Evaluation of Perfusion Change According to Pancreatic Cancer and Pancreatic Duct Dilatation Using Free-Breathing Golden-Angle Radial Sparse Parallel (GRASP) Magnetic Resonance Imaging
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. MR Protocol
2.3. Image Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, F.H.; Rini, N.J.; Keppke, A.L. MRI of adenocarcinoma of the pancreas. AJR Am. J. Roentgenol. 2006, 187, W365–W374. [Google Scholar] [CrossRef] [PubMed]
- Bowman, A.W.; Bolan, C.W. MRI evaluation of pancreatic ductal adenocarcinoma: Diagnosis, mimics, and staging. Abdom. Radiol. 2019, 44, 936–949. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.D.; Clarke, S.E.; Costa, A.F. Factors associated with missed and misinterpreted cases of pancreatic ductal adenocarcinoma. Eur. Radiol. 2021, 31, 2422–2432. [Google Scholar] [CrossRef]
- Jang, K.M.; Kim, S.H.; Kim, Y.K.; Song, K.D.; Lee, S.J.; Choi, D. Missed pancreatic ductal adenocarcinoma: Assessment of early imaging findings on prediagnostic magnetic resonance imaging. Eur. J. Radiol. 2015, 84, 1473–1479. [Google Scholar] [CrossRef]
- Sandrasegaran, K.; Lin, C.; Akisik, F.M.; Tann, M. State-of-the-art pancreatic MRI. AJR Am. J. Roentgenol. 2010, 195, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Morgan, D.E.; Schexnailder, P.; Navari, R.M.; Williams, G.R.; Bart Rose, J.; Li, Y.; Paluri, R. Accurate Therapeutic Response Assessment of Pancreatic Ductal Adenocarcinoma Using Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging With a Point-of-Care Perfusion Phantom: A Pilot Study. Investig. Radiol. 2019, 54, 16–22. [Google Scholar] [CrossRef]
- Huh, J.; Choi, Y.; Woo, D.C.; Seo, N.; Kim, B.; Lee, C.K.; Kim, I.S.; Nickel, D.; Kim, K.W. Feasibility of test-bolus DCE-MRI using CAIPIRINHA-VIBE for the evaluation of pancreatic malignancies. Eur. Radiol. 2016, 26, 3949–3956. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, J.M.; Park, J.H.; Kim, S.C.; Joo, I.; Han, J.K.; Choi, B.I. Solid pancreatic lesions: Characterization by using timing bolus dynamic contrast-enhanced MR imaging assessment—A preliminary study. Radiology 2013, 266, 185–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donati, F.; Boraschi, P.; Cervelli, R.; Pacciardi, F.; Lombardo, C.; Boggi, U.; Falaschi, F.; Caramella, D. 3T MR perfusion of solid pancreatic lesions using dynamic contrast-enhanced DISCO sequence: Usefulness of qualitative and quantitative analyses in a pilot study. Magn. Reson. Imaging 2019, 59, 105–113. [Google Scholar] [CrossRef]
- Liu, K.; Xie, P.; Peng, W.; Zhou, Z. Assessment of dynamic contrast-enhanced magnetic resonance imaging in the differentiation of pancreatic ductal adenocarcinoma from other pancreatic solid lesions. J. Comput. Assist. Tomogr. 2014, 38, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Liu, W.; Li, H.M.; Wang, Q.F.; Fu, C.X.; Wang, X.H.; Zhou, L.P.; Peng, W.J. Quantitative dynamic contrast-enhanced MR imaging for the preliminary prediction of the response to gemcitabine-based chemotherapy in advanced pancreatic ductal carcinoma. Eur. J. Radiol. 2019, 121, 108734. [Google Scholar] [CrossRef]
- Akisik, M.F.; Sandrasegaran, K.; Bu, G.; Lin, C.; Hutchins, G.D.; Chiorean, E.G. Pancreatic cancer: Utility of dynamic contrast-enhanced MR imaging in assessment of antiangiogenic therapy. Radiology 2010, 256, 441–449. [Google Scholar] [CrossRef]
- Feng, L.; Grimm, R.; Block, K.T.; Chandarana, H.; Kim, S.; Xu, J.; Axel, L.; Sodickson, D.K.; Otazo, R. Golden-angle radial sparse parallel MRI: Combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn. Reson. Med. 2014, 72, 707–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandarana, H.; Feng, L.; Block, T.K.; Rosenkrantz, A.B.; Lim, R.P.; Babb, J.S.; Sodickson, D.K.; Otazo, R. Free-breathing contrast-enhanced multiphase MRI of the liver using a combination of compressed sensing, parallel imaging, and golden-angle radial sampling. Investig. Radiol. 2013, 48, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, J.; Ruff, C.; Grosse, U.; Grozinger, G.; Horger, M.; Nikolaou, K.; Gatidis, S. Assessment of Hepatic Perfusion Using GRASP MRI: Bringing Liver MRI on a New Level. Investig. Radiol. 2019, 54, 737–743. [Google Scholar] [CrossRef]
- Kakar, S.; Pawlik, T.; Allen, P.; Vauthey, J. AJCC Cancer Staging Manual; Springer: New York, NY, USA, 2017. [Google Scholar]
- Yoon, J.H.; Lee, J.M.; Yu, M.H.; Hur, B.Y.; Grimm, R.; Block, K.T.; Chandarana, H.; Kiefer, B.; Son, Y. Evaluation of Transient Motion During Gadoxetic Acid-Enhanced Multiphasic Liver Magnetic Resonance Imaging Using Free-Breathing Golden-Angle Radial Sparse Parallel Magnetic Resonance Imaging. Investig. Radiol. 2018, 53, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Elbanna, K.Y.; Jang, H.J.; Kim, T.K. Imaging diagnosis and staging of pancreatic ductal adenocarcinoma: A comprehensive review. Insights Imaging 2020, 11, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, S.H.; Lee, J.M.; Cho, J.Y.; Lee, K.B.; Kim, J.E.; Moon, S.K.; Kim, S.J.; Baek, J.H.; Kim, S.H.; Kim, S.H.; et al. Small (</= 20 mm) pancreatic adenocarcinomas: Analysis of enhancement patterns and secondary signs with multiphasic multidetector CT. Radiology 2011, 259, 442–452. [Google Scholar] [CrossRef] [Green Version]
- Prokesch, R.W.; Chow, L.C.; Beaulieu, C.F.; Bammer, R.; Jeffrey, R.B., Jr. Isoattenuating pancreatic adenocarcinoma at multi-detector row CT: Secondary signs. Radiology 2002, 224, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Chandarana, H.; Feng, L.; Ream, J.; Wang, A.; Babb, J.S.; Block, K.T.; Sodickson, D.K.; Otazo, R. Respiratory Motion-Resolved Compressed Sensing Reconstruction of Free-Breathing Radial Acquisition for Dynamic Liver Magnetic Resonance Imaging. Investig. Radiol. 2015, 50, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Chitiboi, T.; Muckley, M.; Dane, B.; Huang, C.; Feng, L.; Chandarana, H. Pancreas deformation in the presence of tumors using feature tracking from free-breathing XD-GRASP MRI. J. Magn. Reson. Imaging 2019, 50, 1633–1640. [Google Scholar] [CrossRef] [PubMed]
- Young Park, J.; Min Lee, S.; Sub Lee, J.; Chang, W.; Hee Yoon, J. Free-breathing dynamic T1WI using compressed sensing-golden angle radial sparse parallel imaging for liver MRI in patients with limited breath-holding capability. Eur. J. Radiol. 2022, 152, 110342. [Google Scholar] [CrossRef]
Heavily T2WI | T2WI | DWI | DCE-MRI | Delayed CE T1WI | |
---|---|---|---|---|---|
Planes | Axial, coronal | Axial | Axial | Axial | Coronal, sagittal |
Sequence | HASTE | TSE | EPI | GRASP | CAIPIRINHA-VIBE |
TR (msec) | 900 | 2520 | 7100 | 3 | 3.7 |
TE (msec) | 130 | 95 | 48 | 1.58 | 1.23 |
Flip angle (degree) | 135 | 120 | 90 | 9 | 10 |
Thickness (mm) | 4 | 4 | 4.5 | 3 | 2.5 |
Interslice gap (mm) | 1 | 1 | 0.9 | 0 | 0 |
Resolution (mm2) | 0.7 × 0.7 | 1.2 × 1.2 | 1.6 × 1.6 | 1.4 × 1.4 | 0.8 × 0.8 |
Field of view (mm2) | 400 × 325 | 400 × 400 | 400 × 320 | 400 × 400 | 300 × 400 |
NEX | 1 | 1 | 1 | 1 | 1 |
B values (s/mm2) | - | - | 0, 50, 400, 800, 1000 | - | - |
Acquisition time (min:sec) | 0:42 | 1:36 | 4:49 | 5:48 | 0:14 |
Patient Characteristics | Value (%) |
---|---|
Age (years old) | 71.5 ± 12.6 |
Sex | |
Male | 31 (41.3) |
Female | 44 (58.7) |
Focal lesion | |
Presence | 38 (50.7) |
Absence | 37 (49.3) |
Radiological diagnosis of focal lesion (n = 38) | |
Pancreatic ductal adenocarcinoma | 22 (57.9) |
Cyst or cystadenoma | 14 (36.8) |
Solid pseudopapillary tumor | 1 (2.6) |
Neuroendocrine tumor | 1 (2.6) |
Histological diagnosis of focal lesion (n = 22) | |
Pancreatic ductal adenocarcinoma | 18 (81.8) |
Serous cystadenoma | 2 (9.1) |
Intraductal papillary mucinous neoplasm | 1 (4.5) |
IgG4-related disease | 1 (4.5) |
Reader 1 | Reader 2 | ICC | |
---|---|---|---|
Pancreas edge sharpness | 4.01 ± 0.67 | 3.80 ± 0.68 | 0.775 (0.644–0.858) |
Respiratory motion artifact | 4.68 ± 0.55 | 4.25 ± 0.72 | 0.462 (0.148–0.660) |
Streaking artifact | 4.23 ± 0.69 | 4.01 ± 0.76 | 0.716 (0.550–0.820) |
Noise | 4.25 ± 0.66 | 4.00 ± 0.68 | 0.679 (0.491–0.797) |
Overall image quality | 4.13 ± 0.78 | 3.93 ± 0.76 | 0.793 (0.672–0.869) |
Value | p-Value | ||||
---|---|---|---|---|---|
Peak-enhancement time (s) | Vessels | ||||
Aorta | 58.4 ± 9.0 | 0.917 | - | 0.054 | |
SMA | 58.5 ± 8.7 | 0.054 | - | ||
Celiac axis | 59.5 ± 9.6 | - | |||
Pancreatic parenchyma | |||||
Head | 83.2 ± 41.7 | 0.231 | - | 0.972 | |
Body | 86.5 ± 42.7 | 0.512 | - | ||
Tail | 84.1 ± 36.5 | - | |||
Peak concentration | Vessels | ||||
Aorta | 1.08 ± 0.54 | 0.806 | - | 0.004 | |
SMA | 1.08 ± 0.52 | 0.006 | - | ||
Celiac axis | 0.95 ± 0.47 | - | |||
Pancreatic parenchyma | |||||
Head | 0.21 ± 0.13 | 0.791 | - | 0.728 | |
Body | 0.21 ± 0.13 | 0.818 | - | ||
Tail | 0.21 ± 0.13 | - |
Pancreatic Cancer (n = 22) | No Pancreatic Cancer (n = 53) | Benign Lesion (n = 16) | p-Value, Cancer vs. No Cancer | p-Value, Cancer vs. Benign | |
---|---|---|---|---|---|
Peak-enhancement time (s) | |||||
Head | 102.6 ± 59.0 | 76.2 ± 30.1 | 91.1 ± 61.6 | 0.083 | 0.566 |
Body | 108.9 ± 56.4 | 77.2 ± 31.8 | 91.9 ± 61.6 | 0.020 | 0.241 |
Tail | 98.9 ± 28.4 | 77.9 ± 37.9 | 80.1 ± 19.7 | 0.013 | 0.018 |
Delay time (s) | |||||
Head | 54.2 ± 58.9 | 17.6 ± 27.0 | 23.0 ± 46.7 | 0.044 | 0.287 |
Body | 51.1 ± 56.0 | 18.5 ± 28.5 | 21.6 ± 46.5 | 0.001 | 0.097 |
Tail | 40.7 ± 29.0 | 19.6 ± 35.6 | 13.0 ± 19.8 | 0.001 | <0.004 |
Peak concentration | |||||
Head | 0.27 ± 0.19 | 0.18 ± 0.08 | 0.20 ± 0.10 | 0.071 | 0.151 |
Body | 0.31 ± 0.15 | 0.18 ± 0.08 | 0.18 ± 0.07 | 0.015 | 0.001 |
Tail | 0.33 ± 0.15 | 0.18 ± 0.09 | 0.16 ± 0.06 | 0.019 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, M.; Yoon, S.; Lee, Y.; Han, D. Evaluation of Perfusion Change According to Pancreatic Cancer and Pancreatic Duct Dilatation Using Free-Breathing Golden-Angle Radial Sparse Parallel (GRASP) Magnetic Resonance Imaging. Diagnostics 2023, 13, 731. https://doi.org/10.3390/diagnostics13040731
Choi M, Yoon S, Lee Y, Han D. Evaluation of Perfusion Change According to Pancreatic Cancer and Pancreatic Duct Dilatation Using Free-Breathing Golden-Angle Radial Sparse Parallel (GRASP) Magnetic Resonance Imaging. Diagnostics. 2023; 13(4):731. https://doi.org/10.3390/diagnostics13040731
Chicago/Turabian StyleChoi, Moonhyung, Seungbae Yoon, Youngjoon Lee, and Dongyeob Han. 2023. "Evaluation of Perfusion Change According to Pancreatic Cancer and Pancreatic Duct Dilatation Using Free-Breathing Golden-Angle Radial Sparse Parallel (GRASP) Magnetic Resonance Imaging" Diagnostics 13, no. 4: 731. https://doi.org/10.3390/diagnostics13040731
APA StyleChoi, M., Yoon, S., Lee, Y., & Han, D. (2023). Evaluation of Perfusion Change According to Pancreatic Cancer and Pancreatic Duct Dilatation Using Free-Breathing Golden-Angle Radial Sparse Parallel (GRASP) Magnetic Resonance Imaging. Diagnostics, 13(4), 731. https://doi.org/10.3390/diagnostics13040731