Using Mathematical and Statistical Analysis to Investigate the Correlation between Exacerbation of Chronic Obstructive Pulmonary Disease and Risk of Subclinical Atherosclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Object
2.2. Method
2.3. Statistical Analysis
3. Result
3.1. General Patient Information
3.2. Comparison of Biochemical Indexes and Inflammatory Marker Levels between Two Groups of Patients
3.3. Comparison of the Levels of Subclinical Vascular Injury in the Two Populations
3.4. Correlation between COPD and Subclinical Carotid Atherosclerosis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Chen, B.; Qian, Z. Investigation and analysis of risk perception and related factors in patients with chronic obstructive pulmonary disease. Health Res. 2020, 40, 176–180. [Google Scholar]
- Qian, B.; Shi, M. Prognostic factors in patients with acute exacerbation of chronic obstructive pulmonary disease. J. Soochow Univ. Med. Ed. 2010, 30, 595–596. [Google Scholar]
- Gu, X.; Hua, D. The value of BODE index in judging the prognosis of patients with chronic obstructive pulmonary disease. J. Mod. Integr. Med. 2008, 17, 2461–2462. [Google Scholar] [CrossRef]
- Sun, H.; Wang, F.; Zhang, Y. Nutritional risk analysis and its effect on prognosis in elderly patients with acute exacerbation of chronic obstructive pulmonary disease. J. Clin. Pulmonol. 2021, 26, 1338–1340. [Google Scholar]
- Wang, X.; Gao, C.; Li, M.; Zhang, Y.; Sun, Y.; Lu, P.; Zhao, Q.; Qi, D.; Wang, S.; Dai, G.; et al. Expert consensus on assessment, detection and intervention of common risk factors for cardiovascular and cerebrovascular diseases. Chin. J. Pract. Diagn. Treat. 2021, 35, 541–551. [Google Scholar]
- Wu, J.; Shu, X.; Liao, T.; Huang, L.; Luo, Z. Correlation of carotid artery intima-media thickness with serological markers and cardiovascular disease in patients with hemodialysis. Contemp. Med. 2021, 27, 166–168. [Google Scholar]
- Dai, C.; Zhang, Q.; Ji, H.; Wang, K. Analysis of the influencing factors of carotid artery intima-media thickness in a high-risk population of stroke in a community in Hefei City. Anhui Med. 2021, 42, 90–93. [Google Scholar]
- Li, W.; Chen, S.; Zhao, J.; Sheng, T.; Li, X.; Jiang, Y.; Wu, S. Combined effect of carotid plaque and low ankle-brachial index increases the risk of ischemic cardiovascular and cerebrovascular events in the elderly. Chin. J. Cardiovasc. Dis. 2021, 49, 263–268. [Google Scholar]
- Bestall, J.C.; Paul, E.A.; Garrod, R.; Garnham, R.; Jones, P.W.; Wedzicha, J.A. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax 1999, 54, 581–586. [Google Scholar] [CrossRef]
- D’Agostino, R.B., Sr.; Vasan, R.S.; Pencina, M.J.; Wolf, P.A.; Cobain, M.; Massaro, J.M.; Kannel, W.B. General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation 2008, 117, 743–753. [Google Scholar] [CrossRef]
- Cooney, M.T.; Dudina, A.; De Bacquer, D.; Fitzgerald, A.; Conroy, R.; Sans, S.; Menotti, A.; De Backer, G.; Jousilahti, P.; Keil, U.; et al. How much does HDL cholesterol add to risk estimation? A report from the SCORE investigators. Eur. J. Prev. Cardiol. 2009, 16, 304–314. [Google Scholar]
- Marrugat, J.; Vila, J.; Baena-Díez, J.M.; Grau, M.; Sala, J.; Ramos, R.; Subirana, I.; Fitó, M.; Elosua, R. Relative Validity of the 10-Year Cardiovascular Risk Estimate in a Population Cohort of the REGICOR Study. Rev. Española De Cardiol. 2011, 64, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Calzetta, L.; Matera, M.G.; Muscoli, S.; Rogliani, P.; Romeo, F. Chronic obstructive pulmonary disease and coronary disease: COPDCoRi, a simple and effective algorithm for predicting the risk of coronary artery disease in COPD patients. Respir. Med. 2015, 109, 1019–1025. [Google Scholar]
- Roca, J.; Burgos, F.; Sunyer, J.; Saez, M.; Chinn, S.; Anto, J.; Rodriguez-Roisin, R.; Quanjer, P.; Nowak, D.; Burney, P. References values for forced spirometry. Group of the European Community Respiratory Health Survey. Eur. Respir. J. 1998, 11, 1354–1362. [Google Scholar]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.M.; Lee, J.; Lee, K.; Luo, Y.; Sin, D.D.; Wong, N.D. Relation Between COPD Severity and Global Cardiovascular Risk in US Adults. Chest 2012, 142, 1118–1125. [Google Scholar]
- Goto, T.; Shimada, Y.J.; Faridi, M.K.; Camargo, C.A.; Hasegawa, K. Incidence of acute cardiovascular event after acute exacerbation of COPD. J. Gen. Intern. Med. 2018, 12, 296–301. [Google Scholar]
- Ye, C.; Younus, A.; Malik, R.; Roberson, L.; Shaharyar, S.; Veledar, E.; Ahmad, R.; Ali, S.; Latif, M.; Maziak, W.; et al. Subclinical cardiovascular disease in patients with chronic obstructive pulmonary disease: A systematic review. Qjm Int. J. Med. 2016, 110, 341–349. [Google Scholar]
- Golpe, R.; Mateos-Colino, A.; Testa-Fernández, A.; Domínguez-Pin, N.; Gonzalez-Juanatey, C.; Martín-Vázquez, F.J. Subclinical Carotid Atherosclerosis in COPD Cases and Control Smokers: Analysis in Relation with COPD Exacerbations and Exacerbation-like Episodes. Lung 2017, 195, 185–191. [Google Scholar]
- Di Angelantonio, E.; Sarwar, N.; Perry, P.; Kaptoge, S.; Ray, K.K.; Thompson, A.; Wood, A.M.; Lewington, S.; Sattar, M.; Packard, C.J.; et al. Emerging Risk Factors, apolipoproteins, and risk of vascular disease. J. Am. Med. Assoc. 2009, 302, 1993–2000. [Google Scholar]
- Guo, L.; Xie, Z.; Liu, Y.; Li, C.; Li, W. Study on the risk factors of atherosclerosis in patients with chronic obstructive pulmonary disease. Chin. J. Respir. Crit. Care 2011, 10, 376–379. [Google Scholar]
Total n = 203 | Deteriorated Patients n = 82 | Non-Deteriorating Patients n = 121 | p | |
---|---|---|---|---|
Male % | 143 (73.8%) | 58 (76.0%) | 41 (71.9%) | 0.922 |
Age | 62.5 ± 6.18 | 62.1 ± 5.79 | 62.7 ± 6.23 | 0.901 |
Smoking % | 81 (31.8%) | 32 (32.0%) | 18 (31.6%) | 0.863 |
Blood oxygen saturation (ppm) | 5.03 ± 6.35 | 4.86 ± 5.73 | 5.29 ± 6.88 | 0.372 |
Dyspnea MRC score (points) | 1.72 ± 0.59 | 1.86 ± 0.56 | 1.68 ± 0.62 | 0.653 |
BMI (kg/m2) | 27.9 ± 4.84 | 28.3 ± 5.19 | 27.6 ± 4.76 | 0.812 |
SBP (mmHg) | 141.5 ± 19.8 | 137.6 ± 18.9 | 143.2 ± 20.4 | 0.794 |
DBP (mmHg) | 83.6 ± 11.7 | 81.8 ± 10.9 | 86.3 ± 12.2 | 0.037 |
Comorbidities (%) | ||||
Cardiovascular disease | 41 (20.2%) | 17 (20.7%) | 24 (19.8%) | 0.869 |
Atrial fibrillation | 19 (9.36%) | 10 (12.2%) | 9 (7.43%) | 0.157 |
Hypertension | 129 (63.5%) | 56(68.3%) | 70(57.9%) | 0.024 |
Diabetes | 34 (16.7%) | 19 (23.2%) | 15 (12.4%) | 0.017 |
Hyperlipidemia | 72 (35.5%) | 29 (35.4%) | 43 (35.5%) | 0.963 |
Renal insufficiency | 3 (1.48%) | 1 (1.22%) | 2 (1.65%) | 0.716 |
Metabolic syndrome | 76 (37.4) % | 31 (37.8%) | 45 (37.2%) | 0.928 |
Charlson Comorbidity Index | 1.62 ± 0.87 | 1.62 ± 0.94 | 1.63 ± 0.86 | 0.990 |
Treatment (%) | ||||
Statins | 72(35.5%) | 32(39.0%) | 40(33.1%) | 0.694 |
ACE inhibitor | 42 (20.7%) | 18(22.0%) | 24 (19.8%) | 0.753 |
ARA II inhibitors | 59(29.1%) | 25 (30.5%) | 34 (28.1%) | 0.726 |
Calcium channel blockers | 34(16.7%) | 15(18.3%) | 19 (15.7%) | 0.741 |
Beta blockers | 14 (6.90%) | 6(7.32%) | 8(6.61%) | 0.803 |
Diuretics | 76 (37.4%) | 34 (41.5%) | 42 (34.7%) | 0.425 |
LABA | 192 (94.6%) | 78 (95.1%) | 114 (94.2%) | 0.896 |
LAMA | 192(94.6%) | 79 (96.3%) | 113(93.4%) | 0.904 |
Inhaled steroids | 181 (89.2%) | 77 (93.9%) | 104(85.9%) | 0.041 |
Oral hypoglycemic drugs | 37 (18.2%) | 19 (23.2%) | 18(14.9%) | 0.039 |
FVC (mL) | 2298 ± 752 | 2074 ± 619 | 2375 ± 823 | 0.926 |
FVC (%) | 57.4 ± 12.1 | 54.9 ± 11.6 | 60.8 ± 13.7 | 0.027 |
FEV1 (mL) | 1218 ± 435 | 1179 ± 398 | 1264 ± 506 | 0.895 |
FEV1 (%) | 43.9 ± 14.1 | 41.8 ± 11.9 | 45.7 ± 15.7 | 0.713 |
GOLD II | 66 (32.5%) | 23 (28.0%) | 43 (35.5%) | 0.403 |
GOLD III | 89 (43.8%) | 40 (48.8%) | 49 (40.5%) | |
GOLD IV | 36 (17.7%) | 16 (19.5%) | 20(16.5%) | |
FEV1/FVC (%) | 52.1 ± 10.7 | 53.6 ± 10.4 | 50.8 ± 10.9 | 0.826 |
SMWT (m) | 414 ± 84.2 | 397.9 ± 94.3 | 429.4 ± 71.3 | 0.817 |
BODE Index | 3.07 ± 1.58 | 3.52 ± 1.81 | 2.69 ± 1.46 | 0.018 |
CV Risk Score | ||||
Framingham | 26.4 ± 16.8 | 26.8 ± 16.8 | 25.4 ± 15.4 | 0.419 |
SCORE | 7.83 ± 10.5 | 8.31 ± 12.4 | 7.52 ± 8.61 | 0.076 |
SCORE-HDL | 5.58 ± 6.04 | 6.13 ± 6.38 | 5.39 ± 5.72 | 0.108 |
Regicor | 6.23 ± 3.14 | 6.45 ± 3.37 | 6.01 ± 2.98 | 0.533 |
COPD CoRi | 53.2 ± 9.73 | 53.7 ± 9.26 | 52.9 ± 9.83 | 0.812 |
Total n = 203 | Deteriorated Patients n = 82 | Non-Deteriorating Patients n = 121 | p | |
---|---|---|---|---|
Glucose (mg/dL) | 104 ± 27.9 | 112 ± 34.1 | 96.2 ± 17.6 | 0.014 |
HbA1c (%) | 6.18 ± 0.9 | 6.29 ± 1.38 | 5.64 ± 0.73 | 0.038 |
Cholesterol (mg/dL) | 197 ± 36.1 | 197 ± 42.5 | 198 ± 34.7 | 0.925 |
HDL (mg/dL) | 57.4 ± 18.1 | 55.9 ± 17.7 | 58.8 ± 18.5 | 0.816 |
LDL (mg/dL) | 123.8 ± 81.3 | 133.2 ± 115.4 | 115.6 ± 26.9 | 0.731 |
Triglycerides (mg/dL) | 120.7 ± 62.5 | 121.2 ± 52.4 | 120.2 ± 70.7 | 0.928 |
Creatinine (mg/dL) | 0.94 ± 0.58 | 1.03 ± 0.81 | 0.86 ± 0.32 | 0.714 |
GFR (mL) | 83.5 ± 11.5 | 83.2 ± 11.6 | 83.8 ± 11.6 | 0.923 |
Uric acid (mg/dL) | 7.39 ± 13.3 | 6.28 ± 1.96 | 8.15 ± 10.2 | 0.134 |
Urea (mg/dL) | 38.0 ± 11.0 | 39.3 ± 12.5 | 36.8 ± 9.4 | 0.703 |
Bilirubin (mg/dL) | 0.63 ± 0.27 | 0.62 ± 0.21 | 0.63 ± 0.32 | 0.936 |
GGT (U/L) | 49.4 ± 82.6 | 51.0 ± 84.3 | 47.9 ± 81.9 | 0.618 |
AST (U/L) | 22.8 ± 8.91 | 21.5 ± 7.34 | 24.0 ± 10.2 | 0.799 |
ALT (U/L) | 23.3 ± 10.8 | 22.7 ± 11.5 | 23.9 ± 10.2 | 0.896 |
Protein (g/dL) | 7.18 ± 0.54 | 7.21 ± 0.52 | 7.16 ± 0.55 | 0.752 |
TSH (μUI/mL) | 2.63 ± 1.78 | 2.51 ± 1.82 | 2.72 ± 2.04 | 0.731 |
Immunoglobulin E (IU/mL) | 243 ± 501 | 209 ± 474 | 274 ± 529 | 0.895 |
Hemoglobin (g/dL) | 14.5 ± 1.51 | 14.1 ± 1.62 | 14.9 ± 1.43 | 0.007 |
Hematocrit (%) | 45.4 ± 4.66 | 44.3 ± 4.82 | 46.3 ± 4.24 | 0.020 |
Leukocyte (109/L) | 7.91 ± 2.34 | 8.66 ± 2.17 | 7.35 ± 2.11 | 0.036 |
Prothrombin time (%) | 100.6 ± 23.0 | 99.1 ± 24.4 | 102.0 ± 21.7 | 0.785 |
Fibrinogen (mg/dL) | 415 ± 103 | 439 ± 98.5 | 394 ± 106 | 0.017 |
IL-6 (pg/mL) | 5.63 ± 7.1 | 6.15 ± 7.04 | 5.03 ± 6.98 | 0.014 |
CRP (mg/L) | 6.82 ± 5.2 | 7.52 ± 5.71 | 6.02 ± 4.67 | 0.013 |
TNF-α (pg/mL) | 2.65 ± 0.8 | 2.64 ± 0.73 | 2.66 ± 0.92 | 0.879 |
Serum albumin (g/dL) | 4.57 ± 0.3 | 4.43 ± 0.37 | 4.51 ± 0.37 | 0.912 |
Alpha-1-antitrypsin (mg/dL) | 143 ± 28 | 144.1 ± 29.4 | 142.7 ± 26.9 | 0.962 |
Total n = 203 | Deteriorating Patients n = 82 | Non-Deteriorating Patients n = 121 | p | |
---|---|---|---|---|
Right common carotid artery IMT(mm) | 0.71 ± 0.13 | 0.72 ± 0.15 | 0.70 ± 0.12 | 0.935 |
Left common carotid artery IMT (mm) | 0.75 ± 0.15 | 0.76 ± 0.15 | 0.73 ± 0.15 | 0.928 |
Right common carotid artery IMT (mm) | 0.74 ± 0.13 | 0.76 ± 0.14 | 0.73 ± 0.12 | 0.906 |
Left common carotid artery IMT (mm) | 0.75 ± 0.15 | 0.78 ± 0.16 | 0.73 ± 0.14 | 0.037 |
Right common carotid artery IMT (mm) | 0.73 ± 0.14 | 0.73 ± 0.15 | 0.73 ± 0.14 | 0.993 |
Left common carotid artery IMT (mm) | 0.75 ± 0.15 | 0.76 ± 0.15 | 0.73 ± 0.15 | 0.912 |
Mean common carotid artery IMT (mm) | 0.73 ± 0.13 | 0.74 ± 0.14 | 0.71 ± 0.12 | 0.907 |
Mean common carotid artery ICA (mm) | 0.75 ± 0.13 | 0.77 ± 0.14 | 0.73 ± 0.12 | 0.825 |
Mean common carotid artery IMT (mm) | 0.74 ± 0.14 | 0.75 ± 0.14 | 0.73 ± 0.13 | 0.879 |
Plaque (%) | 32(15.8%) | 14(17.1%) | 18(14.8%) | 0.796 |
ABI | ||||
≤0.9 | 46(22.7%) | 21(25.6%) | 25(20.6%) | 0.298 |
0.9–1.3 | 129 (63.5%) | 53(64.6%) | 76(62.8%) | |
>1.3 | 28(13.8%) | 8(9.76%) | 20(16.5%) |
≤65 Years Old | >65 Years Old | |||||
---|---|---|---|---|---|---|
Deteriorating Patients | Non-Deteriorating Patients | p | Deteriorating Patients | Non-Deteriorating Patients | p | |
Left common carotid artery IMT (mm) | 0.77 ± 0.14 | 0.72 ± 0.16 | 0.794 | 0.75 ± 0.15 | 0.74 ± 0.13 | 0.926 |
Right common carotid artery IMT (mm) | 0.77 ± 0.12 | 0.71 ± 0.13 | 0.713 | 0.74 ± 0.17 | 0.74 ± 0.12 | 0.993 |
Left common carotid artery IMT (mm) | 0.80 ± 0.16 | 0.70 ± 0.17 | 0.027 | 0.76 ± 0.15 | 0.74 ± 0.11 | 0.895 |
Right common carotid artery IMT (mm) | 0.79 ± 0.15 | 0.71 ± 0.17 | 0.598 | 0.73 ± 0.15 | 0.75 ± 0.12 | 0.812 |
Mean internal carotid artery IMT (mm) | 0.78 ± 0.13 | 0.71 ± 0.14 | 0.039 | 0.75 ± 0.15 | 0.74 ± 0.10 | 0.963 |
Mean common carotid IMT (mm) | 0.77 ± 0.13 | 0.71 ± 0.13 | 0.041 | 0.74 ± 0.14 | 0.73 ± 0.10 | 0.928 |
Mean carotid bulb IMT (mm) | 0.77 ± 0.13 | 0.71 ± 0.13 | 0.672 | 0.73 ± 0.14 | 0.73 ± 0.11 | 0.981 |
OR (Odds Ratio 95% CI) | p | |
---|---|---|
Worsening phenotype | 2.89 (1.08–7.63) | 0.035 |
BODE | 0.88 (0.65–1.19) | 0.399 |
SCORE | 1.02 (0.97–1.06) | 0.349 |
Worsening phenotype | 2.84 (1.09–7.59) | 0.038 |
BODE | 0.89 (0.66–1.26) | 0.488 |
Framingham | 1.04 (0.93–1.09) | 0.140 |
Worsening phenotype | 2.83 (1.08–7.56) | 0.036 |
BODE | 0.88(0.64–1.18) | 0.406 |
SCORE-HDL | 1.03 (0.96–1.09) | 0.363 |
Worsening phenotype | 2.85 (1.07–7.53) | 0.035 |
BODE | 0.88 (0.65–1.17) | 0.390 |
REGICOR | 1.06 (0.91–1.21) | 0.375 |
Worsening phenotype | 3.11 (1.141–8.46) | 0.026 |
BODE | 0.84 (0.62–1.14) | 0.269 |
COPD CoRi | 1.04 (1.04–1.21) | 0.032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, X.; Chen, J.; Shao, L. Using Mathematical and Statistical Analysis to Investigate the Correlation between Exacerbation of Chronic Obstructive Pulmonary Disease and Risk of Subclinical Atherosclerosis. Diagnostics 2023, 13, 623. https://doi.org/10.3390/diagnostics13040623
Dai X, Chen J, Shao L. Using Mathematical and Statistical Analysis to Investigate the Correlation between Exacerbation of Chronic Obstructive Pulmonary Disease and Risk of Subclinical Atherosclerosis. Diagnostics. 2023; 13(4):623. https://doi.org/10.3390/diagnostics13040623
Chicago/Turabian StyleDai, Xiaochun, Jiahui Chen, and Lili Shao. 2023. "Using Mathematical and Statistical Analysis to Investigate the Correlation between Exacerbation of Chronic Obstructive Pulmonary Disease and Risk of Subclinical Atherosclerosis" Diagnostics 13, no. 4: 623. https://doi.org/10.3390/diagnostics13040623
APA StyleDai, X., Chen, J., & Shao, L. (2023). Using Mathematical and Statistical Analysis to Investigate the Correlation between Exacerbation of Chronic Obstructive Pulmonary Disease and Risk of Subclinical Atherosclerosis. Diagnostics, 13(4), 623. https://doi.org/10.3390/diagnostics13040623