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Abstract: This research aims to review and evaluate the most relevant scientific studies about deep
learning (DL) models in the omics field. It also aims to realize the potential of DL techniques
in omics data analysis fully by demonstrating this potential and identifying the key challenges
that must be addressed. Numerous elements are essential for comprehending numerous studies
by surveying the existing literature. For example, the clinical applications and datasets from the
literature are essential elements. The published literature highlights the difficulties encountered by
other researchers. In addition to looking for other studies, such as guidelines, comparative studies,
and review papers, a systematic approach is used to search all relevant publications on omics and DL
using different keyword variants. From 2018 to 2022, the search procedure was conducted on four
Internet search engines: IEEE Xplore, Web of Science, ScienceDirect, and PubMed. These indexes
were chosen because they offer enough coverage and linkages to numerous papers in the biological
field. A total of 65 articles were added to the final list. The inclusion and exclusion criteria were
specified. Of the 65 publications, 42 are clinical applications of DL in omics data. Furthermore,
16 out of 65 articles comprised the review publications based on single- and multi-omics data from the
proposed taxonomy. Finally, only a small number of articles (7/65) were included in papers focusing
on comparative analysis and guidelines. The use of DL in studying omics data presented several
obstacles related to DL itself, preprocessing procedures, datasets, model validation, and testbed
applications. Numerous relevant investigations were performed to address these issues. Unlike other
review papers, our study distinctly reflects different observations on omics with DL model areas.
We believe that the result of this study can be a useful guideline for practitioners who look for a
comprehensive view of the role of DL in omics data analysis.

Keywords: omics; deep learning; genomics; transcriptomics; metabolomics

1. Introduction

Omics refers to the branch of study in biological sciences that end with “-omics,”
such as genomics, transcriptomics, proteomics, or metabolomics. The suffix “-ome” refers
to the research subjects in domains such as the genome, proteome, transcriptome, or
metabolome. Omics studies mainly aim to identify, describe, and quantify all biological
molecules involved in the structure, function, and dynamics of a cell, tissue, or organism.

Multi-omics research flourishes in the areas of genomes, proteomics, transcriptomics,
microbiome, metabolomics, pathomics, and radiomics [1]. Researchers have paid close
attention to the connection between multi-omics data, medications, and illnesses. Moreover,
multi-omics may accurately predict the diagnosis, prognosis, and course of treatment for
illnesses. At various levels, a network may represent study entities, including genes, RNAs,
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proteins, microorganisms, metabolites, pathways, and pathological and medical imaging
data. Additionally, some computer science and biology researchers have attempted to
employ computational techniques to investigate potential connections between biological
elements [2]. Instead of single-omics data, multi-omics data can improve the performance
of these techniques because they obtain a vast landscape for understanding biological
systems and mechanisms. However, heterogeneous data from multiple sources result
in high complexity and different kinds of noise, which are detrimental to information
extraction [3].

For instance, the median overall survival for tumor patients receiving the current med-
ical standard of care is three years [4]. This outcome is due to the high level of heterogeneity
in any form of tumor and the complicated biological molecular markers. Therefore, the
community urgently needs the development of computational techniques for identifying
novel treatment targets. Numerous attempts have been made to determine the molecular
subtypes of gliomas and understand the heterogeneity across tumor types [4]. Numerous
new molecular subtypes have been discovered based on several data sources, including
histology, gene expression patterns, and driver genes [5–8]. However, applying the existing
subtypes to clinical practice is challenging because the survival prognosis in the study of
molecular subtypes is barely considered and has poor performance. The consideration
of survival time is crucial in classifying tumor patients into useful subcategories with
varying prognoses. Additionally, identifying community-wide high-risk tumor subtypes
as appropriate treatment targets remains difficult. Consequently, an urgent need arises
for computational methods to categorize patients accurately into subgroups linked with
survival and identify prospective treatment targets.

Many computational methods have been developed with the rapid development
of computer technology. Many research methods on intermolecular associations of hu-
mans related to different diseases, such as heart disease [9], Parkinson’s disease [10],
hearing loss [11], and COVID-19 [12–14], were developed. Big data and artificial intelli-
gence technologies are expected to drive the rapid development and modernization of
traditional Chinese medicine [15]. Machine learning (particularly deep learning [DL]) tech-
nologies play an active role in computational biology; they also gain remarkable success
in biological fields with the advancement of artificial intelligence and high-performance
computing [16–19]. For instance, DL has been used in identifying genetic variations, DNA
methylation, and image analysis, thereby leading to remarkable advancements in these
areas [4]. DL is a promising subject when used with data from various omics. However,
the following factors often result in limitations of current techniques. The majority of multi-
omics approaches concentrate on two to three data kinds with a narrow scope for a specific
sample or patient because of the growing number of accessible data types. Unsupervised
learning has poor interpretability in anticipated outcomes or classifier labels [4].

On the basis of the above concepts, we introduced a comprehensive study covering all
aspects of omics data that comprise the DL approaches. All research articles were scanned
from two perspectives: technical and medical perceptions. The healthcare research field
has enormous potential and problems because of the widespread availability of complex
and unstructured omics data. Thus, the literature on omics data must be investigated
thoroughly. The review paper’s contributions and uniqueness are as follows:

• The development studies are highlighted to improve the medical processes based on
DL models.

• Notable achievements by other researchers in response to omics needs are summarized.
• The real benefits of using DL models in omics data analysis are emphasized.
• The current challenges in DL models when used with omics data are clarified.
• Using DL, we provide a taxonomy that organizes the corpus of already-published

materials and specifies several omics research trajectories. We believe that the findings
are useful to other researchers.
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• The challenges associated with using omics data in DL-based clinical applications,
such as the high dimensionality and sparsity of omics data, the lack of labeled data,
and the need for robust evaluation methods, are identified.

• The importance of interpretability, generalizability, and robustness in DL models
applied in the omics field is highlighted.

• The ongoing research on using DL algorithms for omics data analysis and the integra-
tion of multi-omics data to improve disease outcome prediction are analyzed.

This paper is organized into different sections. Section 2 introduces the details of
the systematic review procedure. Section 3 provides the results of the adopted systematic
review protocol. Section 4 focuses on the existing datasets used for omics data analy-
sis. Section 5 highlights the challenges linked to omics studies when DL approaches are
used. Section 6 concludes the contributions of the present study and maps the addressed
challenges with achieved outcomes.

2. Systematic Review Protocol
2.1. Information Sources

We selected four of the most popular online search engine databases for a systematic
search: Web of Science (WOS), ScienceDirect (SD), PubMed, and IEEE Xplore Digital Library.
The selection was made by following an index that simplifies the formulation of complex
search queries and keeps track of numerous scientific journals and conference papers in
computer science, biology, medicine, biomedical engineering, and biomedical computing.
We aimed to include as much material as feasible and as many articles on Omics data and
DL as possible in the selection. We also aimed to provide a holistic view of researchers’
achievements in a wide but pertinent variety of disciplines.

2.2. Study Selection

The research selection method required a thorough two-step search of linked literature.
Reading the titles and abstracts enabled the initial removal of duplicated and irrelevant
items. Second, full-text reading was used to filter the articles scanned in the preceding
stage. The same procedures were used for both levels. Figure 1 shows the study selection
protocol used in the present work.

2.3. Searching Settings

The article search procedure was conducted on 18 April 2022. The search query was
entered into the search boxes of the IEEE, WOS, PubMed, and SD databases. The searches
were conducted in all of the aforementioned databases using terminology-related keywords
(“Omics”). Afterward, these keywords were paired with the keywords “Deep Learning” or
“Reinforcement Learning” using the “AND” operator, as shown in Figure 1. All authors
agreed that the selected query and search engines were suitable for the search process. The
most relevant articles were obtained during this process. Each search engine’s advanced
search settings were used to limit the search to relevant journals and conference papers and
exclude book chapters and other sorts of publications, such as white papers and workshops.
We also looked at papers that were clearly based on the most recent and appropriate
scientific research relevant to DL in omics data analyses.

2.4. Eligibility Criteria

All articles that match the criteria shown in Figure 1 were included. We set the primary
goal as mapping the compass of research on omics into a wide-range and coarse-grained
taxonomy of three groups. After a thorough preview of the available literature, the groups
were chosen without limitation. We eliminated the articles that did not meet the qualifying
requirements to remove duplicate articles. The following points comprised the exclusion
criteria: (1) The article is not in English. (2) Omics and DL are briefly discussed. Figure 2
shows the proposed taxonomy.



Diagnostics 2023, 13, 664 4 of 30

Diagnostics 2023, 13, x FOR PEER REVIEW 4 of 33 
 

 

 
Figure 1. Study selection protocol. 

2.3. Searching Settings 
The article search procedure was conducted on 18 April 2022. The search query was 

entered into the search boxes of the IEEE, WOS, PubMed, and SD databases. The searches 
were conducted in all of the aforementioned databases using terminology-related key-
words (“Omics”). Afterward, these keywords were paired with the keywords “Deep 
Learning” or “Reinforcement Learning” using the “AND” operator, as shown in Figure 1. 
All authors agreed that the selected query and search engines were suitable for the search 
process. The most relevant articles were obtained during this process. Each search en-
gine’s advanced search settings were used to limit the search to relevant journals and con-
ference papers and exclude book chapters and other sorts of publications, such as white 
papers and workshops. We also looked at papers that were clearly based on the most re-
cent and appropriate scientific research relevant to DL in omics data analyses. 

2.4. Eligibility Criteria 
All articles that match the criteria shown in Figure 1 were included. We set the pri-

mary goal as mapping the compass of research on omics into a wide-range and coarse-
grained taxonomy of three groups. After a thorough preview of the available literature, 

Figure 1. Study selection protocol.



Diagnostics 2023, 13, 664 5 of 30

Diagnostics 2023, 13, x FOR PEER REVIEW 5 of 33 
 

 

the groups were chosen without limitation. We eliminated the articles that did not meet 
the qualifying requirements to remove duplicate articles. The following points comprised 
the exclusion criteria: (1) The article is not in English. (2) Omics and DL are briefly dis-
cussed. Figure 2 shows the proposed taxonomy. 

 
Figure 2. Proposed taxonomy. 

3. Results 
The details of the first run of the search query filtering 325 articles are as follows: 29 

articles from the IEEE Xplore search engine, 142 articles from SD, 104 articles from Pub-
Med, and 50 articles from WOS over a period of five years (2018–2022). The number of 
duplicate articles was 22. A total of 130 articles were left after 173 were excluded for being 
unrelated via title and abstract scanning. After the review of all the manuscripts, 66 arti-
cles were eliminated. The final group of articles eventually included 64 articles. These 
publications were carefully read to obtain a general research overview of this new field. 
However, several studies concentrated on the same topic. The articles were sorted into 
groups according to the study goals and used in the taxonomy procedure. Figure 2 shows 
a potential taxonomy for evaluating studies applying DL in omics. The acquired taxon-
omy may be broken down into three distinct article categories. First, only 35 of the 64 
publications focused on the research on DL as a clinical application in the omics field. 
These publications include studies on disease subtyping, biomarker discovery, pathway 
analysis, and omics data prioritization. Second, 22 studies conducted a review and survey. 
They reviewed two aspects: single omics and multi-omics. Third, seven articles focused 
on other aspects of omics data, such as comparative analysis and guideline studies. We 
identified the general types of articles via summaries. Then, we changed the categoriza-
tion into a literature taxonomy, as shown in Figure 2. We also illustrated numerous dis-
tinct subcategories of the primary classes in this diagram without any overlap. The fol-
lowing sections describe the recognized categories and condensed data related to them. 

As illustrated in Figure 2, we rebuilt the categorization into a literary taxonomy indi-
cating the broad types of articles through outlines. Multiple nonoverlapping subclasses of 

Figure 2. Proposed taxonomy.

3. Results

The details of the first run of the search query filtering 325 articles are as follows:
29 articles from the IEEE Xplore search engine, 142 articles from SD, 104 articles from
PubMed, and 50 articles from WOS over a period of five years (2018–2022). The number
of duplicate articles was 22. A total of 130 articles were left after 173 were excluded for
being unrelated via title and abstract scanning. After the review of all the manuscripts,
66 articles were eliminated. The final group of articles eventually included 64 articles.
These publications were carefully read to obtain a general research overview of this new
field. However, several studies concentrated on the same topic. The articles were sorted
into groups according to the study goals and used in the taxonomy procedure. Figure 2
shows a potential taxonomy for evaluating studies applying DL in omics. The acquired
taxonomy may be broken down into three distinct article categories. First, only 35 of the
64 publications focused on the research on DL as a clinical application in the omics field.
These publications include studies on disease subtyping, biomarker discovery, pathway
analysis, and omics data prioritization. Second, 22 studies conducted a review and survey.
They reviewed two aspects: single omics and multi-omics. Third, seven articles focused
on other aspects of omics data, such as comparative analysis and guideline studies. We
identified the general types of articles via summaries. Then, we changed the categorization
into a literature taxonomy, as shown in Figure 2. We also illustrated numerous distinct
subcategories of the primary classes in this diagram without any overlap. The following
sections describe the recognized categories and condensed data related to them.

As illustrated in Figure 2, we rebuilt the categorization into a literary taxonomy
indicating the broad types of articles through outlines. Multiple nonoverlapping subclasses
of the primary classes are also depicted below. The sections that follow detail various
perceptions and provide concise data for support.

3.1. Clinical Application Studies

Clinical application (development) papers (35/64) focused on enhancing the process
of diagnosis, prognostication, therapy, and knowledge discovery. They comprised the
majority of research works on omics data using DL. We categorized development articles
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according to the case study information offered in the literature, particularly in the parts of
datasets and findings.

In general, precision medicine seeks to replace generic treatments for a large popula-
tion with customized, targeted medications and treatment plans based on each patient’s
molecular profile [20]. Alternatively, it seeks to develop preventative medicine plans using
disease susceptibility assessment [21]. Omics data are crucial to this shift because they
allow for the simultaneous analysis of illnesses at several levels (such as the DNA sequence,
gene expression, and medical imaging). Moreover, the specific elements of the affected
complex biological activities can be identified. Several ML-based technologies have been
used in this new context to apply medicine [22].

3.1.1. Disease Subtyping

Disease subtyping is relevant to studies aimed at finding groups of patients who exhibit
different therapeutic/prognostic outcomes [23]. Moreover, disease subtyping concerns
diseases comprising multiple subtypes implicated in prognosis [24]. Disease subtyping is
vital for diagnosis and individualized patient therapy [25]. In particular, 5 out of 35 articles
on the disease subtyping based on DL models were found, as shown in Table 1.

Computational multi-omics approaches are based on DL techniques; they typically
aim to classify patients according to disease subtypes [26]. These methods are usually
exploited to detect regularities and patterns revealing different disease molecular subtypes
or disease classifications that share a common pattern of pathway perturbation [27]. The
most common disease is cancer; it is divided into several categories according to various
criteria, such as phenotype, molecular portraits, and histopathology [28]. Several works
in this direction have been proposed using direct DL classification models or clustering
methods. Cancer is the most common disease that requires solution subtyping. According
to the authors in [26], next-generation sequencing (NGS) methods accelerate human genome
mapping. Sophisticated NGS methods indicate that several genetic molecules are involved
in developing breast cancer and its subtypes. Consequently, a DL model based on a
stacked autoencoder (SAE) is needed to diagnose different forms of breast cancer accurately.
In the present study, the authors used multi-omics data, such as miRNA, mRNA, and
DNA methylation, which are pivotal in breast cancer subtype classification. They also
play a crucial role in breast cancer formation. Moreover, the authors concluded that SAE
could reduce the dimension of high-dimensional multi-omics data. In [29], the authors
highlighted that most of the existing methods for breast cancer subtyping used only gene
expression to identify cancer subtypes; another major issue is that most of the existing
clustering methods completely ignore the results from prior knowledge. Thus, the authors
designed a new DL fusion clustering framework to integrate multi-omics data (mRNA
expression, miRNA expression, and DNA methylation) with The Cancer Genome Atlas
(TCGA) BRAC dataset for breast cancer subtype identification.

Table 1 shows that subtyping can be done via a classification task, clustering process,
or both. The most frequent DL model for such a process is the autoencoder (AE) model and
its improved versions. However, the data type most frequently used for classification or
clustering type is miRNA and mRNA. However, data subtyping is used mainly for cancer
disease subtyping, particularly breast cancer.

Table 1. Disease subtyping articles.

Ref. DL Task DL Name Omics Data Disease Type Statistical
Test Method Outcomes Implementation

Source

[26]

Classification and
reduction of
high-dimensional
multi-omics data

SAE miRNA, mRNA, and
DNA methylation Breast cancer

Bonferroni
corrected the
p-values of
the t-test

Accuracy = 92%

http://www.nitttrkol.
ac.in/indrajit/
projects/integrated-
analysis-breastcancer-
subtypes/ (accessed
on 23 December 2022)

[29] Clustering and
classification SAE and AE

mRNA expression,
miRNA expression,
and DNA methylation

Breast cancer p-value and
t-test

Silhouette score
= 0.664 -

http://www.nitttrkol.ac.in/indrajit/projects/integrated-analysis-breastcancer-subtypes/
http://www.nitttrkol.ac.in/indrajit/projects/integrated-analysis-breastcancer-subtypes/
http://www.nitttrkol.ac.in/indrajit/projects/integrated-analysis-breastcancer-subtypes/
http://www.nitttrkol.ac.in/indrajit/projects/integrated-analysis-breastcancer-subtypes/
http://www.nitttrkol.ac.in/indrajit/projects/integrated-analysis-breastcancer-subtypes/
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Table 1. Cont.

Ref. DL Task DL Name Omics Data Disease Type Statistical
Test Method Outcomes Implementation

Source

[24] Data classification
Variational AEs
(VAEs) and
feedforward neural
networks

RNA-seq gene
expression (denoted as
RNA below),
miRNA expression,
and somatic copy
number alteration
(CNA) data

Breast cancer p-value and
t-test

Accuracy
reaching 94%

https://github.com/
DEIB-GECO/brca_
subtyping (accessed
on 23 December 2022)

[30] Data clustering
and classification

Principal
component analysis
(PCA), MFA, and
disjointed deep AE

miRNA
expression, mRNA
expression, and
reverse-phase protein
array expression

Breast cancer and
neuroblastoma (NB) - - -

[31] Data classification
Graph
Convolutional
Network (GCN)

Gene–gene interaction
(GGI) networks,
protein–protein
interaction (PPI)
networks, or gene
co-expression
networks

Cancer -

84% each for
accuracy,
precision, recall,
and F-score

https://github.com/
NabaviLab/GCN-on-
Molecular-Subtype
(accessed on 23
December 2022)

3.1.2. Biomarker Discovery

Biomarker discovery involves studies that detect omics characteristics that indicate a
disease state [23]. Biomarkers, sometimes referred to as biological markers or biomarkers,
are measurable and evaluable indicators of specific biological states in healthy and patho-
logical processes and potential pharmacologic reactions to therapeutics [32]. As one of the
most prevalent categories, molecular biomarkers are extensively researched across many
disciplines. Examples include important genes, RNAs, proteins, and metabolite molecules
from tissues, blood, and other bodily fluids [33].

The discovery of novel biomarkers for early illness diagnosis, therapy response, and
categorization is one of the most popular uses of omics technology in biomedical research.
TCGA [34] and other publicly available omics datasets focusing on cancer allow the identi-
fication of novel biomarkers via DL [22].

Molecular biomarkers are found by analyzing the information supplied by various
omics [35]. For instance, a precise and quantitative risk assessment for cardiovascular
disease is provided by a high-sensitivity C-reactive protein test [36]. The planning of
preventative actions and patient decisions is mainly influenced by biomarkers, which may
be categorized as either diagnostic, prognostic, or predictive [37]. Prognostic biomarkers
offer information on the overall prognosis with or without the standard course of therapy.
In comparison, diagnostic biomarkers are used to determine the presence of illness in a
patient. Before the onset of their physiological symptoms, biomarkers may help identify
high-risk patients. They also help determine how a condition progresses [38,39]. In the
present study, we considered that prognostic, predictive, survival analysis, and disease
recurrence have the same meaning.

Drug discovery/repurposing research aims to find new medications or potent ones
that are already on the market and created for other ailments [23]. The traditional drug
discovery approach is dominated by target-based high-throughput screening. For decades,
it has been the focus of computer-aided drug discovery, including the recent DL appli-
cations [40]. Precision medicine depends critically on the accuracy of prediction models
that forecast the response of medications to treatment based on the molecular profiles of
patients. Prediction models provide options for choosing acceptable individuals for clinical
trials; they also assist physicians in choosing the most successful therapy option [41]. The
objective of biomarker discovery research was emphasized in our study based on many
factors, including data type, illness type, analytic techniques, and the presence of medical
validation. The final number of articles in the indicated category is 22 out of 35, as shown
in Table 2.

https://github.com/DEIB-GECO/brca_subtyping
https://github.com/DEIB-GECO/brca_subtyping
https://github.com/DEIB-GECO/brca_subtyping
https://github.com/NabaviLab/GCN-on-Molecular-Subtype
https://github.com/NabaviLab/GCN-on-Molecular-Subtype
https://github.com/NabaviLab/GCN-on-Molecular-Subtype
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Table 2. Biomarker discovery articles.
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[42] Prognostic GCN mRNA, copy number
variation (CNV), and DN -

Bladder urothelial carcinoma(BLCA),
breast invasive carcinoma (BRCA),
head and neck squamous
cell carcinoma
(HNSC), lower-grade gliomas (LGG),
liver hepatocellular carcinoma
(LIHC), lung adenocarcinoma
(LUAD), lung squamous cell
carcinoma(LUSC), ovarian serous
cystadenocarcinoma(OV),
sarcoma(SARC), skin cutaneous
melanoma( SKCM), and stomach
adenocarcinoma (STAD)

p-value and t-test C-index = 0.652 - No

[43] Prognostic Generative
adversarial networks

Gene expression (mRNA),
CNV, single nucleotide
polymorphism, and DNA
methylation

https:
//github.com/compgenome3
65/TCGA-Assembler-2
(accessed on
23 December 2022)

BRCA, acute myeloid
leukemia(LAML), LIHC, LUAD,
pancreatic adenocarcinoma(PAAD),
STAD, and LGG of the brain

-

Compared with the Area
Under The Curve (AUC) for
the best-performing existing
methods for seven cancer
Types, the AUC for this
method was improved by 4%.

- No

[44] Diagnostic Graph attention
network

mRNA, TF, and miRNA
expression data - Breast cancer -

ACC = 79%,
macro-F1 = 78%, and
micro-F1 = 81%

- No

[45] Prognostic DeePROG
Gene expression profile,
underlying DNA sequence,
and 3D protein structures

-
Chronic lymphocytic leukemia(CLL),
interstitial lung disease(ILD),
and prostate

Welch’s t-test
F-score = 94.31,
precision = 94.35,
and recall = 94.35

https://github.com/duttaprat/
DeePROG (accessed on 23
December 2022)

No

[46] Prognostic CapsNetMMD

mRNA expression,
z scores for
mRNA expression, DNA
methylation, and two
forms of DNA CNAs

- Breast cancer p-value and t-test

Specificity = 95,
sensitivity = 75.8,
precision = 85, recall = 89,
AUC = 94.6

https://github.com/ustcpc/
CapsNetMMD (accessed on 23
December 2022)

No

[47] Drug discovery Reinforcement
Learning

DNA CNV, DNA
methylation,
point mutations, transcript
expression, RNA
sequencing,
and protein abundance

- Cancer therapy F-score = 79, precision = 79,
recall = 80, AUC = 98

https://github.com/salma2018/
Q-Rank (accessed on 23
December 2022)

No

[48] Diagnostic VGG Image (gene)
Random
projection [30] and PCA
[31]

Liver cirrhosis (CIR), colorectal
cancer
(COL), obesity (OBE), inflammatory
bowel disease (IBD)
and type 2 diabetes(T2D) [26]

p-value and t-test - - No

https://github.com/compgenome365/TCGA-Assembler-2
https://github.com/compgenome365/TCGA-Assembler-2
https://github.com/compgenome365/TCGA-Assembler-2
https://github.com/duttaprat/DeePROG
https://github.com/duttaprat/DeePROG
https://github.com/ustcpc/CapsNetMMD
https://github.com/ustcpc/CapsNetMMD
https://github.com/salma2018/Q-Rank
https://github.com/salma2018/Q-Rank
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Table 2. Cont.
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[49] Diagnostic
Customized
convolutional neural
network (CNN)

Gene
expression profiles and
binary PPI network

- Lung Cancer -
Specificity = 0.74, Precision =
0.78, Recall = 88, accuracy =
81

https://sites.google.com/site/
nacherlab/analysis (accessed on
23 December 2022)

No

[50] Prognostic Graph neural
networks (GNNs) scRNA Annoy’s method COVID-19 - Accuracy = 95.12%

https:
//github.com/nealgravindra/
self-supervsed_edge_feats
(accessed on 23 December 2022)

No

[40] Drug discovery GCN and multi-head
attention mechanism

Gene expression profiles,
PPIs, and information
about drugs and their
targets

Data augmentation COVID-19
p-value, t-test,
and Pearson
correlation

-

https://github.com/pth1993/
DeepCE (accessed on 23
December 2022)
https://zenodo.org/record/39
78774#.Yqbp7qhBxPY (accessed
on 23 December 2022)

No

[49] Diagnostic
Customized
convolutional neural
network (CNN)

Gene
expression profiles and
binary PPI network

- Lung Cancer -
Specificity = 0.74,
Precision = 0.78, Recall = 88,
accuracy = 81

https://sites.google.com/site/
nacherlab/analysis (accessed on
23 December 2022)

No

[51] Diagnostic Deep neural
network (DNN)

Gene expression and DNA
methylation profiles

Approaches based on the
differentially expressed gene
(DEG) and differentially
methylated position (DMP)

Alzheimer’s disease p-value and t-test Accuracy = 83%

https:
//github.com/ChihyunPark/
DNN_for_Adprediction
(accessed on 23 December 2022)

No

[52] Prognostic ForgeNet model
Gene expression and
miRNA and metabolomics
dataset

- Breast cancer p-value and t-test AUC = 74%
https://github.com/
yunchuankong/forgeNet
(accessed on 23 December 2022)

No

[53] Diagnostic
Stacked Sparse
Compressed
Auto-Encoder

mRNA expression - Ovarian cancer and breast cancer - AUC = 98% - No

[54] Diagnostic GCNs
mutations, DNA
methylation and gene
expression data

HotNet2 [5] and ComBat [17] Cancer - AUPRC = 83% and
AUC = 88%

https://github.com/
marcoancona/DeepExplain
(accessed on 23 December 2022)

No

[55] Diagnostic Multimodal DBN PPI and GGI Goh et al. (2007); from the
website of OMIM Different types of diseases - AUC = 96%

https://github.com/luoping100
4/dgMDL (accessed on 23
December 2022)

No

[56] Diagnostic Graph Neural
Network (GNN)

Gene expression and
RNA-Seq - Cancer - Accuracy = 95%, - Yes

[57] Prognostic AE mRNA, miRNA, DNA
methylation and CNVs

Lumi package in R and
Gistic2.0 LUAD p-value and t-test

C-index = 0.65, Log-rank
p-value = 4.08 × 10−9 - Yes

https://sites.google.com/site/nacherlab/analysis
https://sites.google.com/site/nacherlab/analysis
https://github.com/nealgravindra/self-supervsed_edge_feats
https://github.com/nealgravindra/self-supervsed_edge_feats
https://github.com/nealgravindra/self-supervsed_edge_feats
https://github.com/pth1993/DeepCE
https://github.com/pth1993/DeepCE
https://zenodo.org/record/3978774#.Yqbp7qhBxPY
https://zenodo.org/record/3978774#.Yqbp7qhBxPY
https://sites.google.com/site/nacherlab/analysis
https://sites.google.com/site/nacherlab/analysis
https://github.com/ChihyunPark/DNN_for_Adprediction
https://github.com/ChihyunPark/DNN_for_Adprediction
https://github.com/ChihyunPark/DNN_for_Adprediction
https://github.com/yunchuankong/forgeNet
https://github.com/yunchuankong/forgeNet
https://github.com/marcoancona/DeepExplain
https://github.com/marcoancona/DeepExplain
https://github.com/luoping1004/dgMDL
https://github.com/luoping1004/dgMDL
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[58] Prognostic Graph
neural networks

scATAC-seq data and
scRNA-seq data - Cancer - Accuracy = 87%, balanced

accuracy(BACC) = 95%

http://deeptfni.sysomics.com/,
https://github.com/sunyolo/
DeepTFni (accessed on 23
December 2022)

No

[59] Prognostic Deep belief networks Gene, junction, isoform,
miRNA, and methylation

mRMR (Peng et al., 2005) for
the reduction of the
dimensionality of input
modalities; the
uninformative features
are removed

Kidney renal clear cell carcinoma
(KIRC), HNSC diseases, and NB
pediatric cancer

p-value and t-test - - No

[60] Prognostic

Transfer
learning-based Cox
proportional hazards
network

R package
“limma” and R package
“imputeMissings”

RNA-seq, miRNA-seq, DNA
methylation, and CNV data Bladder cancer p-value and t-test C-index = 0.665

https:
//github.com/Hua0113/TCAP
(accessed on 23 December 2022)

No

[61] Prognostic Denoising based on
AE (DAE) R package “limma” [22] mRNA, miRNA, DNA

methylation, and CNV 15 cancers from TCGA p-value and t-test C-index = 0.627
https:
//github.com/Hua0113/DCAP
(accessed on 23 December 2022)

No

[62] Prognostic Multimodal
DNN mRMR [11]

Age at diagnosis, size,
histological type,
inferred menopausal
status, positive lymph nodes,
stage, mutation status,
400 features
for gene expression,
and 200 features

Breast cancer - Precision = 83%, Recall = 83%,
accuracy = 83% - -

http://deeptfni.sysomics.com/
https://github.com/sunyolo/DeepTFni
https://github.com/sunyolo/DeepTFni
https://github.com/Hua0113/TCAP
https://github.com/Hua0113/TCAP
https://github.com/Hua0113/DCAP
https://github.com/Hua0113/DCAP
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According to the above table, most biomarker discovery studies were conducted for
prognostic purposes. Moreover, many studies on diagnostics of different case studies
exist. However, studies on solving the issues with patients’ treatments are few. A GNN
model is often used for biomarker identification because GCNs use a different methodology
by attempting to categorize network nodes based on node characteristics and network
design. Similar to CNNs, GCNs gather information from adjacent nodes in a hierarchical
manner; they may also function in a semi-supervised setting when labeled nodes are in
short supply [63].

Given the data issues, a statistical test based on p-value and t-test has been widely
used to measure the validity of used data and obtained results. Finally, we observed that
few studies validated the results from a medical viewpoint. This observation may direct us
to a question: how meaningful are these results for the medical sector?

3.1.3. Pathway Analysis

Pathways analysis or knowledge discovery is essential in studies aimed at discovering
the relation among -omics terms, such as genes or proteins, and measuring the influences
of these terms on DL performance. Thus, this category looks for relationships of used
omics data rather than outcomes of DL models for diagnostic or prognostic purposes. In
particular, only 5 out of 35 studies were found to belong to the pathway analysis category,
as shown in Table 3.

Table 3. Pathway analysis articles.

Ref. DL Name Omics Data Data Preprocessing
Tools

Statistical Test
Method Outcomes Implementation

Source
Medical
Validation

[64]

Deep
multi-network
embedding
(DeepMNE) model

Long noncoding
RNA (lncRNA) - - F-score = 87%,

AUC = 94%

https://github.com/
Mayingjun20179
/DeepMNE (accessed
on 23 December 2022)

No

[65]

Squeeze-and-
excitation residual
network and
bidirectional gated
recurrent unit

DNA sequences - p-value and
t-test

AUC = 75%,
accuracy = 67%

https:
//pubmed.ncbi.nlm.
nih.gov/31161194/
(accessed on 23
December 2022)

No

[66] U-Net and
AE networks

CT scans and
gene expression - -

Mean average
error = 4.112 × 10−6,
Mean square
error = 4.318 × 10−6

- Yes

[67] Customized CNN Gene expression
and PPI

t-Distributed
stochastic neighbor
embedding
algorithm and spatial
vector representation,
named
ProtVec [68]

p-value and
t-test

Precision = 74%,
recall = 56%,
accuracy = 70%

http:
//www.smartprotein.
cloud/public/home
(accessed on 23
December 2022)

Yes

[69]
Deep Boltzmann
machines and
VAEs

RNA-Seq data Bernoulli distribution
and DESeq

Cramer’s
statistic and
G-test of the
goodness of fit

-

https://github.com/
ssehztirom/
Exploring-generative-
deep-learning-for-
omics-data-by-using-
log-linear-models
(accessed on 23
December 2022)

No

According to the above table, most data used for omics analysis are usually text or
numeric. However, image data, such as CT images, can also be used for this purpose.
In [66], the authors used CT images to map the features between medical images and gene
expression profiles and quantify their correlations. For improvement, different studies took
full advantage of DL methods and characterized lung cancer clinically at both genome
and image levels. However, medical validation can be directly from doctors or based on
a validation method that applies only to the medical field. Adding clinical information,
such as gender, age, stage, and smoking history, can also be used to validate the results of
DL from a medical point of view. However, only a few studies conducted medical tests to
show how vital the obtained results were for the medical sector.

https://github.com/Mayingjun20179/DeepMNE
https://github.com/Mayingjun20179/DeepMNE
https://github.com/Mayingjun20179/DeepMNE
https://pubmed.ncbi.nlm.nih.gov/31161194/
https://pubmed.ncbi.nlm.nih.gov/31161194/
https://pubmed.ncbi.nlm.nih.gov/31161194/
http://www.smartprotein.cloud/public/home
http://www.smartprotein.cloud/public/home
http://www.smartprotein.cloud/public/home
https://github.com/ssehztirom/Exploring-generative-deep-learning-for-omics-data-by-using-log-linear-models
https://github.com/ssehztirom/Exploring-generative-deep-learning-for-omics-data-by-using-log-linear-models
https://github.com/ssehztirom/Exploring-generative-deep-learning-for-omics-data-by-using-log-linear-models
https://github.com/ssehztirom/Exploring-generative-deep-learning-for-omics-data-by-using-log-linear-models
https://github.com/ssehztirom/Exploring-generative-deep-learning-for-omics-data-by-using-log-linear-models
https://github.com/ssehztirom/Exploring-generative-deep-learning-for-omics-data-by-using-log-linear-models


Diagnostics 2023, 13, 664 12 of 30

3.1.4. Omics Data Prioritization

The enormous amount of omics data offers a previously unheard-of potential for
computational algorithms to prioritize illness candidates, thereby illuminating the course
of human diseases and considerably facilitating cancer prevention, detection, and therapy.
Thus, we discuss this trend in this section even though it demands some work. The three
methods of prioritization are as follows: prevention, diagnosis, and treatment prioritization
or gen prioritization.

The authors of [70] introduced a computational technique called MRSLA to find
disease-associated miRNAs. The disease miRNA prioritization task was designed as a
recommender system suggesting the miRNAs that tend to be responsible for a given disease
based on a low-rank approximation framework. This robust AI algorithm can successfully
incorporate multimodal features into the prediction model and produce a high-performing
result [70]. In the same way, [71] utilized DL approaches for prioritizing complex disease
loci by investigating the landscape of ML applications in three parts: selected models, input
features, and output model performance.

On the contrary, the data analysis from several omics has indicated potential genes for
measurable features. However, these data are not integrated well, particularly in nonmodel
species. Thus, choosing candidate genes for further experimental confirmation becomes
difficult. The authors of [72] utilized the DL method (CNN) that integrates multi-omics
information to prioritize the candidate genes of objective traits.

3.2. Review Studies
3.2.1. Single Omics

In this subsection, our study has focused on review papers that considered only a
single type of common omics data. Mainly four types of omics directions have been
investigated as follows:

Genomics

The study of the structure, function, evolution, and mapping of genomes is known
as genomics. Its goal is to characterize and quantify the genes that control the creation of
proteins with the help of enzymes and messenger molecules. Genomics uses techniques
to analyze the DNA sequences for studying the structure and function of genomes, gene
regulation, and genetic alterations that can be associated with several diseases [22].

We found further in the literature that several works have investigated this topic.
In [40], the authors presented a mechanism-driven neural network-based approach, called
DeepCE, for predicting the differential gene expression profile perturbed by de novo
chemicals. DeepCE uses a GNN and multi-head attention mechanism to model chemical
substructure–gene and gene–gene associations. Additionally, the authors suggested a
unique data augmentation method that uses faulty trials in the L1000 dataset to extract
relevant information. Extensive work was introduced in [73]. First, that work defined
the objectives of learning perturbation response in single-cell omics (genomics). It also
surveyed the existing approaches, resources, and cited datasets in GitHub and discussed
how a perturbation atlas could enable DL models to construct an informative perturbation
latent space. In the same work, the authors examined future avenues toward robust
and explainable modeling using DNNs, thereby enabling the integration of disparate
information sources and an understanding of heterogeneous, complex, and unseen systems.

The authors of [74] investigated how DL has contributed to and been utilized in
the mining of biological data. Well-liked open-source DL tools relevant to these data
and accessible open-access data sources related to the three data kinds were studied by
concentrating on the application of DL to analyze data patterns from several biological
areas. Additionally, comparative analyses of these tools from the qualitative, quantitative,
and benchmarking viewpoints were presented.

Many ML- and DL-based metastatic prediction techniques created to date are sum-
marized in the present article [75]. Various molecular data types utilized for the creation
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of models and crucial signatures obtained using various techniques were also described.
Additionally, the authors emphasized the difficulties in using DL and ML techniques and
provided recommendations to enhance their ability to anticipate outcomes.

In the utilization of genomics in Alzheimer’s disease (AD), [76] focused on the latest
developments for AD prediction using DL techniques with the principles of neuroimaging
and genomics. The authors first described several experiments that employ DL algorithms
to develop AD prediction using genomes or neuroimaging data. They particularly outlined
pertinent integrated genomics and neuroimaging studies that use DL techniques to predict
AD by combining both genomic and neuroimaging data.

Finally, the authors in [68] aimed to help fill the gaps in data preprocessing and
genome-wide association study (GWAS) methodologies by reviewing novel techniques
and methodologies. The data preprocessing performed prior to a GWAS presents chal-
lenges in Hardy–Weinberg estimation, genotyping, and accounting for factors such as
sample structure.

Transcriptomics

The collection of all messenger RNA molecules in one cell, tissue, or organism is
known as the transcriptome. In addition to the chemical identities, it contains the quantity
or concentration of each RNA molecule. Transcriptomics measures the degree of expression
for each RNA transcript generated in a cell. Transcriptomics raw data are often processed
to produce expression matrices, which are frequently the input of DL techniques. These
matrices contain an estimate of each gene’s or transcript’s level of expression across many
samples and situations. Transcriptomics applications span a broad spectrum, and DL has
been effectively used in some of these applications [22].

In the theoretical literature review covering the transcriptomics keyword, we found
only two articles during the search period. First, the authors presented the most recent
methods for determining the link between learned latent and observed variables and the
external phenotypes in [77]. Thus, the scholars improved the comprehensibility of the DL
methods. They exhibited the usefulness of the proposed techniques in an application with
single-cell gene expression data (transcriptomics). The relationships between observed gene
expressions and experimental variables or phenotypes can be understood well because of
the work presented here. Deep generative models may also provide synthetic observations
by offering a generative model for the latent and observed variables, thereby enabling us to
evaluate the uncertainty in the learned representations.

Second, the authors analyzed the most recent data modeling techniques used with
transcriptomics data I TGx in [78]. The researchers demonstrated how the TGx data might
be used for the benchmark dose study. Then, the approaches for reading across and
modeling adverse outcome pathways were also reviewed here. Additionally, the authors
addressed how network-based strategies may effectively define the mechanism of action
or particular exposure biomarkers. Moreover, they explained the primary AI techniques
used for developing predictive classification and regression models using TGx data while
addressing the existing challenges.

Metabolomics

The metabolome represents the collection of all metabolites in a biological cell, tis-
sue, organ, or organism. These metabolites are the end products of cellular processes.
Metabolomics is the science that studies all chemical processes involving metabolites. In
particular, metabolomics is the study of chemical fingerprints that specific cellular processes
establish during their activity. It is the study of all small-molecule metabolite profiles.

We found several state-of-the-art works in this type of omics. A historical perspective
work [79] introduced the readers to the fundamental computational concepts of ANNs.
It also provided a brief historical context of their use in metabolomics, discussed the
advantages and disadvantages of this method when applied to omics data, and finally
looked toward future applications and challenges.
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In [80], the authors explored breakthrough approaches for natural product discovery
from plant microbiomes, emphasizing the promise of DL as a tool for endophyte bio-
prospecting, endophyte biochemical novelty prediction, and endophyte regulatory control.
It concludes with a proposed pipeline for harnessing a global database to uncover and
unsilence desirable natural products.

Finally, [81] presented the applications of DL that have recently emerged in metabolomics
research. Then, the scholars presented the utilization of DL in the data preprocessing step.
They also reviewed the use of the CNN model in developing DL for metabolomics data.

Proteomics

The term proteome refers to the sum of all the proteins in a cell, tissue, or organism.
Proteomics is the science that studies these proteins in terms of their biochemical properties
and functional roles. How the quantities, modifications, and structures of these proteins
change during growth in response to internal and external stimuli was also investigated.

In this area, we found only one article that covered proteomics data. This scenario is
related to the natural behavior of researchers because protein is usually used with other
omics data to detect many tumors and cancers; moreover, protein is not used in single
omics except in a few cases, including [82]. In the same work, the authors demonstrated
the effectiveness of ensemble learning for reliable protein abundance prediction using
single-cell multimodal omics data. Their study paved the way for knowledge discovery
by mining single-cell multi-omics data on a large scale. Their work was accomplished
by contrasting numerous tree-based ensemble learning techniques with neural network
models. According to their work, ensemble learning frequently outperformed neural
networks. In particular, random forest (RF) exhibited the greatest overall performance.
Moreover, they interpreted the biological mechanisms driving the prediction using the
feature significance ratings from RF.

3.2.2. Multi-Omics

As we mentioned above, multi-omics currently has promise for filling the gaps in the
understanding of human health and disease. Many researchers are working on ways of
generating and analyzing disease-related data. They also describe the relations between
omics data to predict the diagnosis, prognosis, and treatment of diseases. In this section,
we reviewed the survey articles working on all previously mentioned aspects, as shown
in Table 4.

As shown in Table 4, different types of literature papers have been mentioned in the
second column as review, survey, systematic review, comprehensive review, methodological
review, and system biology review. Sequentially, The Survey paper gives information about
the amount of research done so far in a particular domain or on topic. In contrast, the
Review paper analyzes published works and provides insights with technical evidence.
A review article or review paper is based on other published articles. It does not report
original research. Where and how one searches for evidence is an important difference.
While literature reviews require only one database or source, systematic reviews require
more comprehensive efforts to locate evidence. Multiple databases are searched, each with
a specifically tailored search strategy (PRISMA). A systematic review that is less rigorous is
often called a “Comprehensive review”. On the same side, a methodological review is a
type of systematic review that focuses on summarizing the state-of-the-art methodological
practices of research on a substantive or essential topic. Finally, a system biology review is a
new type of paper that aims to provide specialists with a unique and educational platform
to keep up-to-date with the expanding volume of information published in the field of
Systems Biology, which belongs to a systems biology journal [83].
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Table 4. Review and survey articles in the multi-omics area.

Ref.
Type of
Literature
Review

Omics Data Models
Reviewed

Disease Type
AI Model

Genomics Transcriptomics Metabolomics Proteomics DL ML

[84] Systematic
review

√ √
CNN Different

cancer types
√

[85] Survey
√ √ √ √ RF, AE

SVM, CNN,
RNN, and MLP

General
cancer

√ √

[86] Review
√ √ √ √ CNN and other

DL neural
networks

Head and
neck tumor

√

[87] Review
√ √ CNN and other

DL neural
networks

Cancer
diagnosis

√

[1] Comprehensive
review

√ √ √ √
- Different

diseases
√

[88] Review
√ √ √ CNN, DNN,

ANN, RNN,
and AE

Alzheimer’s
and
Parkinson’s
diseases

√

[89] Systematic
review

√ √ √ √
- -

√

[90] Method
review

√ √ √ √
- COVID-19

√ √

[83] A systems
biology review

√ √
- Hallmarks of

cancer
√

[91] Review
√ √ √

DNN and RNN -
√ √

We found four types of reviewing and survey articles in the literature about multi-
omics areas with DL approaches. Some of the omics data take up all four omics data. Some
of them only take two of the omics data. As shown in Table 4, the DL models included
in the articles varied from not mentioning any model and confining to mentioning DL
in general to mentioning six DL methods and their relationship with multi-omics. The
target disease type must be mentioned in the review articles. Some of the works dealt with
cancers and tumors in general. Some of them identified a specific type of disease and the
works that dealt with this disease. From the above, we can summarize that review and
survey works are vital for researchers to understand the relationship of multi-omics with
DL from two perspectives: medical and technical points of view.

3.3. Others

Some works were not classified under development and could not be considered a
review of previous research. Therefore, we decided to classify them as follows.

3.3.1. Guidelines

Guideline papers aim to simplify the processes of utilizing DL in multi-omics according
to a routine or sound practice. The three types of guideline papers are proposal, perspective,
and narrative papers. They serve the same purpose in terms of presenting ideas. In addition,
the articles’ main objectives differ. Table 5 shows all types of guideline papers.
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Table 5. Guideline articles.

Ref. Year Type Ideas Target

[92] 2019 Perspective This perspective highlights key advances and challenges
in precision oncology Precision oncology

[93] 2019 Procedure It includes the processes of AI-based integration
of imaging, omics, and clinical data General clinical applications

[94] 2019 Procedure
It describes the historical development and recent
methodological advancements for studying
disease classification

Classification of diseases (nosology)

[95] 2021 Proposal
This proposal shows how machine learning can identify
sets of lipids as predictive biomarkers of nonalcoholic
fatty liver disease progression

Diagnosis

[96] 2022 Proposal

This proposal aims to evaluate the response to treatment
with intravenous and subcutaneous (20%)
immunoglobulin in a series of patients with
inflammatory idiopathic myopathies by using
artificial intelligence

Predicting the clinical outcome

3.3.2. Comparative Studies

Comparative studies answer the question of which DL model is accurate in omics
data. This objective was attained by comparing two or more DL models with single- or
multi-omics data based on the metrics shown in Table 6.

Table 6. Comparative studies in omics data.

Ref. Year Models Model Omics Data Comparison Parameters

[97] 2022 SVM, RF, NN, and NB RF Single omics (RNA) Immune checkpoint blockade in gastric
cancer patients

[98] 2019 LSTM-VAE, DCEC,
K-means, HC, PAM DCEC Multi-omics proteins

and metabolites
Number of significantly enriched biological
pathways by each clustering method

4. Current Omics Datasets

The cornerstone of conducting an omics analysis is the availability of a dataset. In
general, a dataset can support omics or multi-omics information. Moreover, this dataset can
be associated with a single disease or multiple diseases. However, most omics datasets are
not injected directly into a computational model unless a little preprocessing is performed
for data enhancement or integration. In the present review, we tried to cover the existing
datasets with details links to data type, number of samples, disease type, and implementa-
tion links, as shown in Table 7. In particular, all existing datasets are different in terms of
the number of samples and the frequency of usage. For instance, we found that the cases
in TCGA are the most frequently used data by omics studies. Moreover, the number of
samples in this dataset is the largest. Moreover, TCGA is preferred by researchers because
of the availability of tools for the required analysis and different types of omics data.
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Table 7. Available omics databases.
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[99] LncRNADisease lncRNA 200,000 -
http://www.rnanut.net/
lncrnadisease/ (accessed on 23
December 2022)

A database of the collection of
experimentally supported lncRNA
disease associations

[100] Comparative Toxicogenomics
Database Gene products and phenotypes 38 million toxicogenomic

relationships -

http://ctdbase.org/about/
;jsessionid=E3F199EC8904218
74604E21270A16338 (accessed
on 23 December 2022)

Chemical–gene/protein interactions
and chemical–disease and
gene–disease relationships

[101] NONCODE RNAs 548,640 - http://www.noncode.org/
(accessed on 23 December 2022)

Collection and annotation of
noncoding RNAs (ncRNAs),
particularly lncRNAs

[102] Lnc2Cancer lncRNA 4989 165 types of human cancer -

Comprehensive experimentally
supported
associations between lncRNAs and
human cancers

[103] MNDR v3.0 ncRNA One million entries - http://www.rnadisease.org/
(accessed on 23 December 2022)

Updated the mammal
ncRNA–disease repository for
investigation of disease mechanisms
and clinical treatment strategies

[34] TCGA
Genomic, epigenomic,
transcriptomic, and proteomic
data

2.5 petabytes 33 cancer types

https:
//www.cancer.gov/about-nci/
organization/ccg/research/
structural-genomics/tcga
(accessed on 23 December 2022)
https://portal.gdc.cancer.gov/
(accessed on 23 December 2022)

A landmark cancer genomics
program molecularly characterized
more than 20,000 primary cancers
and matched normal samples
spanning 33 cancer types

[104] Reactome

Molecular details of signal
transduction, transport, DNA
replication, metabolism, and
other cellular processes

- Cardiovascular disease
https://reactome.org/
download-data (accessed on 23
December 2022)

Archive of biological processes and
as a tool for discovering functional
relationships in data, such as gene
expression profiles or somatic
mutation catalogs from tumor cells

http:
//asia.ensembl.org/Homo_
sapiens/Info/Annotation
(accessed on 23 December 2022)

Reactome (version 70) Human protein-coding genes 10,867 -

http:
//asia.ensembl.org/Homo_
sapiens/Info/Annotation
(accessed on 23 December 2022)

Collection of gene models built from
the gene-wise alignments of the
human proteome and alignments of
human cDNAs using the
cDNA2genome model of exonerate

[105] cBioPortal Genomic data More than 5000 tumor samples
from 20 cancer studies Cancer http://www.cbioportal.org/

(accessed on 23 December 2022)

Pen-access resource for interactive
exploration of multidimensional
cancer genomics datasets

http://www.rnanut.net/lncrnadisease/
http://www.rnanut.net/lncrnadisease/
http://ctdbase.org/about/;jsessionid=E3F199EC890421874604E21270A16338
http://ctdbase.org/about/;jsessionid=E3F199EC890421874604E21270A16338
http://ctdbase.org/about/;jsessionid=E3F199EC890421874604E21270A16338
http://www.noncode.org/
http://www.rnadisease.org/
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://portal.gdc.cancer.gov/
https://reactome.org/download-data
https://reactome.org/download-data
http://asia.ensembl.org/Homo_sapiens/Info/Annotation
http://asia.ensembl.org/Homo_sapiens/Info/Annotation
http://asia.ensembl.org/Homo_sapiens/Info/Annotation
http://asia.ensembl.org/Homo_sapiens/Info/Annotation
http://asia.ensembl.org/Homo_sapiens/Info/Annotation
http://asia.ensembl.org/Homo_sapiens/Info/Annotation
http://www.cbioportal.org/
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[106] DisGeNET Gene-disease associations
(GDAs) 1,134,942 - https://www.disgenet.org/

(accessed on 23 December 2022)
Collections of genes and variants
associated with human diseases

https:
//www.ncbi.nlm.nih.gov/gds
(accessed on 23 December 2022)

GEO Gene expression - -
https:
//www.ncbi.nlm.nih.gov/gds
(accessed on 23 December 2022)

Collection of curated gene
expression datasets and original
series and platform records in the
Gene Expression Omnibus (GEO)
repository

https:
//www.ncbi.nlm.nih.gov/
(accessed on 23 December 2022)

NCBI Genomic data - -
https:
//www.ncbi.nlm.nih.gov/
(accessed on 23 December 2022)

Search engine for discovering
different biomedical and genomic
information

https:
//string-db.org/cgi/about
(accessed on 23 December 2022)

STRING Protein 24,584,628 -
https:
//string-db.org/cgi/about
(accessed on 23 December 2022)

A database of known and
predicted PPIs

https://www.ensembl.org/
index.html?redirect=no
(accessed on 23 December 2022)

Ensemble Genomic data 974,444 -
https://www.ensembl.org/
index.html?redirect=no
(accessed on 23 December 2022)

Search engine for discovering
different genomic information

[107] OMIM Disease–gene association - - https://www.omim.org/
(accessed on 23 December 2022)

A resource of curated descriptions
of human genes and phenotypes
and the relationships between them

https:
//www.expasy.org/resources/
uniprotkb-swiss-prot (accessed
on 23 December 2022)

SWISS–PROT Protein sequence - -

https:
//www.expasy.org/resources/
uniprotkb-swiss-prot (accessed
on 23 December 2022)

Contains protein descriptions,
including function, domain
structure, subcellular location,
posttranslational modifications, and
functionally characterized variants

https://www.ebi.ac.uk/ena/
browser/home (accessed on 23
December 2022)

EMBI Nucleic acid sequence - -
https://www.ebi.ac.uk/ena/
browser/home (accessed on 23
December 2022)

A comprehensive record of the
world’s nucleotide sequencing
information, covering raw
sequencing data, sequence assembly
information, and
functional annotation

https://www.ddbj.nig.ac.jp/
index-e.html (accessed on 23
December 2022)

DDBJ Nucleic acid sequence - -
https://www.ddbj.nig.ac.jp/
index-e.html (accessed on 23
December 2022)

-

http:
//scop.mrc-lmb.cam.ac.uk/
(accessed on 23 December 2022)

SCOP Protein structure classification 861,631 -
http:
//scop.mrc-lmb.cam.ac.uk/
(accessed on 23 December 2022)

A comprehensive description of the
structural and evolutionary
relationships between all proteins
whose structure is known

https://www.disgenet.org/
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://string-db.org/cgi/about
https://string-db.org/cgi/about
https://string-db.org/cgi/about
https://string-db.org/cgi/about
https://www.ensembl.org/index.html?redirect=no
https://www.ensembl.org/index.html?redirect=no
https://www.ensembl.org/index.html?redirect=no
https://www.ensembl.org/index.html?redirect=no
https://www.omim.org/
https://www.expasy.org/resources/uniprotkb-swiss-prot
https://www.expasy.org/resources/uniprotkb-swiss-prot
https://www.expasy.org/resources/uniprotkb-swiss-prot
https://www.expasy.org/resources/uniprotkb-swiss-prot
https://www.expasy.org/resources/uniprotkb-swiss-prot
https://www.expasy.org/resources/uniprotkb-swiss-prot
https://www.ebi.ac.uk/ena/browser/home
https://www.ebi.ac.uk/ena/browser/home
https://www.ebi.ac.uk/ena/browser/home
https://www.ebi.ac.uk/ena/browser/home
https://www.ddbj.nig.ac.jp/index-e.html
https://www.ddbj.nig.ac.jp/index-e.html
https://www.ddbj.nig.ac.jp/index-e.html
https://www.ddbj.nig.ac.jp/index-e.html
http://scop.mrc-lmb.cam.ac.uk/
http://scop.mrc-lmb.cam.ac.uk/
http://scop.mrc-lmb.cam.ac.uk/
http://scop.mrc-lmb.cam.ac.uk/
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5. Challenges

In general, DL models link various challenges that affect the outcomes of classification
or regression processes. In the DL models employed for omics analysis, we discovered
many DL-related issues. The preprocessing procedure, datasets, model validation, and
testbed applications are discussed in the following subsections (see Figure 3).
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5.1. DL Model Challenges
5.1.1. Low Noise Reduction Efficiency

The most popular experimental method in proteomics is separating proteins into short
amino acid chains (peptides) and then using an MS to evaluate these peptides. The MS
output signals are matched with the peptide profiles kept in open or private databases
to identify the peptides. These databases are still unreliable. They also lack information.
Additionally, DL is used to infer protein secondary structures from their amino acid
sequences [108]. The creation of data for proteomics and metabolomics depends on NMR
technologies. Given its technological limitations, it often returns noise signals that must
be filtered to increase accuracy. Using DL approaches to metabolomics data is particularly
difficult because identifying unique components contributing to individual samples in
these kinds of research is crucial [22,109].

5.1.2. Traditional Feature Selection Methods

The authors in [51] suggested using techniques based on DMPs and DEG to train
models. These authors did not employ traditional feature selection or dimension reduction
methods, such as LASSO, Relief-F, or PCA, because they cannot capture the bifurcated
processes logically. This finding implies that using these techniques may result in few
characteristics or dimensions; however, the occurrence of a few features with biological
significance is not ensured. Moreover, these methods are unsuitable for application to
the multi-omics dataset. The interaction between two various omics datasets cannot be
considered by these approaches. One biological factor that may regulate and govern
the level of expression of genes adjacent to the CpG site is DNA methylation, which is
particularly well-known. Conventional feature selection or dimension reduction methods
cannot handle this trait [51].

5.1.3. High Computational Cost

In the early days, GNNs learn a node’s features by iteratively propagating infor-
mation from the neighboring nodes until convergence [110]. High computing costs and
the learning filters’ lack of the localization attribute are two notable drawbacks of these
models. Chebyshev polynomials were proposed by Defferrard et al. in 2016 as localized
learning filters in a spectral-based GCN (ChebNet) for converting computing costs into
linear complexity [31,111].

5.1.4. Selection of Best Prediction Model

Different omics applications have generated several prediction algorithms. These
applications are founded on various computational techniques and diverse omics data
sources. However, several studies [112,113] have demonstrated that various factors affect
how well prediction algorithms function. We must first discover the important criteria
affecting the performance of these algorithms to choose an appropriate prediction algorithm
for a certain application. Then, we can utilize the identified factors to suggest a prediction
algorithm for the application [52].

However, extensive training, testing, and cross-validation are required to determine
the most appropriate weights for each parameter and its influence on algorithm perfor-
mance. Nonetheless, the efficacy of unstable techniques varied based on the combined
omics profiles, drugs, and performance indicators. The evaluations of these methods
depend on (1) performance measurements and (2) supported data (e.g., omics character-
ization integrated into the model and drug structure/pathways). Thus, a difficult issue
is to integrate different existing prediction models and determine which model is most
effective in each scenario [47]. However, the application of CNNs to omics data poses
several obstacles, such as the processing of complicated network architectures and its
integration with transcriptome data [49].

However, the kind of model architecture limits how the information may be integrated.
For instance, in the bioinformatics literature, a feedforward NN called a visible neural net-



Diagnostics 2023, 13, 664 21 of 30

work can only represent directed acyclic graphs, which do not match with some knowledge
networks (KEGG and STRING). Additionally, only the first hidden layer is connected to
the input genes; the subsequent hidden layers are unrelated. The connections between
failing levels are also removed. Consequently, a piece of information must be shortened to
be absorbed into the neural network [56].

5.1.5. Ignoring Prior Knowledge

Most of the existing clustering methods ignore established results from prior knowl-
edge. Prior biological knowledge (e.g., Pam50 breast cancer subtypes) can guide represen-
tation learning. According to the gene expression profile analysis [114], breast cancer was
first classified into five intrinsic subtypes according to the Pam50 breast cancer subtyping:
Luminal A, Luminal B, basal-like, normal-like, and HER2 [29].

5.1.6. DL Model Explainability

The lack of interpretability of such approaches is one of the most difficult issues
impeding the growth of ML in healthcare. Most ML techniques, including DL techniques,
are regarded as black boxes because of their complexity. The choices of these models
cannot be explained. One of the most crucial current concerns is making ML algorithms
interpretable. In the medical field, final users (e.g., researchers, clinicians, and patients)
must understand why a phenotype has been predicted to ensure that it is based on reliable
medical features rather than on irrelevant artifacts. This understanding has a considerable
impact on their decisions and confidence in the model, regardless of the model’s efficacy.
Finally, the model examination may aid biological discovery by exposing intriguing signs.
The application of sophisticated machine learning models, including DL, on omics data,
enables the emergence of precision medicine. However, their use in clinics is limited and
not explainable [56].

Although DL approaches allow for the uncovering of hidden patterns in opaque
and complex data, the models themselves are complex and opaque; thus, researchers
cannot easily infer how learned latent representations relate to the observed variables [69].
Enhancing the interpretability of machine learning from a “black box” from genotype to
phenotype is also challenging, particularly for uncovering causal mechanisms from risk
variants to diseases [115].

5.1.7. Omics Interaction Identification

Identifying the interactions and crosstalk between heterogeneous RNA classes is
essential for uncovering the functional role of individual RNA transcripts, particularly
for unannotated and sparsely discovered RNA sequences with no known interactions.
As high-performing and adaptable techniques that can either predict RNA–RNA inter-
actions from sequence or infer missing interactions from patterns that may exist in the
network topology, sequence-based DL and network embedding methods have been gain-
ing popularity. However, the majority of the approaches used today have several draw-
backs, such as the inability to make inductive predictions, determine the directionality
of interactions, or combine different sequences, interactions, expressions, and genomic
annotation datasets [116].

5.1.8. Time-Consuming

Matrix factorization (MF) methods are general models that use shared features across
diseases and genes to predict genetic links between diseases [117]. However, MF-based
algorithms often take too long to converge and can only handle a restricted variety of data
during actual performance [55].

5.1.9. Single-Omics Dimension

Most of the existing methods use only gene expression to identify cancer subtypes [29].
The individual type of omics data only represents a single view that suffers from data noise
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and bias [60,61]. Huge and various types of genetic data have been produced with the
advancement of high-throughput sequencing techniques. The integration of multi-omics
data contributes to cancer subtype identification.

5.1.10. Reproducibility and Generalization

DL success depends on the random numbers produced at the beginning of training;
moreover, practitioners may adjust hyperparameters, including learning rates, batch sizes,
weight decay, momentum, and dropout probabilities [118]. Setting the same random seeds
across many stages ensures the same experimental outcome. Although the hyperparam-
eters and random seeds were often not provided in the present study, keeping the same
code bases was crucial [119]. Reproducing the study and achieving the same results are
challenging because of the uncertainty of the configuration and the randomness involved
in the training [120].

5.1.11. Selection of Suitable Evaluation Metric

Classification accuracy is often used for evaluating algorithm efficacy. However, it
may be deceptive when used for data imbalance because an unbalanced training set may
result in a classifier that favors frequent classes. In binary classification, the classifier
may assign each test point to the dominant class and provide an optimistic accuracy
estimate. BACC [121] was created to handle unbalanced training data (true negative rate)
by averaging sensitivity (true positive rate) and specificity. In particular, BACC balances
the contributions of different classes by giving each class a weight. Thus, the classifier
produced can learn the same amount from each class. With binary predictions, BACC is
also equal to the area under the ROC curve. This metric is the same as the regular accuracy
if the dataset is balanced. Thus, the disease and control samples were not the same size in
this application [115].

5.1.12. Classification Type

The GCN is blind to different subpopulations within a cancer tissue because of the
averaging of characteristics across patients for a specific cancer type. A possible drawback
of the present situation is the vague idea of cancer genes. A multiclass, multilabel scenario
becomes increasingly appropriate and enables the prediction of the cancer genes that are
particularly unique to a single cancer type, thereby opening the door for precision oncology.
In comparison, certain genes substantially affect numerous cancers [54].

5.2. Dataset Challenges
5.2.1. Data Integration

Identifying disease-related lncRNAs is crucial for the diagnosis, prevention, and
treatment of diseases. Many computational approaches have been developed; however,
effectively integrating multi-omics data and accurately predicting potential lncRNA-disease
associations remain challenging, particularly regarding new lncRNAs and new diseases [64].
In omics, several datasets comprise diverse data in terms of variable count, scale, distri-
bution, and modality. The analytical goal in healthcare is challenging because of the
heterogeneity of the data. Genetic instability is the primary contributor to heterogene-
ity [122], thereby complicating the determination of particular prognostic genes using only
gene expression patterns [43]. Many machine learning techniques, including clustering,
graph and network analysis, kernel learning, and DL, may be used in addressing the issue
of heterogeneity [26,30].

The process of extracting heterogeneity from GRNs is another challenge. Previous
works used GNN algorithms to combine homogeneous GRN with single-omics data.
However, this approach is primarily ineffective in extracting the complex information
present in heterogeneous GRN, particularly its rich variety of interconnection [44].
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5.2.2. Data Scarcity

In the field of brain-related diseases, the omics data obtained using advanced sequenc-
ing technology typically have few patient samples (tens to hundreds of samples) [123].
Reliably training complicated model architectures with limited labeled data remains a chal-
lenge. The scarcity of labeled multi-omics data may result in the overfitting/underfitting of
complicated models, e.g., DL methods [44].

5.2.3. Data Selection

Millions of genes have been sequenced in the data-driven genomics era; however,
their causal relationships with disease phenotypes remain limited because of the difficulty
of elucidating underlying causal genes using laboratory-based strategies [67].

5.2.4. Temporal Data

The illnesses in healthcare evolve and change over time in a non-deterministic way.
Machine learning algorithms have trouble dealing with the time component because they
assume that inputs are static [124,125].

5.2.5. Missing Data

Missing data refers to observations that are absent for various reasons, such as a
protein’s decreased sensitivity or inability to process NGS data. When the majority of the
samples in a dataset have missing data, the missingness becomes problematic. This issue is
solved by list-wise deletion, which removes the whole sample of missing variables from
the dataset.

However, the approach can result in loss of information if the percentage of missing
data is large. Another option is imputation, which assigns the variable with missing data
some random values, often the mean or median. The k-nearest neighbors method is mainly
used to impute missing data [91,124].

Furthermore, a study defining the specific ratio for excluded features with missing
data remains lacking. For instance, the authors in [61] eliminated the features that were
absent from each cancer dataset in more than 20% of the patients, in addition to exclud-
ing patient samples if these data missed more than 20% of the remaining multi-omics
characteristics. Then, the authors eliminated the cancer datasets that included less than
50 unfiltered samples.

5.2.6. Dimensionality Curse

Most healthcare datasets include few samples but many characteristics or variables.
Overfitting becomes an issue for many types of machine learning algorithms as the number
of variables increases. Imaging, clinical, and omics data are just a few examples of the many
kinds of information that may be found in healthcare databases. Various data reduction
methods must be performed to make high-dimensional datasets suitable for learning.
Feature extraction and feature selection methods are commonly used [126].

PCA and non-negative matrix factorization are two examples of the types of analy-
ses utilized in feature extraction. Feature extraction plays a central role in unsupervised
learning, in which answer labels are unknown. Machine learning with feature extraction
is commonly utilized in multi-omics data to identify disease groupings. Selected features
are used in feature selection. One can pick features using a filter, a wrapper, or an em-
bedded method. Unlike other feature selection techniques, the filter chooses a subset of
characteristics independently of any model. Pearson correlation, ANOVA, and information
gain are just a few filtering techniques that may be applied. The wrapper technique uses a
prediction model to select the most useful traits iteratively while retaining the least useful
ones. Boruta, Jackstraw, and Recursive Feature Elimination are examples of the many
wrapper techniques that may be applied. Wrapper approaches perform computation on
massive datasets inexpensively. The embedded technique falls between the filter method
and the wrapper method in terms of computational complexity. LASSO is an embedded
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technique. Supervised learning is mainly used for feature selection in classification and
regression. Not all features are meaningful in high-dimensional datasets; thus, feature
selection methodology is utilized prior to dataset integration [43,48].

5.2.7. Imbalance Data

In healthcare, an imbalance of data occurs when the samples with positive values in
the target class in the dataset are less than those with negative values.

Several techniques can address the imbalanced data in machine learning, including
data sampling, algorithm modification, and ensemble learning. The dataset is balanced
before the machine learning for classification in sampling is utilized. Undersampling
and oversampling are typically used together to address the problem of an unbalanced
dataset. When algorithms are changed, the same dataset with imbalance is used to make the
changes [59]. Giving samples with minority types of high weights modifies the algorithm.
In ensemble learning, the aggregate of all classifier judgments is obtained by applying each
model subset of the majority of examples and considering all minority data [91,124,127].

5.2.8. Sample Group

Most of the integrated molecular studies do not use the multi-omics dataset from the
same sample group. Unlike the TCGA database, no database has produced considerable
omics data from one sample [51].

5.3. Lack of Outcome Validation

Various DL-based single- or multi-omics publications have emerged in the past five
years. The evaluation process has usually been conducted based on well-known measure-
ments in the data science field, such as AUPRC, AUC, precision, recall, F-score, and ROC.
These metrics can reveal how meaningful the obtained results are from the theoretical
perspective. Most of the reviewed articles in this study have this kind of evaluation but
lack supportive validation based on the medical perspective. However, the question of how
remarkable and satisfying these results are for the medical sector ensues. Therefore, defin-
ing the measurements and procedure is essential for achieving the purpose and providing
reliable results.

5.4. Shortage of Testbed Application

Many proposed works have reviewed omics data analysis using DL. However, no
study has been deployed into medical infrastructure and translated into clinical practice.

One of the key issues hindering the clinical deployment of DL methods is transparency.
A transparent and explainable ML algorithm seems essential to building trust for clinical
decision-making [39,128]. Moreover, this deployment is missing because of the gap in
consistent result validation between theory and clinical perspectives.

6. Conclusions

In the past decade, researchers have drawn considerable attention to the involvement
of DL in omics data analysis, thereby making the DL and omics data one of the major
research topics. In this context, no clear boundaries have been observed in the development
of this field. Thus, further study is necessary to provide a holistic view and track this
research line. Our study attempts to provide an extensive view and deep understanding by
reviewing and classifying the highly pertinent literature. Consequently, this study maps
the final set of relevant articles in three main categories: clinical applications, reviews, and
other studies conducted using DL and omics data. In addition to offering an extensive
investigation of the body of literature, the three main classes of articles are divided further
into subcategories: such as disease subtyping, biomarker discovery, pathway analysis,
data prioritization, review articles conducted to single- or multi-omics data, comparative
analysis, and guideline studies. Other information is provided, including the difficulties
and limitations of DL models and the information on the data and validation procedure. In
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the present review study, we found that the clinical applications that use DL in addressing
various medical problems have received considerable attention from researchers. Addi-
tionally, the existing literature shows minimal concern for DL characteristics, feature data,
and definition for a straightforward medical validation approach. Furthermore, testbed
DL applications used in real-world settings or accepted by healthcare organizations are
uncommon. Thus, the omics community should make considerable efforts to close the gap
between theoretical and application viewpoints by creating practical applications. Finally,
this systematic review assists researchers in tracking the crucial concerns about DL in omics
by expanding and outlining new research avenues. In the future, the authors intend to
extend this review by focusing on data integration methods and issues relevant to the
existing methods.
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