
though there is no commonly accepted stroke outcome measurement scale, we decided to
use the mRS to assess the poststroke functional outcome of the patients, having considered
the advantages of this scale. More specifically, the mRS is extensively used to assess residual
disability and functional outcome in stroke patients. Both its reliability and its effectiveness
in evaluating residual handicap in stroke patients have been thoroughly demonstrated.
The mRS provides a rapid and straightforward evaluation of a patient’s stroke results,
activities and social contribution, encompassing aspects of cognitive function, language,
visual function and pain, that are not explicitly evaluated. Particularly, the 7-level mRS
has several important strengths: its categories are simple and easily comprehended by
both doctors and patients, its concurrent validity is established by a strong connection with
measures of stroke pathology and agreement with other stroke scales, while its usage has
delineated effective and ineffective acute stroke treatment. Having fewer levels than other
stroke scales, the mRS may be less sensitive to change; yet, a single-point change on the
mRS is clinically significant [50–54].

Explainable artificial intelligence (AI) is a type of AI, able to provide interpretable and
transparent reasoning for its predictions or decisions. In this case, the aim is not only to
accurately predict functionality at discharge but also to identify the variables from patients’
medical histories and admission biomarkers and parameters that contribute to the mRS
result at discharge. This information can be used to support rehabilitation decision-making
and improve patient outcomes by tailoring rehabilitation plans to the specific needs and
characteristics of each individual patient. The use of explainable AI in this context is
particularly important, as it can help healthcare professionals understand and trust the
predictions and decisions made by the model, ultimately leading to better patient care.
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2. Materials and Methods
2.1. Participants

This study included a total of 470 patients hospitalized with acute stroke at
Korgialeneio—Benakeio “Hellenic Red Cross” General Hospital of Athens from July 2017
to June 2018. The study was approved by the Scientific Council of the hospital (protocol
nr. 6673/08-03-2018). All patients were observed retrospectively until discharge. Stroke
severity at admission was assessed using the National Institutes of Health Stroke Scale
(NIHSS) and functional outcomes at discharge were assessed using the modified Rankin
Scale (mRS). We determined a study population consisted of patients aged over 18, with
ischemic or hemorrhagic stroke, without previous functional deficits (mRS before stroke, 0).

2.2. Data Description

In the present study, we collected patient data on a total of 35 different parameters
or variables, as follows: demographic characteristics (age and gender), the type of stroke
(ischemic or hemorrhagic), NIHSS scores and admission levels of systolic blood pressure,
glucose, CRP and ESR. We also recorded data from patients’ medical history, including
hypertension, smoking, diabetes, dyslipidemia, atrial fibrillation, previous stroke, previous
myocardial infarction or coronary heart disease, history of heart failure, history of mechani-
cal or bioprosthetic heart valve, history of alcoholism, history of taking antiplatelet drugs
and history of taking anticoagulant drugs. We also recorded data from the first 72 h after
a stroke, including intubation, initial diagnosis of hypertension, diabetes, dyslipidemia
and atrial fibrillation, as well as total cholesterol, LDL, HDL, low T3 thyroid hormone,
B12 vitamin, folic acid levels and the presence or absence of respiratory infection. For
the same period of time, we also recorded stroke localization based on blood supply and
hemispheric stroke localization according to CT or MRI brain imaging. At discharge, we
assessed functional outcomes for each patient using the mRS.

2.3. Problem Definition

In this study, we consider the task of mRS grade prediction as a binary classification
problem. Under this prism, we worked with two different approaches. In the first approach
we divided the post-stroke patients into two categories: (i) Independent: Post-stroke
patients with 0, 1 and 2 scores in mRS at discharge from hospital and (ii) Non-Independent:
Post-stroke patients who scored 3, 4, 5 and 6 in mRS at discharge from hospital. In a second
approach, we divided the employed post-stroke patients into two classes: (i) Non-disability:
Post-stroke patients with 0 and 1 scores in mRS at discharge from hospital, who have no
disabilities and (ii) Disability: Post-stroke patients who scored 2, 3, 4, 5 and 6 in mRS at
discharge from hospital, who have mild to severe disabilities.

1st Approach: Independent for daily activities post-stroke patients versus non-
independent for daily activities post-stroke patients, employing data from the baseline.

• Class A: involves 219 patients with 0, 1 and 2 mRS grades at discharge and
• Class B: comprises 247 patients with 3, 4, 5 and 6 mRS grades at discharge.

2nd Approach: Post-stroke patients without disabilities versus post-stroke patients
with mild to severe disabilities, using data from the baseline.

• Class A: involves 153 patients with 0 and 1 mRS grades at discharge and
• Class B: comprises 313 patients with 2, 3, 4, 5 and 6 mRS grades at discharge.

For both approaches, the classification outputs 0 and 1 correspond to assignments to
classes A and B, respectively.

2.4. Machine Learning Workflow Methodology

To identify robust biomarkers and parameters associated with the prediction of the
functional outcome as assessed by mRS at discharge in the aforementioned approaches,
a hierarchal ML pipeline was implemented (Figure 1). In the first stage, the data were
normalized. The standardization of the features was performed by removing the mean
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and scaling to unit variance, in order to create a common basis for the feature selection
stage and the learning process. For feature selection, we used the Boruta library, which
is a wrapper technique based on a Random Forest classifier. This process ranked our
clinical data by feature importance [55,56]. Five well-established classifiers were employed,
including Random Forest (RF), XGBoost, Multi-Layer Perceptron (MLP), Support Vector
Machines (SVMs) and Logistic Regression (LR). The purpose of employing five well-
established classifiers was to determine their applicability to the specific problem. To
minimize overfitting and maximize the performance of the ML models, hyperparameter
tuning was applied. RF and XGboost classifiers belong to ensemble learning algorithms and
were utilized as a result of their increased performance and speed [57,58]. MLP is a type of
simple neural network that was included in this study because it has the ability to handle
complex data and has a structure similar to the human brain [59]. In addition to MLP, we
also employed SVMs and LR models in our proposed methodology [60,61]. Both of these
models have been widely used in various applications and have shown good performance
in classification tasks, which is why they were included in this study. SVMs are particularly
useful when dealing with high-dimensional and complex datasets, while LR is a simple
and efficient model that is particularly useful for binary classification problems.
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Figure 1. Workflow of the proposed methodology.

We employed a 70% training and 30% testing data split to validate the proposed
ML models. During the training phase, we used an internal 10-fold cross-validation to
identify the consistent hyperparameters for each model. To balance the class distribution,
we applied a random under-sampling reduction technique, in which the majority class
was reduced to the same size as the minority class. To evaluate the performance of the
proposed classifiers, we used several metrics including accuracy, f1-score, sensitivity (also
known as recall) and precision. For the best-performing models, we also presented the
confusion matrix. Finally, in order to understand the decision-making mechanism and
the contribution of each selected feature in our medical task, we used Shapley Additive
Explanations (SHAP) to interpret the output of the ML model. SHAP is a mini-explainer
that provides a robust way to interpret ML models, which are often treated as black
boxes [62–64]. By using SHAP, we become able to gain insights into the relative importance
of each feature and the way it contributes to the overall prediction made by the model. This
can be particularly useful for understanding the underlying mechanisms of the model and
for identifying potential areas for improvement.

3. Results

In this section, we present the prediction performance results, the selected features
and the explainability results for the best ML models, separately in each approach. We
will provide detailed information on the performance of the models, the features that were
most important in making predictions and the ways in which these features contributed to
the overall prediction made by the model.
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3.1. Prediction Performance

This sub-section focused on the testing performance results of the employed classifiers.
These results are based on the classifiers trained on the first (1, 2, 3, etc.) most informative
biomarkers. We will show the testing performance in relation to the number of selected
biomarkers and compare it to the performance of the best model for each approach. The
results will be presented separately for each approach.

First Approach: Independent and Non-Independent Categorization

In the first approach, all the competitive classifiers presented a rising trend regarding
selected biomarkers in the first 2–6 features, with a maximum of 88.57% (RF classifier) at
eight features (Figure 2). Furthermore, the inclusion of the additional biomarkers kept
the performance of the XGBoost classifier constant. MLP and LR presented a decrease in
accuracy with the addition of extra features.
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Table 1 summarizes the best performance results of the employed ML models. The
highest accuracy (88.57%) was achieved from RF at eight features. Furthermore, RF
achieved 94.74% recall, 85.71% precision and a 90.00% f1-score. On the other hand, the
lowest accuracy (85.71%) was achieved by the SVM classifier at five features.

Table 1. Best scores of the competitive classifiers.

Classifiers Accuracy (%) Recall Precision f1-Score Num of Features

XGboost 87.14 96.05 82.96 89.02 22
RF 88.57 94.74 85.71 90.00 8

SVM 85.71 93.42 82.56 87.65 5
MLP 87.86 96.05 83.91 89.57 6
LR 87.86 93.42 85.54 89.03 6

In bold the model with the highest accuracy.

In addition, the confusion matrix for the best ML model (RF classifier) is presented
below in Figure 3.
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Second Approach: Disability and Non-Disability Categorization

A corresponding trend to the aforedescribed first approach is observed in the pre-
diction task for the binary problem of disability and non-disability. All the competitive
classifiers presented a rising trend regarding selected biomarkers in the first 3–7 features,
with a maximum of 89.29% at seven features (Figure 4). Furthermore, the inclusion of the
additional biomarkers kept the performance in the majority of the classifiers constant. As
observed, only the SVM presented non-constant performance with the additional biomarkers.
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Table 2 demonstrates the best performance results of the employed ML models. The
highest accuracy (89.29%) was achieved by SVM at seven features. Furthermore, SVM also
achieved 89.47% recall, 94.44% precision and a 91.89% f1-score. On the other hand, the
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lowest accuracy (88.6%) was achieved by the XGBoost, MLP and LR classifiers at seven, six
and nine features, respectively.

Table 2. Best performance results of the employed ML models.

Classifiers Accuracy Recall Precision F1-Score Num of Features

XGBoost 88.59 87.35 95.41 91.21 7
RF 89.27 89.45 94.43 91.88 9

SVM 89.29 89.47 94.44 91.89 7
MLP 88.57 87.37 95.42 91.22 6
LR 88.56 87.36 95.40 91.23 9

In bold the model with the highest accuracy.

The confusion matrix for the best-performing machine learning model (SVM classifier)
is shown below in Figure 5.
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3.2. Selected Features

In this section, the importance of the selected features for both of the binary problems
will be presented separately. As described in Section 2.4, we utilized the Boruta feature
selection method to identify all relevant features in our dataset. Boruta is an all-relevant
feature selection algorithm that compares the importance of a feature to the importance
of a random shadow feature, using the RF algorithm to measure feature importance. The
features were ranked based on their importance, and those with greater importance than the
random shadow feature were considered relevant. The algorithm iteratively continues this
process, until all the features have been either selected or rejected. As a wrapper method,
Boruta uses the base estimator to compute feature importance and make a decision about
feature selection. This technique is powerful for datasets with a large number of features
and works well with both continuous and categorical features. In Tables 3 and 4, the feature
name, the description and the type of variable (numerical or categorical) are presented.
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Table 3. Ranking according to the feature significance of the selected characteristics from the best ML
model (RF) at the binary problem independent vs. non-independent.

Ranking Features Type

1 Age Categorical
2 Hemispheric stroke localization Categorical
3 Stroke localization based on blood supply Categorical
4 Development of respiratory infection Categorical
5 NIHSS upon admission Categorical
6 CRP levels upon admission Categorical
7 Systolic blood pressure levels upon admission Categorical
8 Intubation Categorical

Table 4. Ranking according to the feature significance of the selected characteristics from the best ML
model (RF) at the binary problem disability vs. non-disability.

Ranking Features Type

1 Age Categorical
2 Hemispheric stroke localization Categorical
3 Stroke localization based on blood supply Categorical
4 Development of respiratory infection Categorical
5 NIHSS upon admission Categorical
6 Systolic blood pressure levels upon admission Categorical
7 ESR levels upon admission Categorical

The feature importance results for both binary classification problems are presented in
Tables 3 and 4. These tables include the name of each selected feature and the type of the
variable (whether it is numerical or not). These results provide insight into the factors that
are most influential in determining the functional outcome of stroke patients at discharge,
as assessed by the modified Rankin Scale. Understanding these factors can help inform the
development of targeted rehabilitation strategies and interventions.

3.3. Explainability Analysis

In this section, the impact of different biomarkers and parameters on the output of
the best-performing model (RF classifier) is evaluated. Figure 6 shows the relationships
of these biomarkers and parameters with the binary outcome of being independent or
non-independent in daily activities at discharge. The SHAP summary values of these
biomarkers and parameters are displayed in descending order, with the most impactful
features at the top. The color coding in Figure 6 indicates the extent of the impact on the
model’s output, with red indicating the high values and blue indicating the low ones for
each given observation.

Diagnostics 2023, 13, x FOR PEER REVIEW 10 of 19 
 

 
Figure 6. Biomarkers’ impact on RF model output for the prediction of mRS at independent vs. non-
independent task. 

Figure 7 depicts the impact of biomarkers and parameters on the output of the best-
performing model (SVM classifier) across test instances for the prediction task of disability 
versus non-disability. Factors such as NIHSS upon admission, the development of respir-
atory infection, systolic blood pressure levels upon admission, stroke localization based 
on blood supply and age have a high and positive impact on the pure functional outcome 
for post-stroke patients (e.g., the development of respiratory infection pushes the model 
output towards the disability class), thus indicating that the presence of respiratory infec-
tion is closely associated with mild to severe disabilities in post-stroke patients. On the 
other hand, hemispheric stroke localization is negatively correlated with the disability 
class of post-stroke patients, with left and bilateral hemispheric stroke localizations gen-
erally resulting in better functional outcomes at discharge compared to the majority of 
right hemispheric stroke localizations. 

 
Figure 7. Biomarkers’ impact on MLP model output for the prediction of mRS at disability vs. non-
disability task. 

4. Discussion 
In this study, having identified and utilized the aforementioned 35 parameters upon 

admission, in the first 72 h and from the medical history of patients with stroke, we at-
tempted to develop an explainable machine learning model for the prediction of func-
tional outcome at discharge. Under this prism, we worked with two different approaches, 
which resulted in age, hemispheric stroke localization, stroke localization based on blood 
supply, development of respiratory infection, NIHSS upon admission, CRP levels upon 
admission, systolic blood pressure levels upon admission, intubation and ESR levels upon 
admission being the more crucial and influential features that appear in determining the 

Figure 6. Biomarkers’ impact on RF model output for the prediction of mRS at independent vs.
non-independent task.



Diagnostics 2023, 13, 532 10 of 18

According to the figure, NIHSS upon admission, the development of respiratory
infection, age, CRP levels upon admission, stroke localization based on blood supply,
systolic blood pressure levels upon admission and intubation all have a strong positive
impact on the functional outcome for post-stroke patients, indicating that an increase
in these values is closely associated with non-independence at discharge. On the other
hand, hemispheric stroke localization has a negative correlation with non-independence at
discharge, with left and bilateral localizations having better functional outcomes than most
right hemispheric localizations.

Figure 7 depicts the impact of biomarkers and parameters on the output of the best-
performing model (SVM classifier) across test instances for the prediction task of disability
versus non-disability. Factors such as NIHSS upon admission, the development of respira-
tory infection, systolic blood pressure levels upon admission, stroke localization based on
blood supply and age have a high and positive impact on the pure functional outcome for
post-stroke patients (e.g., the development of respiratory infection pushes the model output
towards the disability class), thus indicating that the presence of respiratory infection is
closely associated with mild to severe disabilities in post-stroke patients. On the other
hand, hemispheric stroke localization is negatively correlated with the disability class
of post-stroke patients, with left and bilateral hemispheric stroke localizations generally
resulting in better functional outcomes at discharge compared to the majority of right
hemispheric stroke localizations.
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4. Discussion

In this study, having identified and utilized the aforementioned 35 parameters upon
admission, in the first 72 h and from the medical history of patients with stroke, we at-
tempted to develop an explainable machine learning model for the prediction of functional
outcome at discharge. Under this prism, we worked with two different approaches, which
resulted in age, hemispheric stroke localization, stroke localization based on blood supply,
development of respiratory infection, NIHSS upon admission, CRP levels upon admission,
systolic blood pressure levels upon admission, intubation and ESR levels upon admission
being the more crucial and influential features that appear in determining the functional
outcome of stroke patients at discharge. What follows is a literature-based discussion of the
association between those relevant criteria, the functional outcome prognosis of stroke pa-
tients and the findings of our analysis, taking into consideration that, hitherto, researchers
have separately evaluated each of the aforementioned factors but have not juxtaposed them
with each other. In particular: age is considered the primary non-modifiable risk factor for
stroke [65,66]. The mortality and morbidity rates as well as the functional recovery rates for
elderly stroke patients are higher than those for younger patients [67]. In several previous
epidemiological studies, age, along with baseline stroke severity as depicted in NIHSS, is
another significant predictor of post-stroke outcome [68]. In the respective literature it is
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also claimed that as age increases, evidence-based stroke care guidelines are less likely to
be followed [66,69,70].

Stroke localization, in which hemispheric detection or blood supply are involved,
appears to have a complex relationship with the spatial distribution of the damage and
its relevance to functional recovery. Several studies [71–74] have demonstrated that hemi-
sphere lateralization has variable effects on functional outcomes. It is generally recognized
that ischemic strokes affecting the dominant hemisphere, which in the majority of the
population is the left- as opposed to the non-dominant or right hemisphere, can result
in unique clinical syndromes and deficits depending on the regions affected. Multiple
studies [74–82] have also shown that the right hemisphere’s involvement is predictive of
inferior functional outcomes in patients with AIS. Given that the connection between lesion
location, clinical impairments, recovery and functional outcome, as measured by mRS, is
expected to be altered by the site of the lesion, differentiation is crucial [82–87]. On the
other hand, there have also been reports indicating that hemisphere lateralization has no
effect on functional outcomes and that there is no significant difference between left- and
right-hemispheric strokes in terms of favorable result rates [72,73,83,84]. From the above, it
is obvious that infarct location can have a significant impact on the prognosis of individuals,
who have suffered an acute ischemic stroke; therefore, prediction models must account for
it [85].

As highlighted in several studies, following a stroke, respiratory infection and, more
specifically, pneumonia are closely related to an increased risk of poor outcome or mortality.
Within the first three months following a stroke, two of every three cases of pneumonia
occur in the first week, with the highest frequency occurring on the third day. Evaluating
preventative measures for pneumonia is most effective during the first four days after
a stroke. Pneumonia that develops later has also been associated with poor functional
outcomes or mortality [86–91].

The NIHSS is a quantitative tool used to evaluate the severity of a stroke. It has been
found to be a robust predictor of functional outcome 90 days after stroke. Low (<5) and high
(>22) NIHSS cut-off points are highly predictive of positive (mRS 0-1) and negative (mRS
4–5 or death) outcomes, respectively. Results are less clear for intermediate initial NIHSS
and symptom duration criteria. However, it favors anterior circulation stroke over posterior
circulation stroke, resulting in larger results for the former. The mean NIHSS in the group
with a favorable functional outcome is considerably lower for posterior circulation stroke
than for anterior circulation stroke, highlighting the need to base acute stroke emergency
management decisions on a comprehensive neurological examination, as opposed to a
single scale, especially in the cases where posterior circulation stroke is in question [92–95].

Studies have shown that elevated CRP levels in the early stages of ischemic or hemor-
rhagic strokes are related to stroke severity, poor clinical outcomes and long-term prognosis.
In particular, after an ischemic stroke, CRP has been found to be an independent predictor
of long-term death [96,97].

Hypertension is a well-documented modifiable stroke risk factor. J- and U-shaped
curves have been seen between systolic blood pressure (SBP) and clinical outcomes in
acute ischemic stroke patients (a satisfactory clinical result at 3 months was construed as an
mRS score between 0 and 2); both low and high SBP have been associated with adverse
outcomes (mRS 3–6). According to a number of studies, elevated blood pressure after a
stroke may increase infarct volume and is associated with a poorer clinical outcome (mRS
3–6). There are other reports indicating that a higher diastolic blood pressure (DBP) at
admission is predictive of in-hospital mortality among patients with acute ischemic stroke.
Elevation in mean arterial pressure (MAP) is indicative of increased mortality over the long
term. Higher entry blood pressure (BP) in patients suffering from acute ischemic stroke,
who were treated with endovascular therapy (EVT), is associated with reduced odds of
effective reperfusion and poor clinical outcomes. Other studies affirm that, in patients with
AIS, a low SBP on admission is associated with an increased risk of in-hospital mortality
and comorbidities such as heart failure, gastrointestinal bleeding and sepsis [98–106].
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Regarding intubation in the hyperacute phase of stroke or in the early days after
stroke, recent research, despite being retrospective, suggests that intubation is associated
with an increase in mortality. Moreover, various studies argue that poor outcomes may be
associated with an increased risk of aspiration pneumonia and sepsis in intubated patients
as opposed to non-intubated patients [107–111].

Lastly, the levels of ESR at admission should not be used as a direct predictors of
inflammation in ischemic stroke. While other markers of inflammation, such as CRP,
fibrinogen and triglycerides, may be elevated in ischemic stroke patients, ESR levels alone
may not be sufficient to identify patients with persistent ischemic stroke episodes. It is
worth noting that ischemic stroke patients often have a wide range of risk factors and it
is possible that they may have a pre-existing proinflammatory procoagulant state, which
could contribute to the shift in ESR values shortly after a cerebral infarction, with the
exception of hematological parameters [112].

In our study, for the first approach, the biomarkers’ and parameters’ impact on the
best-performing model’s (RF classifier) output across test instances for independent vs.
non-independent prediction classes, with an accuracy of 88.57%, revealed that NIHSS upon
admission, the development of respiratory infection, age, CRP levels upon admission,
stroke localization based on blood supply, systolic blood pressure levels upon admission
and intubation show a high and positive impact on the pure functional outcome for
post-stroke patients. On the other hand, hemispheric stroke localization is negatively
correlated with non-independent post-stroke patients. More specifically, hemispheric
stroke localizations such as left and bilaterally have better functional outcomes at discharge
than the majority of the right hemispheric stroke localizations. For the second approach,
the biomarkers’ and parameters’ impact on the best-performing model’s (SVM classifier)
output across test instances for the disability vs. non-disability prediction task, with an
accuracy of 89.29%, revealed that NIHSS upon admission, the development of respiratory
infection, systolic blood pressure levels upon admission, stroke localization based on blood
supply and age show a high and positive impact on the pure functional outcome for post-
stroke patients. On the other hand, hemispheric stroke localization is negatively correlated
with the disability class post-stroke patients. In particular, hemispheric stroke localizations
such as left and bilaterally have better functional outcomes at discharge than the majority
of the right hemispheric stroke localizations.

4.1. Limitations

Our research was concluded under the assumption of the following limitations: Al-
though the mRS is the most commonly used outcome scale in stroke research, it is primarily
dictated by motor impairment and is rather insensitive to cognitive impairment. As a
measure of global functional status, the mRS is highly dependent on ambulatory status and
lacks sensitivity for deficits in other domains, such as language or neglect, which influence
functional outcomes. Due to the inherent limitations of the mRS, disparate methods are
required to evaluate functional results. In addition, due to the fact the study at hand is retro-
spective, namely the database was created before the widespread application of intravenous
thrombolysis to patients with ischemic stroke and the mechanical thrombectomy era, our
results require further replication in a prospective population. Despite our confident belief
that the same parameters will remain able to predict the functional outcome, we expect that
the proportion of patients with severe or moderate stroke is likely to be reduced, resulting
in a superior functional recovery, given the administration of intravenous thrombolysis to
a number of stroke patients. Finally, it shall be noted that the data pertain to one hospital,
even though the Neurological Clinic handles a sufficient number of stroke patients of all
ages—a feature that distinguishes it from the majority of neurological clinics in Greece.
Hence, it should finally be taken into consideration that the sample represents particular
geographic and socioeconomic features.
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4.2. Future Work

In future work, we will employ state-of-the-art ratios of biomarkers and parameters
for the long-term prediction (≥3 months) of the functional outcome at the acute phase
of stroke patients utilizing robust feature selection techniques and explainable machine
learning (XAI) techniques. An external validation dataset will be employed in order to
assess the best model’s reproducibility and generalizability. In addition, we intend to
create a database in which Brain Reserves, such as brain volume and leukoaraiosis, will be
examined and evaluated.

5. Conclusions

In conclusion, this study identified 35 parameters upon admission, in the first 72 h and
from the medical history of patients with stroke and attempted to develop an explainable
machine learning model for the prediction of functional outcome at discharge using the
mRS as a binary classification problem. Two approaches were employed and competitive
classifiers showed a rising trend in relation to selected biomarkers in the first 2–6 features
of the first approach and in the first 3–7 features of the second approach. The maximum
accuracy was achieved at eight and seven features, respectively, with six of the features
being common to both approaches. Up to today, the predictive models for post-stroke
outcome that have been developed using machine learning have focused on large-vessel
ischemic strokes that underwent mechanical thrombectomy, and the functional result of
patients was assessed three months after the stroke [29,38,113–115]. To the best of our
knowledge, this study is the first attempt to collect data during the acute phase of stroke
in conjunction with the detection of parameters from the medical history of these stroke
patients and to analyze the data using machine learning, in an effort to develop a prognostic
model of the functional outcome of the patients upon hospital discharge, thereby potentially
contributing to timely, but also more accurate and individualized, diagnosis and treatment.
This information can also be used to support rehabilitation decision-making and improve
patient outcomes by tailoring rehabilitation plans to the specific needs and characteristics of
each individual patient. While the results of this study appear to be promising in predicting
functional outcome in stroke patients, it is important to note the limitations of the mRS
as an outcome measure and the retrospective nature of the study. Further replication in
a prospective population with the inclusion of intravenous thrombolysis and mechanical
thrombectomy is necessary to confirm the robustness of these findings. Withal, this study’s
sample size was restricted to a single institution and may not be representative of stroke
patients in different geographic and socioeconomic contexts.
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