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Abstract: Diffuse idiopathic skeletal hyperostosis (DISH) is a systemic condition characterized by new
bone formation and enthesopathies of the axial and peripheral skeleton. The pathogenesis of DISH is
not well understood, and it is currently considered a non-inflammatory condition with an underlying
metabolic derangement. Currently, DISH diagnosis relies on the Resnick and Niwayama criteria,
which encompass end-stage disease with an already ankylotic spine. Imaging characterization of the
axial and peripheral skeleton in DISH subjects may potentially help identify earlier diagnostic criteria
and provide further data for deciphering the general pathogenesis of DISH and new bone formation.
In the current review, we aim to summarize and characterize axial and peripheral imaging findings
of the skeleton related to DISH, along with their clinical and pathogenetic relevance.
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1. Introduction

Diffuse idiopathic skeletal hyperostosis (DISH) is a bone-forming disease characterized
by excessive new bone formation in the axial and peripheral skeleton. In the axial skeleton,
DISH usually affects the thoracic spine, and in the peripheral skeleton, new bone formation
affects entheseal sites, mainly in the pelvis [1–3].

DISH is primarily observed in adults older than 45 years, with a male preponder-
ance [4] and an association with metabolic syndrome, obesity, hypertension, and diabetes
mellitus [5]. It affects all populations; however, its prevalence is thought to be highest in
developed countries. A prevalence directly correlated with the age of 4–32% of DISH was
reported among the general population [6].

DISH may be asymptomatic or may manifest as back and cervical pain, dysphagia,
pain at peripheral entheseal sites, and limitation of motion of the spine, often mimicking
ankylosing spondylitis (AS) [7]. In addition, due to their ankylosed spine, individuals
with DISH are susceptible to fractures, even following minor, low-energy trauma [8,9].
Thus, diagnosing DISH in such patients could facilitate early treatment and prevent related
complications.

A diagnosis of DISH relies on the radiographic criteria of Resnick and Niwayama,
which require flowing osteophytes over at least four contiguous vertebrae of the thoracic
spine, preservation of the intervertebral disc space without extensive degenerative inter-
vertebral disease, and the absence of apophyseal and costovertebral joint ankylosis and
sacroiliac joints (SIJs) erosion, sclerosis, or bony fusion [1]. These criteria represent a late,
end stage of DISH; a decade may pass from the onset of radiographic changes to the
formation of characteristic bridging osteophytes [10]. Ustinger suggested a lower threshold
of flowing osteophytes over three contiguous vertebrae and added the presence of pelvic
enthesophytes to the criteria in order to potentially diagnose DISH earlier [11]. Several
additional criteria have been suggested with the aim of diagnosing DISH in earlier stages;
however, these criteria have not been widely accepted, with the Resnick and Niwayama
criteria remaining the most commonly used criteria [12,13].
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The pathogenesis of DISH is not well understood. It is hypothesized that there is, on
one hand, excess of growth factors (e.g., insulin, insulin-like growth factor 1, transform-
ing growth factor-β1, and more) inducing the transformation of mesenchymal cells into
fibroblasts and osteoblasts, and on the other hand, there is reduced inhibition of bone-
promoting peptides (e.g., matrix Gla protein, bone morphogenic protein-2 inhibition, and
Dickkopf-1) [14].

DISH is considered a non-inflammatory condition with an underlying metabolic
derangement that results in new bone formation [5,15]. However, an inflammatory compo-
nent has been suggested due to the similar tendency for the new formation of spinal and
peripheral entheses observed for DISH and spondyloarthritis (SpA) [16]. Indeed, imaging
studies have not only greatly facilitated early diagnosis; they have also enhanced our
understanding of SpA pathogenesis [17–22].

Therefore, imaging characterization of the axial and peripheral skeleton in DISH sub-
jects may help to develop earlier diagnostic criteria and provide further data for deciphering
the pathogenesis of DISH and new bone formation.

The body of knowledge regarding imaging characteristics of DISH has grown over
the last decade, leading to a change in perception regarding DISH, and from a merely
radiological entity of doubtful significance, it is now commonly accepted that diagnosis of
DISH is of important clinical significance.

In the current review, we aim to summarize the most up-to-date reports characterizing
axial and peripheral imaging findings of the skeleton related to DISH, along with their
clinical and pathogenetic relevance.

2. Axial Skeleton
2.1. New Bone Formation in the Spine

A characteristic feature of DISH is the presence of paraspinal flowing osteophytes
resulting from the ossification of soft-tissue structures surrounding the vertebrae [1]. A
lucent line extending between the vertebral body cortex and the osteophyte distinguishes
these paraspinal osteophytes from degenerative, marginal osteophytes, which are an
integral extension of the vertebral endplate, and from SpA-related syndesmophytes, which
result from ossification of Sharpey’s fibers of the annulus fibrosis (Figure 1) [23].
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Figure 1. Sagittal CT reconstructions of the thoracic spine in three different patients: (A) a patient
with DISH with thick, flowing, horizontally oriented, coarse osteophytes; (B) a patient with AS with
slender, vertically oriented syndesmophytes; and (C) a patient with degenerative disc disease with
horizontally oriented, non-flowing osteophytes. Note that the disc space is relatively preserved in the
DISH subject, but not in the patient with a degenerative spine.

The differences in soft-tissue calcification result in two types of osteophytes: vertically
oriented syndesmophytes, which are typical of AS, and horizontally oriented osteophytes,
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which are characteristic of DISH [24]. However, these two types of bone-forming out-
growths have been reported to co-occur in both diseases at different frequencies, i.e., with
more horizontal osteophytes in DISH and more vertical syndesmophytes in AS [9,25]. Many
studies have reported that the prevalence of DISH increases with age [26–28]. However,
bone growth has been reported as being significantly more prevalent in subjects younger
than 70 years compared with older individuals [29], most likely because the bone growth
potential in older patients has already reached its maximum and is approaching the end
stage. For DISH, it has been reported that osteophytes bridge over one vertebral space
within an average of 10 years [10], a growth rate similar to that reported in AS [21]. Simi-
larities in bone production between DISH and AS have raised the hypothesis that the two
diseases may share some features of local or systemic inflammatory pathogenesis [10,16,24].
Indeed, several magnetic resonance imaging (MRI) studies have reported inflammatory
bone marrow edema corners and fat metaplasia corners, findings characteristic of SpA,
in the spine of subjects with DISH [30,31]. However, the prevalence of such lesions is
relatively low and could be attributed to spinal degeneration in general, and not necessarily
to DISH per se.

2.2. Cervical Spine

Anterior ossification of the spine in DISH may involve the cervical spine, primarily
along the lower half of the anterior border of the vertebral body, forming a “candle flame”
or “parrot-beak” image (Figure 2) [32]. These cervical flowing osteophytes are frequently
asymptomatic but may result in dysphagia, sleep apnea, airway obstruction, and difficulty
in intubation [7,23,33]. It has been reported that approximately one-third (33%) of subjects
with DISH involving the middle or lower thoracic region have coexisting DISH in the
cervical spine, according to whole-spine computed tomography (CT) [34].
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Figure 2. Sagittal CT reconstruction images of two patients with thoracic (not shown) and cervical
DISH. (A) Flowing chunky osteophytes are located anteriorly to the vertebrae, forming a “candle
flame” or “parrot-beak” image. (B) Thick, not-yet-flowing anterior osteophytes and thick posterior
osteophytes at the C5–6 level.

In DISH subjects, bridging osteophytes in the cervical spine primarily occur anteriorly
and are symmetrically distributed relative to the midline of the vertebral bodies [35]. In
contrast, in the thoracic spine, osteophytes are typically asymmetrical and anterolaterally
located [25,36]. It has been suggested that vascular structures act as a natural barrier for
the formation of flowing osteophytes in the thoracic spine in DISH [25,29,36]. Thus, the
different patterns of new bone formation between the cervical and thoracic spine may stem
from differences in vascular anatomy.

The chunky anterior cervical osteophytes in DISH are known to impinge upon the
anteriorly located airways and esophagus and cause airway obstruction and dysphagia
(Figure 3) [33], sometimes requiring surgical intervention [26,37].
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Figure 3. Axial CT image of a thick anterior osteophyte in the cervical spine of a patient with DISH
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Another phenomenon known to coexist with DISH is an elongation of the styloid pro-
cess, which results from entheseal calcification and ossification of the stylohyoid ligament
(Figure 4A) [38–41]. In rare cases, this elongation has been reported to cause craniofacial or
cervical pain, termed Eagle syndrome [42]. In a study comparing the length of the styloid
process, as measured by CT, between subjects with DISH (as per Resnick and Niwayama
criteria), subjects with AS (as per modified New York criteria), and healthy controls, the
average lengths of the styloid process in DISH and AS were similar but significantly greater
than that of the controls [41]. Moreover, significantly more subjects with AS (30%) and
DISH (25%) had an elongated styloid process (>3 cm) than the control group [41]. However,
no correlation was seen between the presence of characteristic bone bridging osteophytes
in the cervical spine of DISH subjects and an elongated styloid process. Enthesopathy,
which is a common feature in both DISH and AS, distinguishes these patients from healthy
subjects by causing styloid process elongation. Enthesopathy in AS patients is thought to
be of an inflammatory nature [43]. Although enthesopathy in DISH has been classically
attributed to mechanical or degenerative causes, it has been suggested that subclinical
inflammation is also a cause of cervical enthesopathy in DISH [7,16].
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Figure 4. Sagittal CT reconstructions of the cervical spine of two patients with thoracic DISH (not
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ligament. (B) Flowing osteophytes characteristic of DISH accompanied by OPLL.

Ossified posterior longitudinal ligament (OPLL) is a hyperostotic condition that may
lead to spinal canal stenosis and, potentially, neurological manifestations of varying de-
grees [44]. OPLL is a distinct entity that may appear without accompanying pathologies,
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with an incidence of up to 4% [45,46]. It has been reported to be associated with DISH,
AS, and diabetes mellitus [45,46], with a concomitance rate of 57.14% for cervical OPLL
accompanying DISH (Figure 4B) [47]. Both DISH and OPLL are primarily observed in
elderly males and have a reported association with low glucose tolerance and obesity [47].
A shared local inflammatory pathogenesis has been suggested as the basis of both entities;
however, this hypothesis needs further corroboration [48].

2.3. Thoracic Spine

The thoracic spine is the main segment of the spine affected by DISH and to which
the Resnick and Niwayama classifications apply [1,34,49]. One of the exclusions in these
criteria is a reduced intervertebral disc height, which indicates degenerative disc disease.
However, in their original report, Resnick et al. stated that some degree of intervertebral disc
degeneration may be apparent due to the coexistence of both DISH and degenerative disc
disease [1]. Indeed, a reduced intervertebral disc height was detected on CT examinations
of the thoracic spine of DISH subjects compared with gender- and age-matched controls
without DISH [50].

Bridging osteophytes in DISH are located along the anterolateral aspect of the
vertebral bodies, most commonly involving the seventh through eleventh thoracic
vertebrae [36,51,52]. These osteophytes are mostly detected on the right side of the spine,
leading to the hypothesis that the pulsating, left-sided descending aorta inhibits new bone
formation on the left [29,53]. Providing further validation of this hypothesis on the protec-
tive effect of the aorta, a previous study demonstrated the same effect in patients with the
right-sided aorta, in which the majority of osteophytes were located contralateral to the
descending aorta’s location (Figure 5) [25]. Moreover, a study on the location of syndesmo-
phytes in subjects with AS reported the same reduced frequency of syndesmophytes at the
vertebral rim near the aorta [54].
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In two studies that evaluated CT examinations for thoracic spinal DISH evolution,
the amount of newly formed bone increased consistently over time [10,55]. Both studies
described the beginning of bony outgrowths at vertebral bodies on either side of the
intervertebral space, which, over time, connected to form complete flowing bridges.

An ankylosed spine, such as that observed in DISH, is rigid and, as a result, is
susceptible to injury, even from low-energy trauma. DISH is associated with a prevalence
of thoracolumbar vertebral fractures of 4–18%, of which multilevel fractures are reported in
about 8% [56,57]. These fractures are frequently extension-type fractures and are associated
with a greater instability risk for spinal cord injury of up to 58% and a higher rate of
complications (Figure 6) [58–60]. Fractures in DISH pass through the vertebral body, which
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is the most exposed and weakest point in the ankylosed spine [61]. Detection of vertebral
fractures on radiographs of the spine of DISH subjects is challenging; thus, it has been
suggested that whole-spine CT be performed in emergency response units in order to
prevent negative consequences in DISH subjects, even after minor trauma [9,62].
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Figure 6. Sagittal CT reconstruction of the thoracic spine of a 78-year-old patient with thoracic DISH
after low-energy trauma, showing an unstable extension-type fracture of the mid-thoracic spine. In
the given slice, there are two vertically oriented bony bridges in the upper thoracic spine (arrowheads)
that may lead to the misconception that this is a patient with ankylosing spondylitis; however, there
are clearly many flowing osteophytes compatible with DISH in the lower part of the thoracic spine
(arrows).

2.4. Lumbar Spine

The lumbar spine is the least affected and most likely the last affected segment of
the spine in DISH [34]. When DISH is present in the middle or lower thoracic region, the
prevalence of coexisting DISH in the lumbar region is reported at approximately 30%.

There is clinical significance to the involvement of the lumbar spine in DISH. In patients
that undergo surgical treatment due to lumbar spinal stenosis, the coexistence of DISH
increases the re-decompression rate and expansion of the decompression range [63,64]. In
addition, DISH is associated with increased incidence of pseudarthrosis after lumbar spinal
fusion [65].

2.5. Sacroiliac Joints

To distinguish between SpA and DISH, the SIJs appear as an exclusion criterion in
the Resnick and Niwayama criteria, so that findings compatible with sacroiliitis, such as
erosions, sclerosis, and ankylosis of the SIJ on pelvic radiographs, preclude the diagnosis
of DISH [1]. In subsequent studies, Resnick and co-workers described the presence of SIJ
osteophytes, para-articular bony bridging, and coexisting osteoarthritis on pelvic radio-
graphs of subjects with DISH [4,66]. Over time and with advances in imaging technology,
the characterization of SIJ involvement in DISH has been refined for both CT and MRI.
Extra-articular bridging osteophytes located ventrally to the SIJs, similar to flowing osteo-
phytes in the spine, are commonly seen in DISH patients, resulting from enthesopathy of
the involved ligament (Figure 7A) [67,68]. This anterior SIJ bridging overlying the SIJ on
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pelvic radiographs obliterates the joints, resulting in a false diagnosis of SIJ ankylosis, and
thus SpA [67,69]. Indeed, studies evaluating the SIJs of subjects with DISH on CT have
shown that anterior bridging of the SIJ is a common finding [70,71], but in contrast with
the Resnick and Niwayama criteria, both intra-articular and posterior entheseal ankylosis
are also prevalent in DISH (Figure 7B) [70,71].
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3. Pelvis and Appendicular Skeleton

Pelvic and appendicular enthesopathy is common, characteristic extra-spinal man-
ifestation of DISH [72]; consequently, it has been suggested that the spinal involvement
threshold be reduced from four to two consecutive vertebrae in the presence of prominent
extra-spinal enthesopathy for the classification of DISH [73].

Enthesopathy of the sacrotuberous and iliolumbar pelvic ligaments and insertional
enthesopathy of tendons such as the iliopsoas, as seen on pelvic AP radiographs (Figure 8),
have been shown to be a good indicator of the presence of radiographic spinal DISH [74,75].
A similar association was described for CT examinations of the pelvis, in which enthesopa-
thy was significantly more prominent in subjects with DISH compared with controls for all
entheses evaluated (anterior superior iliac spine (ASIS), pubis, ischial tuberosity, greater
trochanter), and enthesopathy at the ASIS and greater trochanter significantly distinguished
DISH patients from controls [3].
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Figure 8. AP radiograph of the pelvis of an 82-year-old female with thoracic DISH (not shown).
Characteristic whiskering of the anterior superior iliac spine and ischial tuberosities (arrows) is
present on both sides, resulting from enthesopathy in these regions.

Enthesopathy of the appendicular skeleton is a characteristic feature of DISH and
has been found to be more prevalent in DISH subjects versus subjects without DISH [70].
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Appendicular skeleton enthesopathy-related lesions have been described using either radio-
graphy or ultrasound in the knees, ankles, elbows, and hands of patients with DISH [76,77].

Appendicular DISH is characterized by the involvement of joints that are not com-
monly affected by primary osteoarthritis (e.g., elbows, shoulders, anterior chest wall,
etc.) [32,78] as well as prominent, thick peripheral enthesopathies with calcification and
ossification of extra-articular tendinous entheses such as in the tibial tuberosity, olecranon,
and Achilles insertion (Figure 9) [79]. In addition, the affected joints in DISH show the
exuberant new bone formation and para-articular osteophytes [66]. These changes may
result in a reduced range of motion in the affected joints and potentially the subsequent
development of degenerative changes [4,75,79].
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Figure 9. Radiographs of the ankle, knee, and hand of a patient with thoracic DISH (not shown).
(A) Lateral radiograph of the ankle, showing coarse, thick enthesophytes in the attachment of the
Achilles tendon and plantar fascia to the calcaneus (arrows). (B) Lateral knee radiograph showing
thick, coarse enthesophytes (arrow) in the attachment of the quadriceps tendon to the patella. (C) AP
radiograph of the fingers, showing enthesophytes in the medial side of the 2nd metacarpophalangeal
joint and 4th distal interphalangeal joint and the lateral side of the 2nd distal interphalangeal
joint (arrows).

A clinical radiographic study divided subjects with DISH and/or pelvic enthesopathy
into three distinct phenotypes: (1) spinal DISH as per the Resnick and Niwayama crite-
ria and <3 peripheral enthesopathies, (2) extensive spinal DISH as per the Resnick and
Niwayama criteria and extensive peripheral enthesopathy, and (3) ≥3 peripheral enthe-
sopathies but no spinal DISH, as per the Resnick and Niwayama criteria [12]. In their
report, groups one and two consisted of predominantly elderly males, while group three
included mainly females of a younger age. Their results suggest a different phenotype of
DISH for women that may be underdiagnosed [13].

4. DISH vs. SpA

DISH and SpA are both bone-producing ankylosing diseases involving the axial and
appendicular skeletons, in which enthesopathy is a major feature. However, while SpA is
considered an inflammation-based disease, DISH is regarded as mechanical or degenerative
in nature, although it has been suggested that local inflammation may also play a role in its
development [16]. The differentiation between DISH and SpA is usually straightforward
due to their distinct clinical features, such as age and genetic predisposition. Nevertheless,
clinical similarities between DISH and SpA, such as limited spinal mobility and postural
abnormalities, may entail the use of imaging to differentiate between the two conditions [59].
The differences and similarities between DISH and SpA are presented in Table 1.

Generally speaking, new bone formation and enthesophytes in the spine and the
appendicular skeleton are thick and prominent in DISH but thin in SpA. In addition, DISH-
related osteophytes in the spine are primarily located on the right and are horizontal in
nature, while in SpA, they are vertically oriented with no predilection to any side [24,66].
However, in many cases, differentiating between DISH and SpA via imaging is not as
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straightforward as expected. The coexistence of both DISH and AS has been described in
several case studies (Figure 10) [80].

Table 1. DISH vs. Spondyloarthritis: differences and similarities.

DISH SpA

Age Elderly (>50 years) Young adults (>20–40)

Gender M > F M > F

Pathogenesis Mechanical/localized
inflammation Inflammatory

Enthesopathy Axial and peripheral Axial and peripheral

Thick and pronounced
With no accompanied erosions

and sclerosis

Thin, with accompanied
erosions and sclerosis

Spine

Bone production Thick, bridging horizontal
osteophytes

Thin, slender, vertical
syndesmophytes

MRI

BME corners Present but uncommon Common

Fat corners Present, not rare Common

Periarticular fat metaplasia Rare Common

Sacroiliac joints

Bone production Bridging osteophytes
Anterior to SIJ

Intra-articular bridging
osteophytes

Erosions Rare Common

MRI

Periarticular BME,
suggestive of SpA

Rare
Upper part of SIJ

Common
Along entire SIJ

Periarticular fat metaplasia Rare Common
DISH, diffuse idiopathic skeletal hyperostosis; SpA, spondyloarthritis; M, male; F, female; MRI, magnetic reso-
nance imaging; BME, bone marrow edema; SIJ, sacroiliac joint.
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This coexistence may result from the fact that both bridging osteophytes and syn-
desmophytes have been reported to appear in both diseases, although with different ratios,
e.g., a majority of syndesmophytes in AS and a majority of right-sided bridging osteophytes
in DISH [24]. Another source of confusion is the presence of parasyndesmophytes, which
are thick para-spinal osteophytes seen in patients with psoriatic arthritis (PsA) [81,82].
DISH has been reported to appear in 8% of patients with PsA, comparable to the prevalence
reported in the general elderly population [83]. Syndesmophytes in PsA are asymmetrical
and para-marginal, resulting from inflammation and remodeling processes at the disco-
vertebral junction, leading to gradual ossification of the periphery of the annulus fibrosus
and the formation of vertical bony bridges [84]. In contrast, bridging osteophytes result
from ossification along the anterior longitudinal ligament, the paravertebral connective
tissue, and the periphery of the annulus fibrosus [85]. Thus, parasyndesmophytes are
usually easy to detect and differ from the bridging osteophytes of DISH in appearance and
location. However, the co-occurrence of both entities is not uncommon in the relevant age
demographic.

Partial or complete ankylosis of the apophyseal joints has been described in advanced
AS [86], whereas in a previous study on DISH, the main pathology described in these joints
was degenerative joint disease similar in appearance and prevalence to patients without
DISH [50]. Yet, in the same study, entheseal bone formation identical to that observed in AS
was described in the costovertebral joints of patients with DISH [50]. Thus, further research
characterizing and comparing the involvement of the apophyseal and costovertebral joints
in DISH and AS is warranted.

Many studies describing the co-occurrence of DISH and SpA have based their diagno-
sis of SpA on abnormalities seen at the SIJ, whereas their presence is an exclusion criterion
in the Resnick and Niwayama classification for DISH [66,80]. However, we and others
have shown that, similar to SpA, the SIJ of subjects with DISH is commonly abnormal on
CT, with enthesophytes and ankylosis in ligament attachments both outside and within
the joints [70,71]. Thus, diagnosing SpA based on the appearance of these abnormalities in
the SIJ is erroneous. Hence, it is not yet fully clear whether there is a real overlap between
DISH and SpA or whether this is merely a result of misconceptions regarding the inclusion
or exclusion imaging criteria for DISH.

One clear difference between DISH and SpA is the presence of SIJ erosions. These
are common features of SpA but are seldom seen in DISH [70]. Therefore, the presence
of sacroiliac erosions can clearly exclude a diagnosis of DISH, but either partial or total
ankylosis of the SIJ cannot.

Pelvic enthesopathy on radiographs in DISH has a distinct appearance, with hyper-
trophic whiskering of entheseal attachments, whereas in SpA, bone proliferation is milder
and is associated with bony erosion and sclerosis [87]. Moreover, while prominent en-
thesophytes and bone production are seen around the hip joints in DISH, the principal
radiographic findings in SpA are concentric joint space narrowing, erosions, and ankylosis,
which are uncommon in DISH [87].

Several studies have described the MRI appearance of the spine and SIJs in DISH. Here,
bone marrow edema and fat in the vertebral corners comparable to those characteristic
of SpA have been described. However, their prevalence is much lower compared with
SpA, and has been attributed to a degenerative process rather than an inflammatory
process [30,31,88]. Bone marrow edema in the SIJ has also been observed in subjects with
DISH; however, these observations are uncommon, to a lesser extent than that seen in
SpA. Again, this is most likely due to a degenerative joint process rather than a similar
inflammatory pathogenesis [31].

5. Conclusions

DISH is not solely an imaging entity, but can manifest with significant clinical con-
sequences, including spinal fractures even from low-energy trauma, neurologic deficits
resulting from spinal stenosis, and dysphagia or airway obstruction due to abutting anterior
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cervical bridging osteophytes. In addition, diagnosing DISH and differentiating it from
SpA is important for facilitating correct and targeted treatment. It is therefore important
for clinicians to recognize the imaging characteristics of DISH in the axial and peripheral
skeleton and understand DISH’s clinical consequences, evaluation, and management.

The body of knowledge regarding imaging characteristics has grown over the last
decade. The current Resnick and Niwayama criteria for DISH correspond to an end-
stage diagnosis of the disease, in which the spine is already ankylosed. A newer set
of classification criteria is warranted for diagnosis in an earlier, pre-ankylotic stage of
the disease.

The pathogenesis underlying this disease is still unclear, and although it is thought
to be a degenerative disease, it has been suggested that similarities to SpA may imply an
inflammatory basis. Imaging studies further characterizing the disease may potentially aid
in deciphering the currently obscure pathogenesis of DISH.
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