Towards OCT-Guided Endoscopic Laser Surgery—A Review
Abstract
:1. Introduction
2. Endoscopic OCT Technologies
2.1. Scanning Geometry
2.2. Actuator Configuration
2.3. Types of Actuators
3. OCT-Guided Laser Surgery
3.1. Double-Clad Fiber (DCF)
3.2. Dichroic Mirror (DM)
3.3. Separate Optical Paths (SOP)
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. CA A Cancer J. Clin. 2012, 62, 10–29. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Piyawattanamatha, W. New Endoscopic Imaging Technology Based on MEMS Sensors and Actuators. Micromachines 2017, 8, 210. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xie, H. MEMS-Based Endoscopic Optical Coherence Tomography. Int. J. Opt. 2011, 2011, 825629. [Google Scholar] [CrossRef]
- Rollins, A.M.; Izatt, J.A. Optimal interferometer designs for optical coherence tomography. Opt. Lett. 1999, 24, 1484–1486. [Google Scholar] [CrossRef]
- Aumann, S.; Donner, S.; Fischer, J.; Müller, F. Optical Coherence Tomography (OCT): Principle and Technical Realization. In High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics; Bille, J.F., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 59–85. [Google Scholar] [CrossRef]
- Hacihaliloglu, I.; Chen, E.C.; Mousavi, P.; Abolmaesumi, P.; Boctor, E.; Linte, C.A. Chapter 28—Interventional imaging: Ultrasound. In Handbook of Medical Image Computing and Computer Assisted Intervention; Zhou, S.K., Rueckert, D., Fichtinger, G., Eds.; The Elsevier and MICCAI Society Book Series; Academic Press: Cambridge, MA, USA, 2020; pp. 701–720. [Google Scholar] [CrossRef]
- Boudoux, C. Fundamentals of Biomedical Optics: From Light Interactions with Cells to Complex Imaging Systems; Pollux: Montréal, QC, Canada, 2016. [Google Scholar]
- Izatt, J.A.; Choma, M.A.; Dhalla, A.H. Theory of Optical Coherence Tomography. In Optical Coherence Tomography: Technology and Applications; Drexler, W., Fujimoto, J.G., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 65–94. [Google Scholar] [CrossRef]
- Drexler, W.; Liu, M.; Kumar, A.; Kamali, T.; Unterhuber, A.; Leitgeb, R.A. Optical coherence tomography today: Speed, contrast, and multimodality. J. Biomed. Opt. 2014, 19, 071412. [Google Scholar] [CrossRef] [PubMed]
- Polarization-Sensitive OCT. Available online: http://obel.ee.uwa.edu.au/research/techniques/polarization-sensitive-oct/ (accessed on 17 January 2023).
- El-Haddad, M.T.; Tao, Y.K. Advances in intraoperative optical coherence tomography for surgical guidance. Curr. Opin. Biomed. Eng. 2017, 3, 37–48. [Google Scholar] [CrossRef]
- Gora, M.J.; Suter, M.J.; Tearney, G.J.; Li, X. Endoscopic optical coherence tomography: Technologies and clinical applications [Invited]. Biomed. Opt. Express 2017, 8, 2405–2444. [Google Scholar] [CrossRef]
- Carrasco-Zevallos, O.M.; Viehland, C.; Keller, B.; Draelos, M.; Kuo, A.N.; Toth, C.A.; Izatt, J.A. Review of intraoperative optical coherence tomography: Technology and applications [Invited]. Biomed. Opt. Express 2017, 8, 1607. [Google Scholar] [CrossRef]
- Zhang, N.; Tsai, T.H.; Ahsen, O.O.; Liang, K.; Lee, H.C.; Xue, P.; Li, X.; Fujimoto, J.G. Compact piezoelectric transducer fiber scanning probe for optical coherence tomography. Opt. Lett. 2014, 39, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.; Xi, J.; Wu, Y.; Li, X. Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging. Opt. Express 2010, 18, 14375–14384. [Google Scholar] [CrossRef]
- Guo, S.; Hutchison, R.L.; Jackson, R.P.; Kohli, A.; Sharp, T.; Orwin, E.; Haskell, R.C.; Chen, Z.; Wong, B.J. Office-based optical coherence tomographic imaging of human vocal cords. J. Biomed. Opt. 2006, 11, 030501. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Liu, G.; Rubinstein, M.; Saidi, A.; Wong, B.J.; Chen, Z. Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography. J. Biomed. Opt. 2009, 14, 064020. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Thiele, S.; Quirk, B.C.; Kirk, R.W.; Verjans, J.W.; Akers, E.; Bursill, C.A.; Nicholls, S.J.; Herkommer, A.M.; Giessen, H.; et al. Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use. Light. Sci. Appl. 2020, 9, 124. [Google Scholar] [CrossRef] [PubMed]
- Zara, J.M.; Lingley-Papadopoulos, C.A. Endoscopic OCT Approaches Toward Cancer Diagnosis. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 70–81. [Google Scholar] [CrossRef]
- Gora, M.J.; Sauk, J.S.; Carruth, R.W.; Gallagher, K.A.; Suter, M.J.; Nishioka, N.S.; Kava, L.E.; Rosenberg, M.; Bouma, B.E.; Tearney, G.J. Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat. Med. 2013, 19, 238–240. [Google Scholar] [CrossRef]
- Liang, K.; Ahsen, O.O.; Murphy, A.; Zhang, J.; Nguyen, T.H.; Potsaid, B.; Figueiredo, M.; Huang, Q.; Mashimo, H.; Fujimoto, J.G. Tethered capsule en face optical coherence tomography for imaging Barrett’s oesophagus in unsedated patients. BMJ Open Gastroenterol. 2020, 7, e000444. [Google Scholar] [CrossRef]
- López-Marín, A.; Springeling, G.; Beurskens, R.; van Beusekom, H.; van der Steen, A.F.W.; Koch, A.D.; Bouma, B.E.; Huber, R.; van Soest, G.; Wang, T. Motorized capsule for shadow-free OCT imaging and synchronous beam control. Opt. Lett. 2019, 44, 3641–3644. [Google Scholar] [CrossRef]
- The Dragonfly OPTIS Imaging Catheter. Available online: https://www.cardiovascular.abbott/int/en/hcp/products/percutaneous-coronary-intervention/intravascular-imaging/dragonfly-optis.html (accessed on 2 February 2023).
- Imaging System with Real-Time Targeting. Available online: https://ninepointmedical.com/application/files/3816/2567/4882/900067-Rev-B-NvisionVLE-System-Brochure-RTT-Single-Page.pdf (accessed on 2 February 2023).
- Adams, D.C.; Wang, Y.; Hariri, L.P.; Suter, M.J. Advances in Endoscopic Optical Coherence Tomography Catheter Designs. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 210–221. [Google Scholar] [CrossRef]
- Yuan, W.; Brown, R.; Mitzner, W.; Yarmus, L.; Li, X. Super-achromatic monolithic microprobe for ultrahigh-resolution endoscopic optical coherence tomography at 800nm. Nat. Commun. 2017, 8, 1531. [Google Scholar] [CrossRef]
- Li, K.; Liang, W.; Mavadia-Shukla, J.; Park, H.C.; Li, D.; Yuan, W.; Wan, S.; Li, X. Super-achromatic optical coherence tomography capsule for ultrahigh-resolution imaging of esophagus. J. Biophotonics 2019, 12, e201800205. [Google Scholar] [CrossRef]
- Lee, H.C.; Ahsen, O.O.; Liang, K.; Wang, Z.; Cleveland, C.; Booth, L.; Potsaid, B.; Jayaraman, V.; Cable, A.E.; Mashimo, H.; et al. Circumferential optical coherence tomography angiography imaging of the swine esophagus using a micromotor balloon catheter. Biomed. Opt. Express 2016, 7, 2927–2942. [Google Scholar] [CrossRef] [PubMed]
- Lo, W.C.Y.; Uribe-Patarroyo, N.; Hoebel, K.; Beaudette, K.; Villiger, M.; Nishioka, N.S.; Vakoc, B.J.; Bouma, B.E. Balloon catheter-based radiofrequency ablation monitoring in porcine esophagus using optical coherence tomography. Biomed. Opt. Express 2019, 10, 2067–2089. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.P.; Dong, J.; Ford, T.; Reddy, R.; Hosseiny, H.; Farrokhi, H.; Beatty, M.; Singh, K.; Osman, H.; Vuong, B.; et al. Optical coherence tomography-guided laser marking with tethered capsule endomicroscopy in unsedated patients. Biomed. Opt. Express 2019, 10, 1207–1222. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, B.H.; Maguluri, G.N.; Lee, T.W.; Rogomentich, F.J.; Bancu, M.G.; Bouma, B.E.; de Boer, J.F.; Bernstein, J.J. Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography. Opt. Express 2007, 15, 18130–18140. [Google Scholar] [CrossRef]
- Benboujja, F.; Garcia, J.A.; Beaudette, K.; Strupler, M.; Hartnick, C.J.; Boudoux, C. Intraoperative imaging of pediatric vocal fold lesions using optical coherence tomography. J. Biomed. Opt. 2016, 21, 016007. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Mukai, D.; Guo, S.; Brenner, M.; Chen, Z. Fiber-optic-bundle-based optical coherence tomography. Opt. Lett. 2005, 30, 1803–1805. [Google Scholar] [CrossRef]
- Kaur, M.; Lane, P.M.; Menon, C. Endoscopic Optical Imaging Technologies and Devices for Medical Purposes: State of the Art. Appl. Sci. 2020, 10, 6865. [Google Scholar] [CrossRef]
- Kaur, M.; Lane, P.M.; Menon, C. Scanning and Actuation Techniques for Cantilever-Based Fiber Optic Endoscopic Scanners—A Review. Sensors 2021, 21, 251. [Google Scholar] [CrossRef]
- Qiu, Z.; Piyawattanametha, W. MEMS Actuators for Optical Microendoscopy. Micromachines 2019, 10, 85. [Google Scholar] [CrossRef]
- Neukam, F.; Stelzle, F. Laser tumor treatment in oral and maxillofacial surgery. Phys. Procedia 2010, 5, 91–100. [Google Scholar] [CrossRef]
- Maltais-Tariant, R.; Boudoux, C.; Uribe-Patarroyo, N. Real-time co-localized OCT surveillance of laser therapy using motion corrected speckle decorrelation. Biomed. Opt. Express 2020, 11, 2925–2950. [Google Scholar] [CrossRef] [PubMed]
- Jivraj, J.; Huang, Y.; Wong, R.; Lu, Y.; Vuong, B.; Ramjist, J.; Gu, X.; Yang, V.X.D. Coaxial cavity injected OCT and fiber laser ablation system for real-time monitoring of ablative processes. In Proceedings of the Optical Techniques in Neurosurgery, Neurophotonics, and Optogenetics II. SPIE, San Francisco, CA, USA, 10 March 2015; Volume 9305, pp. 26–29. [Google Scholar] [CrossRef]
- Katta, N.; McElroy, A.B.; Estrada, A.D.; Milner, T.E. Optical coherence tomography image-guided smart laser knife for surgery. Lasers Surg. Med. 2018, 50, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhang, B.; Chang, W.; Zhang, X.; Liao, H. A novel integration of spectral-domain optical-coherence-tomography and laser-ablation system for precision treatment. Int. J. Comput. Assist. Radiol. Surg. 2017, 13, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Beaudette, K.; Baac, H.W.; Madore, W.J.; Villiger, M.; Godbout, N.; Bouma, B.E.; Boudoux, C. Laser tissue coagulation and concurrent optical coherence tomography through a double-clad fiber coupler. Biomed. Opt. Express 2015, 6, 1293–1303. [Google Scholar] [CrossRef] [PubMed]
- Jivraj, J.; Chen, C.; Huang, Y.; Ramjist, J.; Lu, Y.; Vuong, B.; Gu, X.; Yang, V.X.D. Smart laser osteotomy: Integrating a pulsed 1064nm fiber laser into the sample arm of a fiber optic 1310nm OCT system for ablation monitoring. Biomed. Opt. Express 2018, 9, 6374–6387. [Google Scholar] [CrossRef]
- Chang, W.; Fan, Y.; Zhang, X.; Liao, H. An Intelligent Theranostics Method Using Optical Coherence Tomography Guided Automatic Laser Ablation for Neurosurgery. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 3224–3227. [Google Scholar] [CrossRef]
- Webster, P.J.L.; Yu, J.X.Z.; Leung, B.Y.C.; Anderson, M.D.; Yang, V.X.D.; Fraser, J.M. In situ 24 kHz coherent imaging of morphology change in laser percussion drilling. Opt. Lett. 2010, 35, 646–648. [Google Scholar] [CrossRef]
- Zhang, Y.; Pfeiffer, T.; Weller, M.; Wieser, W.; Huber, R.; Raczkowsky, J.; Schipper, J.; Wörn, H.; Klenzner, T. Optical Coherence Tomography Guided Laser Cochleostomy: Towards the Accuracy on Tens of Micrometer Scale. BioMed Res. Int. 2014, 2014, 251814. [Google Scholar] [CrossRef]
- Katta, N.; Estrada, A.D.; McElroy, A.B.; Gruslova, A.; Oglesby, M.; Cabe, A.G.; Feldman, M.D.; Fleming, R.D.; Brenner, A.J.; Milner, T.E. Laser brain cancer surgery in a xenograft model guided by optical coherence tomography. Theranostics 2019, 9, 3555–3564. [Google Scholar] [CrossRef]
- Boppart, S.A.; Herrmann, J.; Pitris, C.; Stamper, D.L.; Brezinski, M.E.; Fujimoto, J.G. High-Resolution Optical Coherence Tomography-Guided Laser Ablation of Surgical Tissue. J. Surg. Res. 1999, 82, 275–284. [Google Scholar] [CrossRef]
- Boppart, S.A.; Herrmann, J.M.; Pitris, C.; Stamper, D.L.; Brezinski, M.E.; Fujimoto, J.G. Real-Time Optical Coherence Tomography for Minimally Invasive Imaging of Prostate Ablation. Comput. Aided Surg. 2001, 6, 94–103. [Google Scholar] [CrossRef]
- Leung, B.Y.; Webster, P.J.; Fraser, J.M.; Yang, V.X. Real-time guidance of thermal and ultrashort pulsed laser ablation in hard tissue using inline coherent imaging. Lasers Surg. Med. 2012, 44, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Ohmi, M.; Tanizawa, M.; Fukunaga, A.; Haruna, M. In-situ Observation of Tissue Laser Ablation Using Optical Coherence Tomography. Opt. Quantum Electron. 2005, 37, 1175–1183. [Google Scholar] [CrossRef]
- Li, Z.; Shen, J.H.; Kozub, J.A.; Prasad, R.; Lu, P.; Joos, K.M. Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation. Lasers Surg. Med. 2014, 46, 193–202. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunalan, A.; Mattos, L.S. Towards OCT-Guided Endoscopic Laser Surgery—A Review. Diagnostics 2023, 13, 677. https://doi.org/10.3390/diagnostics13040677
Gunalan A, Mattos LS. Towards OCT-Guided Endoscopic Laser Surgery—A Review. Diagnostics. 2023; 13(4):677. https://doi.org/10.3390/diagnostics13040677
Chicago/Turabian StyleGunalan, Ajay, and Leonardo S. Mattos. 2023. "Towards OCT-Guided Endoscopic Laser Surgery—A Review" Diagnostics 13, no. 4: 677. https://doi.org/10.3390/diagnostics13040677
APA StyleGunalan, A., & Mattos, L. S. (2023). Towards OCT-Guided Endoscopic Laser Surgery—A Review. Diagnostics, 13(4), 677. https://doi.org/10.3390/diagnostics13040677