A Multiscale Polyp Detection Approach for GI Tract Images Based on Improved DenseNet and Single-Shot Multibox Detector
Abstract
:1. Introduction
- The application of a modified version of DenseNet called DenseNet-46 as a backbone and smoothly adapted to the SSD detector to improve its ability for small polyp detection.
- Based on the inception v4 stem part, the backbone DenseNet-46 front stem is improved, allowing the extraction of highly relevant features and contextual information.
- To capture enough patterns and representative information, we increased the filter numbers of the first convolution layers in the stem part of the DenseNet-46 backbone from 32 to 64.
- We omitted the unnecessary convolution layers of each dense block of the DenseNet-46 backbone to reduce the DC-SSDNet model’s complexity and to achieve a faster speed while preserving a lesser computation time.
- DC-SSDNet adds a couple of new dense and transition blocks to match the structure of SSD that detects targets in images using a single deep neural network.
- DC-SSDNet introduces additional convolution layers to the multiscale feature pyramid, which is consistent with the traditional SSD.
- The proposed model is trained from scratch.
- We conducted several experiments on three well-known datasets in the field (WCE, CVC-ClinicDB, and Etis-Larib) to verify the DC-SSDNet model’s effectiveness for a fair comparison with previously published methods of the literature.
- This manuscript provides a thorough examination of the benefits and drawbacks of the proposed framework.
2. Literature Review
3. Proposed Method
3.1. Compact DenseNet-46
3.1.1. Stem Block
3.1.2. Dense Block
3.1.3. Transition Block
3.1.4. Growth Rate
3.2. Multiscale Feature Pyramid Network
4. Experiments
4.1. Datasets and Experimental Environments
4.2. Training
4.3. Evaluation Indexes
4.4. Results and Discussion
4.4.1. Ablation Studies
4.4.2. SSD Results on WCE and Colonoscopy Datasets
4.4.3. Comparison with Existing Detection Methods
4.4.4. Visualization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GI tract | Gastrointestinal tract |
WCE | Wireless capsule endoscopy |
MICCAI | Medical Image Computing and Computer Assisted Intervention |
YOLO | You only look once |
SSD | Single-shot multibox detector |
R-CNN | Region-based convolutional neural network |
R-FCN | Region-based fully convolutional network |
DenseNet | Dense network |
DCNN | Deep convolutional neural network |
pool | pooling |
ResNet | Residual network |
FPN | Feature pyramid network |
DSSD | Deconvolutional single-shot detector |
ROI | Region of interest |
Conv | Convolutional layer |
DC-SSDNet | Densely connected single-shot multibox detector network |
MaxPool | Max pooling |
Pad | Padding |
AveragePool | Average pooling |
L2 Regul | L2 regularization |
VCE | Video capsule endoscopy |
Adam | Adaptive moment |
neg-pos-ratio | negative positive ratio |
mAP | Mean average precision |
FPS | Frames per second |
TP | True positive |
FP | False positive |
IoU | Intersection over union |
FN | False negative |
BN | Batch normalization |
FSSD | Fusion single-shot multibox detector |
References
- Dulf, E.H.; Bledea, M.; Mocan, T.; Mocan, L. Automatic Detection of Colorectal Polyps Using Transfer Learning. Sensors 2021, 21, 5704. [Google Scholar]
- Shin, Y.; Qadir, H.A.; Aabakken, L.; Bergsland, J.; Balasingham, I. Automatic colon polyp detection using region based deep cnn and post learning approaches. IEEE Access 2018, 6, 40950–40962. [Google Scholar]
- Souaidi, M.; Abdelouahad, A.A.; El Ansari, M. A fully automated ulcer detection system for wireless capsule endoscopy images. In Proceedings of the 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Fez, Morocco, 22–24 May 2017; pp. 1–6. [Google Scholar]
- Souaidi, M.; El Ansari, M. Automated Detection of Wireless Capsule Endoscopy Polyp Abnormalities with Deep Transfer Learning and Support Vector Machines. In Advanced Intelligent Systems for Sustainable Development (AI2SD’2020); Springer: Berlin/Heidelberg, Germany, 2020; pp. 870–880. [Google Scholar]
- Benhida, H.; Souadi, M.; El Ansari, M. Convolutional Neural Network for Automated Colorectal Polyp Semantic Segmentation on Colonoscopy Frames. In Proceedings of the 2022 9th International Conference on Wireless Networks and Mobile Communications (WINCOM), Rabat, Morocco, 26–29 October 2022; pp. 1–5. [Google Scholar]
- Lafraxo, S.; Ansari, M.E. Regularized Convolutional Neural Network for Pneumonia Detection Trough Chest X-rays. In Proceedings of the International Conference on Advanced Intelligent Systems for Sustainable Development, Tangier, Morocco, 21–26 December 2020; pp. 887–896. [Google Scholar]
- Souaidi, M.; El Ansari, M. Multi-scale analysis of ulcer disease detection from WCE images. IET Image Process. 2019, 13, 2233–2244. [Google Scholar]
- Nogueira-Rodríguez, A.; Domínguez-Carbajales, R.; Campos-Tato, F.; Herrero, J.; Puga, M.; Remedios, D.; Rivas, L.; Sánchez, E.; Iglesias, Á.; Cubiella, J.; et al. Real-time polyp detection model using convolutional neural networks. Neural Comput. Appl. 2022, 34, 10375–10396. [Google Scholar]
- Chen, X.; Zhang, K.; Lin, S.; Dai, K.F.; Yun, Y. Single Shot Multibox Detector Automatic Polyp Detection Network Based on Gastrointestinal Endoscopic Images. Comput. Math. Methods Med. 2021, 2021, 2144472. [Google Scholar] [CrossRef]
- Souaidi, M.; El Ansari, M. A New Automated Polyp Detection Network MP-FSSD in WCE and Colonoscopy Images based Fusion Single Shot Multibox Detector and Transfer Learning. IEEE Access 2022, 10, 47124–47140. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar]
- Dai, J.; Li, Y.; He, K.; Sun, J. Object Detection via Region-Based Fully Convolutional Networks; People’s Posts and Telecommunications Press: Beijing, China, 2016. [Google Scholar]
- Zhai, S.; Shang, D.; Wang, S.; Dong, S. DF-SSD: An improved SSD object detection algorithm based on DenseNet and feature fusion. IEEE Access 2020, 8, 24344–24357. [Google Scholar]
- Souaidi, M.; Charfi, S.; Abdelouahad, A.A.; El Ansari, M. New features for wireless capsule endoscopy polyp detection. In Proceedings of the 2018 International Conference on Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, 2–4 April 2018; pp. 1–6. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Chen, B.L.; Wan, J.J.; Chen, T.Y.; Yu, Y.T.; Ji, M. A self-attention based faster R-CNN for polyp detection from colonoscopy images. Biomed. Signal Process. Control 2021, 70, 103019. [Google Scholar]
- Pacal, I.; Karaman, A.; Karaboga, D.; Akay, B.; Basturk, A.; Nalbantoglu, U.; Coskun, S. An efficient real-time colonic polyp detection with YOLO algorithms trained by using negative samples and large datasets. Comput. Biol. Med. 2022, 141, 105031. [Google Scholar]
- Hong-Tae, C.; Ho-Jun, L.; Kang, H.; Yu, S. SSD-EMB: An Improved SSD Using Enhanced Feature Map Block for Object Detection. Sensors 2021, 21, 2842. [Google Scholar]
- Dai, K.; R-FCN, Y. Object detection via region-based fully convolutional networks. arXiv 2016, arXiv:1605.06409. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Fu, C.Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. Dssd: Deconvolutional single shot detector. arXiv 2017, arXiv:1701.06659. [Google Scholar]
- Jia, X.; Mai, X.; Cui, Y.; Yuan, Y.; Xing, X.; Seo, H.; Xing, L.; Meng, M.Q.H. Automatic polyp recognition in colonoscopy images using deep learning and two-stage pyramidal feature prediction. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1570–1584. [Google Scholar]
- Qadir, H.A.; Shin, Y.; Solhusvik, J.; Bergsland, J.; Aabakken, L.; Balasingham, I. Polyp detection and segmentation using mask R-CNN: Does a deeper feature extractor CNN always perform better? In Proceedings of the 2019 13th International Symposium on Medical Information and Communication Technology (ISMICT), Oslo, Norway, 8–10 May 2019; pp. 1–6. [Google Scholar]
- Tashk, A.; Nadimi, E. An innovative polyp detection method from colon capsule endoscopy images based on a novel combination of RCNN and DRLSE. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–6. [Google Scholar]
- Liu, M.; Jiang, J.; Wang, Z. Colonic polyp detection in endoscopic videos with single shot detection based deep convolutional neural network. IEEE Access 2019, 7, 75058–75066. [Google Scholar]
- Wang, Y.; Li, H.; Jia, P.; Zhang, G.; Wang, T.; Hao, X. Multi-scale densenets-based aircraft detection from remote sensing images. Sensors 2019, 19, 5270. [Google Scholar]
- Misawa, M.; Kudo, S.E.; Mori, Y.; Hotta, K.; Ohtsuka, K.; Matsuda, T.; Saito, S.; Kudo, T.; Baba, T.; Ishida, F.; et al. Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video). Gastrointest. Endosc. 2021, 93, 960–967. [Google Scholar]
- Jeong, J.; Park, H.; Kwak, N. Enhancement of SSD by concatenating feature maps for object detection. arXiv 2017, arXiv:1705.09587. [Google Scholar]
- Zhang, X.; Chen, F.; Yu, T.; An, J.; Huang, Z.; Liu, J.; Hu, W.; Wang, L.; Duan, H.; Si, J. Real-time gastric polyp detection using convolutional neural networks. PLoS ONE 2019, 14, e0214133. [Google Scholar]
- Wang, T.; Shen, F.; Deng, H.; Cai, F.; Chen, S. Smartphone imaging spectrometer for egg/meat freshness monitoring. Anal. Methods 2022, 14, 508–517. [Google Scholar]
- Souaidi, M.; El Ansari, M. Multi-Scale Hybrid Network for Polyp Detection in Wireless Capsule Endoscopy and Colonoscopy Images. Diagnostics 2022, 12, 2030. [Google Scholar]
- Prasath, V.S. Polyp detection and segmentation from video capsule endoscopy: A review. J. Imaging 2016, 3, 1. [Google Scholar]
- Bernal, J.; Sánchez, F.J.; Fernández-Esparrach, G.; Gil, D.; Rodríguez, C.; Vilariño, F. WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 2015, 43, 99–111. [Google Scholar]
- We, O. ETIS-Larib Polyp DB. 2015. Available online: https://polyp.grand-challenge.org/EtisLarib/ (accessed on 27 March 2022).
- Ma, W.; Wang, X.; Yu, J. A Lightweight Feature Fusion Single Shot Multibox Detector for Garbage Detection. IEEE Access 2020, 8, 188577–188586. [Google Scholar]
- Shen, Z.; Liu, Z.; Li, J.; Jiang, Y.G.; Chen, Y.; Xue, X. Dsod: Learning deeply supervised object detectors from scratch. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1919–1927. [Google Scholar]
- Liu, X.; Guo, X.; Liu, Y.; Yuan, Y. Consolidated domain adaptive detection and localization framework for cross-device colonoscopic images. Med. Image Anal. 2021, 71, 102052. [Google Scholar]
- Wang, D.; Zhang, N.; Sun, X.; Zhang, P.; Zhang, C.; Cao, Y.; Liu, B. Afp-net: Realtime anchor-free polyp detection in colonoscopy. In Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), Portland, OR, USA, 4–6 November 2019; pp. 636–643. [Google Scholar]
- Qadir, H.A.; Shin, Y.; Solhusvik, J.; Bergsland, J.; Aabakken, L.; Balasingham, I. Toward real-time polyp detection using fully CNNs for 2D Gaussian shapes prediction. Med Image Anal. 2021, 68, 101897. [Google Scholar]
- Pacal, I.; Karaboga, D. A robust real-time deep learning based automatic polyp detection system. Comput. Biol. Med. 2021, 134, 104519. [Google Scholar]
- Krenzer, A.; Banck, M.; Makowski, K.; Hekalo, A.; Fitting, D.; Troya, J.; Sudarevic, B.; Zoller, W.G.; Hann, A.; Puppe, F. A Real-Time Polyp Detection System with Clinical Application in Colonoscopy Using Deep Convolutional Neural Networks. J. Imaging 2023, 9, 26. [Google Scholar]
Phase | Layer | Setting | Output Size (Input 299 × 299 × 3) |
---|---|---|---|
Stem block | |||
Phase 1 | Dense block (1) | ||
Transition block (1) | |||
Phase 2 | Dense block (2) | ||
Transition block (2) | |||
Phase 3 | Dense block (3) | ||
Transition block (3) | |||
Phase 4 | Dense block (4) | ||
Transition block (4) | |||
Phase 5 | Dense block (5) | ||
Transition block (5) | |||
Phase-6 | Dense block (6) |
Hyperparameters | Values |
---|---|
Optimizer | Adam |
beta_1 | 0.9 |
beta_2 | 0.999 |
epsilon | 1 × 10−8 |
Initial learning rate | 0.0001 |
Learning rate decay drop factor | 0.5 |
Epoch drop factor | 10 |
epoch < 80: 0.0001 | |
Learning rate | epoch < 100: 0.00001 |
0.000001 otherwise | |
parameter | 1 |
neg_pos_ratio | 3 |
Batch size | 32 |
Training epochs | 100 |
Steps per epoch | 500 |
Aspect ratio | 1–2 |
Training Data | Test Data | Stem Block | K | BN | Transition Pool | mAP (%) |
---|---|---|---|---|---|---|
× | 16 | × | Average | 81.96 | ||
× | 32 | ✓ | Max | 83.54 | ||
✓ | 48 | ✓ | Average | 91.62 | ||
× | 48 | ✓ | Max | 84.97 | ||
WCE | WCE | × | 32 | × | Average | 85.41 |
✓ | 32 | × | Max | 90.56 | ||
✓ | 16 | × | Max | 88.16 | ||
✓ | 32 | × | Average | 93.96 | ||
✓ | 16 | × | Average | 89.74 | ||
× | 48 | × | Average | 84.54 | ||
× | 16 | × | Average | 80.68 | ||
× | 32 | Max | 81.32 | |||
✓ | 48 | ✓ | Average | 89.22 | ||
× | 48 | ✓ | Max | 83.14 | ||
CVC-ClinicDB | × | 32 | × | Average | 83.75 | |
joint | CVC-CLinicDB | ✓ | 32 | × | Max | 88.09 |
Etis-Larib | ✓ | 16 | × | Max | 87.09 | |
✓ | 32 | × | Average | 92.24 | ||
✓ | 16 | × | Average | 89.36 | ||
× | 48 | × | Average | 84.77 | ||
× | 16 | × | Average | 79.98 | ||
× | 32 | ✓ | Max | 81 | ||
✓ | 48 | ✓ | Average | 89.46 | ||
× | 48 | ✓ | Max | 83.98 | ||
CVC-ClinicDB | × | 32 | × | Average | 84.52 | |
joint | Etis-Larib | ✓ | 32 | × | Max | 87.55 |
Etis-Larib | ✓ | 16 | × | Max | 87.14 | |
✓ | 32 | × | Average | 90.86 | ||
✓ | 16 | × | Average | 89.34 | ||
× | 48 | × | Average | 82.72 |
Training Data | Methods | Backbone | Input Size | Pretrain | FPS | [email protected] (%) |
---|---|---|---|---|---|---|
SSD300 | VGG16 | 300 × 300 × 3 | ✓ | 46 | 77.2 | |
SSD300 | ResNet-101 | 300 × 300 × 3 | ✓ | 47.3 | 81.65 | |
SSD500 | VGG16 | 300 × 300 × 3 | ✓ | 19 | 79.45 | |
SSD500 | ResNet-101 | 300 × 300 × 3 | ✓ | 20 | 84.95 | |
WCE | FSSD300 | VGG16 | 300 × 300 × 3 | ✓ | 65.9 | 89.78 |
FSSD500 | VGG16 | 500 × 500 × 3 | ✓ | 69.6 | 88.71 | |
DF-SSD300 [16] | DenseNet-S-32-1 | 300 × 300 × 3 | × | 11.6 | 91.24 | |
L_SSD [39] | ResNet-101 | 224 × 224 × 3 | ✓ | 40 | 89.98 | |
MP-FSSD [10] | VGG16 | 300 × 300 × 3 | ✓ | 62.57 | 93.4 | |
Hyb-SSDNet [35] | Inception v4 | 299 × 299 × 3 | ✓ | 44.5 | 93.29 | |
DSOD300 [40] | DS/64-192-48-1 | 300 × 300 × 3 | × | 17.4 | 91.70 | |
DC-SSDNet (ours) | DenseNet-46 | 299 × 299 × 3 | × | 32.5 | 93.96 |
Training Data | Methods | Backbone | Input Size | Pretrain | FPS | [email protected] (%) | |
---|---|---|---|---|---|---|---|
CVC-ClinicDB | ETIS-Larib | ||||||
SSD300 | VGG16 | 300 × 300 × 3 | ✓ | 46 | 74.5 | 74.12 | |
SSD300 | ResNet-101 | 300 × 300 × 3 | ✓ | 47.3 | 78.85 | 75.73 | |
CVC-ClinicDB | SSD500 | VGG16 | 500 × 500 × 3 | ✓ | 19 | 78.38 | 75.45 |
joint | SSD500 | ResNet-101 | 500 × 500 × 3 | ✓ | 20 | 82.74 | 80.14 |
ETIS-Larib | FSSD300 | VGG16 | 300 × 300 × 3 | ✓ | 65.9 | 87.26 | 86.3 |
FSSD500 | VGG16 | 500 × 500 × 3 | ✓ | 69.6 | 87.54 | 86.92 | |
DF-SSD300 [16] | DenseNet-S-32-1 | 300 × 300 × 3 | × | 11.6 | 89.92 | 86.84 | |
L_SSD [39] | ResNet-101 | 224 × 224 × 3 | ✓ | 40 | 88.18 | 87.23 | |
MP-FSSD [10] | VGG16 | 300 × 300 × 3 | ✓ | 62.57 | 89.82 | 90 | |
Hyb-SSDNet [35] | Inception v4 | 299 × 299 × 3 | ✓ | 44.5 | 91.93 | 91.10 | |
DSOD300 [40] | DS/64-192-48-1 | 300 × 300 × 3 | × | 17.4 | 90 | 89.3 | |
DC-SSDNet (ours) | DenseNet-46 | 299 × 299 × 3 | × | 32.5 | 92.24 | 90.86 |
Training Dataset | Methods | Testing Dataset | Backbone Network | Pretrain | Input Size | Prec (%) | Recall (%) | F1 Score (%) |
---|---|---|---|---|---|---|---|---|
WCE | DC-SSDNet (ours) | WCE | DenseNet-46 | × | 93.96% | 90.82% | 90.7% | |
CVC-ClinicDB + ETIS-Larib | DC-SSDNet (ours) | CVC-ClinicDB | DenseNet-46 | × | 92.24% | 91% | 88.40% | |
CVC-ClinicDB + ETIS-Larib | DC-SSDNet (ours) | ETIS-Larib | DenseNet-46 | × | 90.86% | 90.4% | 89.12% | |
CVC-ClinicDB + ETIS-Larib | Shin et al., 2018 [2] | ETIS-Larib | Inception ResNet | ✓ | 92.2% | 69.7% | 79.4% | |
ETIS-Larib+CVC-ClinicDB | Souaidi et al., 2022 [35] | ETIS-Larib | Inception v4 | ✓ | 91.10% | 87% | 89% | |
SUN+ PICCOLO+ CVC-ClinicDB | Ishak et al., 2021 [21] | ETIS-Larib | YOLOv3 | ✓ | 90.61% | 91.04% | 90.82% | |
WCE +CVC-ClinicDB | Souaidi et al., 2022 [10] | ETIS-Larib | VGG16 | ✓ | 90.02% | × | × | |
CVC-ClinicDB | Liu et al., 2021 [41] | ETIS-Larib | ResNet-101 | ✓ | 77.80% | 87.50% | 82.40% | |
GIANA 2017 | Wang et al., 2019 [42] | ETIS-Larib | AFP-Net(VGG16) | ✓ | 88.89% | 80.7% | 84.63% | |
CVC-ClinicDB | Qadir et al., 2021 [43] | ETIS-Larib | ResNet34 | ✓ | 86.54% | 86.12% | 86.33% | |
CVC-ClinicDB | Pacal and Karaboga, 2021 [44] | ETIS-Larib | CSPDarkNet53 | ✓ | 91.62% | 82.55% | 86.85% | |
CVC-ClinicDB | Wang et al., 2019 [42] | ETIS-Larib | Faster R-CNN (VGG16) | × | 88.89% | 80.77% | 84.63% | |
CVC-VideoClinicDB | Krenzer et al., 2019 [45] | CVC-VideoClinicDB | YOLOv5 | × | 73.21% | × | 79.55% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souaidi, M.; Lafraxo, S.; Kerkaou, Z.; El Ansari, M.; Koutti, L. A Multiscale Polyp Detection Approach for GI Tract Images Based on Improved DenseNet and Single-Shot Multibox Detector. Diagnostics 2023, 13, 733. https://doi.org/10.3390/diagnostics13040733
Souaidi M, Lafraxo S, Kerkaou Z, El Ansari M, Koutti L. A Multiscale Polyp Detection Approach for GI Tract Images Based on Improved DenseNet and Single-Shot Multibox Detector. Diagnostics. 2023; 13(4):733. https://doi.org/10.3390/diagnostics13040733
Chicago/Turabian StyleSouaidi, Meryem, Samira Lafraxo, Zakaria Kerkaou, Mohamed El Ansari, and Lahcen Koutti. 2023. "A Multiscale Polyp Detection Approach for GI Tract Images Based on Improved DenseNet and Single-Shot Multibox Detector" Diagnostics 13, no. 4: 733. https://doi.org/10.3390/diagnostics13040733
APA StyleSouaidi, M., Lafraxo, S., Kerkaou, Z., El Ansari, M., & Koutti, L. (2023). A Multiscale Polyp Detection Approach for GI Tract Images Based on Improved DenseNet and Single-Shot Multibox Detector. Diagnostics, 13(4), 733. https://doi.org/10.3390/diagnostics13040733