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Abstract: Crohn’s disease and ulcerative colitis remain debilitating disorders, characterized by
progressive bowel damage and possible lethal complications. The growing number of applications
for artificial intelligence in gastrointestinal endoscopy has already shown great potential, especially
in the field of neoplastic and pre-neoplastic lesion detection and characterization, and is currently
under evaluation in the field of inflammatory bowel disease management. The application of
artificial intelligence in inflammatory bowel diseases can range from genomic dataset analysis and
risk prediction model construction to the disease grading severity and assessment of the response
to treatment using machine learning. We aimed to assess the current and future role of artificial
intelligence in assessing the key outcomes in inflammatory bowel disease patients: endoscopic
activity, mucosal healing, response to treatment, and neoplasia surveillance.

Keywords: artificial intelligence; automated diagnosis; inflammatory bowel disease; Crohn’s disease;
ulcerative colitis; IBD-associated neoplasia

1. Introduction

Inflammatory bowel diseases (IBD), such as ulcerative colitis (UC) and Crohn’s disease
(CD), pose significant challenges with regard to diagnostic and management strategies.
Moreover, their incidence is increasing globally and their impact on one’s quality of life
is not negligible [1]. Important heterogeneity exists in both the quality and interpretation
of diagnostic information due to differences in physician experience and clinical practice,
leading to a considerable variation in disease management among gastroenterologists [2].

One of the most important complications of IBD is its association with an increased
rate of colorectal neoplasia. Dysplasia and colorectal adenocarcinoma are associated with
longstanding active inflammation, severe disease, colonic stricture, and post-inflammatory
polyps, as well as other risk factors that are not directly linked to IBD, such as a personal
history of dysplasia, a family history of colorectal cancer, and concomitant primary scleros-
ing cholangitis [3]. Endoscopy remains the cornerstone of IBD management, with a key role
in diagnosis, treatment, and surveillance. AI could further enhance the role of endoscopy,
from grading the disease severity, the assessment of the response to treatment, or neoplasia
surveillance [4]. We aimed to review the current and future role of artificial intelligence
(AI) in assessing the critical key outcomes in IBD patients: disease activity, mucosal healing,
response to treatment, and neoplasia surveillance.

2. Understanding the Role of Artificial Intelligence in Gastroenterology

Advances in AI are driving important changes in medicine, and it is expected to
provide, in the near future, significant improvements in patient care across a wide range
of clinical settings [5]. AI has the ability to analyze large amounts of complex data at a
significantly faster pace than humans, highlighting details that might be overlooked by
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the human eye, ensuring a precise and objective evaluation of the data [6]. AI applications
include machine learning, neural networks, and deep learning (Figure 1). The fundamental
principle is machine learning (ML), which is defined as the ability to automatically build
mathematical algorithms from the input of raw training data in order to make decisions
in new circumstances without human surveillance [7]. They can learn from experience,
without being specifically programmed.
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Deep learning (DL) is a fast-growing machine-learning method which has become the
dominant approach for recent work in the ML field in recent years. Convolutional neural
networks (CNNs), inspired by the neural network of the human brain, can enable a fast
and accurate image discrimination and video analysis [8]. These applications of AI can be
used in upper gastrointestinal endoscopy, such as the assessment of early gastric cancer, the
identification of H. pylori, dysplasia in Barrett’s esophagus or colonoscopy, for colorectal
polyp detection, and for assessing advanced neoplasia in colonic polyp or endocytoscopy
to predict persistent histological inflammation in inflammatory bowel disease, allowing for
breakthroughs in medical imaging recognition [9,10].

Computer-aided diagnosis (CAD) systems have been recently introduced in clinical
practice (EndoBrain, GI Genius, Discovery, Endo-Aid, CAD EYE, Endo-screener or Wise
vision.), providing the real-time detection and diagnosis of endoscopic lesions, acting as a
quality controller and training vector for endoscopists [11]. The main advantages offered
by CAD systems compared to traditional imaging methods are a more comprehensive
imaging information compiling, better reproducibility, and the ability to implement an
automatic selection of the region of interest.

CAD EYETM (Fujifilm, Tokyo, Japan) is the first CAD system to combine computer-
aided detection (CADe), which detects gastrointestinal lesions, and computer-aided diag-
nosis (CADx), which characterizes gastrointestinal lesions on the same platform (Figure 2),
demonstrating a better performance than the human eye [12]. CADe uses LCI to enlighten
differences in color in the red zone and CADx uses BLI, which varies the light emission
ratios of multiple lights with different wavelengths to distinguish polyps by intensifying
minute vessels and structures in the mucosa [13]. A retrospective trial of colorectal polyps
evaluated its effectiveness by using endoscopic images obtained from seven centers as
validation images. The detection sensitivities of white light imaging (WLI) and linked
color imaging (LCI) for the CADe system were 94.5% and 96%. The accuracy of WLI and
blue light imaging (BLI) in CADx was 93.2% and 94.9% [12]. However, to date, the CAD
EYE system can only be used to evaluate colorectal lesions, which it can only classify as
neoplastic or hyperplastic, with further applications currently under development (such as
diagnosis of cancer invasion depth, prediction of metastasis, and recurrence) [14].
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Figure 2. CAD EYETM Software (Fujifilm, Tokyo, Japan); panel (A)—CADe function. A polyp is
identified in WLI and marked using an annotation box; panel (B)—CADx function. The polyp is
evaluated by CAD EYE in BLI and a diagnosis of hyperplastic polyp is indicated at the bottom of
the monitor screen. The position and outline of the polyp is also indicated in the lower right part of
the monitor.

3. Potential Applications of AI in IBD

In IBD, the endoscopic assessment of disease extension and severity, as well as mucosal
healing and the early detection of neoplasia, represent key factors in ensuring adequate
patient management [15,16]. Emerging as a valuable tool in IBD diagnosis and management,
artificial intelligence offers the possibility of the simultaneous analysis of miscellaneous
biological data by permitting a large-volume input for machine learning models, such
as cross-sectional imaging, endoscopic and histologic imaging, inflammation biomarkers,
as well as gut microbiota composition and gene expression [17–19]. ML algorithms can
learn relevant features from existing patient databases and compare them to the known
outcomes, which can, in turn, be used to predict the patient’s prognosis. As the application
areas of AI in IBD will continue to expand, one significant area of interest is represented
by the long term follow-up of these patients, including the prediction of the treatment
response and relapse as well as screening for IBD-associated colonic neoplasia (Figure 3).
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4. The Role of Artificial Intelligence in Assessing Disease Activity

An endoscopic assessment continues to represent the gold standard for diagnosis,
disease severity assessment, and evaluating the response to therapy [20,21]. Efforts to
standardize the endoscopic scoring of disease activity have resulted in many endoscopic
scores [15,16]. However, the endoscopic assessment of disease severity is limited by the
fact that endoscopic scores are rarely used in everyday practice and most scoring systems
are still not yet validated [15], as well as the fact that this assessment is subjected to
interobserver variability [22].

Advances in the use of artificial intelligence can offer a solution to the inherent subjec-
tivity of human interpretation, aiming to eliminate bias and variability, as well as improving
the precision and accuracy in quantifying disease severity. Moreover, integrating AI algo-
rithms in an endoscopic assessment offers the possibility of analyzing large databases and
identifying occult disease patterns. In recent years, a great body of evidence has emerged
regarding the role of AI in assessing disease activity, as deep learning algorithms have
shown satisfying results in UC [23–26]. Bhambhavi et al. have trained a CNN model
using still images of endoscopy in order to recognize and classify images according to the
endoscopic Mayo score (EMS); the final model classified MES 3 disease with an AUC of
0.96, MES 2 disease with an AUC of 0.86, and MES 1 disease with an AUC 0.89; the overall
accuracy was 77.2% [23] Gutierrez et al. trained a deep learning-based system to assess the
EMS on raw full length colonoscopies collected from Etrolizumab clinical trials, with great
results being obtained (AUROC = 0.84 for Mayo Clinic Endoscopic Subscore ≥ 1, 0.85 for
Mayo Clinic Endoscopic Subscore ≥ 2, and 0.85 for Mayo Clinic Endoscopic Subscore ≥ 3,
respectively) [24]. In another study, Yao et al. obtained a 57.1% automated and central
reviewer agreement, which improved to 69.5% when the reviewer disagreement was taken
into consideration [26]. Last but not least, Takenaka et al. developed a deep neural network
algorithm for UC by using almost 40,000 images of colonoscopy and almost 7000 biopsy
results from 2012 patients with UC undergoing a colonoscopy between January 2014 and
March 2018, while patients who underwent a colonoscopy between April 2018 and April
2019 were used for validation purposes; endoscopic remission was defined as the UC
endoscopic index for a severity score of 0, while histologic remission was defined as a
Geboes score of 3 or less. The algorithm identified patients with endoscopic remission
with a 90.1% accuracy (95% confidence interval [CI] 89.2–90.9%) [23]. Although not as
significant, data on the impact of AI in CD patients is emerging as well [27–29]. Table 1
summarizes the role of AI in IBD assessment and management.

Treatment targets have shifted significantly in the past decade, from achieving clini-
cal remission to mucosal healing (MH), an endpoint that could alter the natural disease
course [30]. MH is associated with a lower risk of relapse, hospitalization, surgery, and
neoplasia [31]. There is no consensus regarding the definition of MH, despite the many
endoscopic scoring systems proposed in recent years. Recent society guidelines [32] state
that the following criteria are considered acceptable criteria of mucosal healing: for Crohn’s
disease, a Simple Endoscopic Score for Crohn’s Disease (SES-CD) of <3 or the absence of
ulcerations (SES-CD ulceration subscore = 0), and for ulcerative colitis, a Mayo endoscopic
subscore = 0 points or UCEIS ≤1. However, these scores lack validation in prospective
studies and reproducibility is substandard. For example, a study conducted by Daperno
et al. [33] has shown that for both the Mayo endoscopic subscore and SES-CD, the inter-
observer agreement is suboptimal.

The results of a recent systematic review showed that AI algorithms for the prediction
of endoscopic or histologic disease activity in UC performed with an overall sensitivity and
specificity of 78% (median, range 72–83, IQR 5.5) and 91% (median, range 86–96, IQR 5),
respectively [34].

Ozawa et al. [35] evaluated 841 colonoscopies from patients diagnosed with ulcerative
colitis with the help of a trained convolutional neural network (CNN) and observed a
high level of performance in identifying disease activity of Mayo 0 and 0–1 (AUC 0.86
and 0.98, respectively), with a better performance in recognizing Mayo 0 scores in the
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rectum compared to the left or right colon (AUC = 0.92, 0.83 and 0.83, respectively).
Similarly, Takenaka et al. [36] trained a deep neural network (DNN) to assess endoscopic
and histologic disease activity based on the ulcerative colitis endoscopic index of severity
score (UCEIS) and the Geboes score of histology, defining MH as the combination of an
UCEIS score of 0 and a Geboes’ score of ≤3. The authors found that the deep neural network
had a high sensitivity (92.0%) and specificity (91.3%) for evaluating mucosal healing.
Correlation coefficients between the DNN and expert endoscopists and pathologists were
also remarkable (0.917 and 0.859, respectively), showing that DNN may have better overall
results when compared to CNN. It is worth mentioning that data were gathered from
a single tertiary care center for IBD and, as such, their applicability in a wider clinical
practice might not be as successful. These results were later applied in a CAD-driven
endoscopic assessment of UC by the same study group, showing potential in predicting
patient prognosis [25].

Table 1. Summary of existing studies using artificial intelligence in IBD management.

Study Study Type Modality AI Classifier Aim of AI Use Training Set Results
Accuracy Sensitivity Specificity

Quénéhervé
L et al. [37] Retrospective CFLC Automated

analysis method
Discrimination between

CD and UC 12.900 images 91.0 74.0 97.0

Stidham R
et al. [38] Retrospective WLI CNN

Discriminating
endoscopic remission

from moderately-severe
disease UC

16.514 images 83.0 96.0

Bossuyt P
et al. [39] Prospective WLI Integration of pixel

color data
Assessment of disease

activity in UC 35 patients R = 0.65 RD correlated with RHI

Ozawa T
et al. [35] Retrospective WLI CNN Mucosal healing in UC −26.304 images AUROC 0.98 (Mayo 0–1)

Takenaka
et al. [36] Prospective WLI DNN 40.758 images 90.1 93.3 87.8

Maeda
et al. [40] Retrospective EC SVM Prediction of persistent

inflammation 12.900 images 91.0 74.0 97.0

AI, artificial intelligence; IBD, inflammatory bowel disease; EC, endocytoscopy; CLEC, confocal laser endomi-
croscopy; WLI, while light imaging; CD, Crohn’s disease; UC, ulcerative colitis; SVM, support vector machine;
CNN, convolutional neural network; AUROC, area under the receiver operating curve; RD, red density; RHI,
Robarts histological index.

Histologic healing is not yet included in the therapeutic targets in IBD management
but is gaining increased attention and could be used as an adjunct to endoscopic remission
to represent a deeper level of healing [21]. Some authors started researching deep learning
strategies focused on histologic healing. Gui et al. [41] recently developed a histological
index, aligned to endoscopy and suited to apply to an AI system to evaluate the inflam-
matory activity, the Paddington International virtual ChromoendoScopy ScOre (PICaSSO)
Histologic Remission Index (PHRI). This AI algorithm differentiated active from quiescent
UC with a 78% sensitivity, 91.7% specificity, and 86% accuracy.

As the persistence of histological inflammation is a risk factor for clinical relapse
as well as a driver for colorectal neoplasia, AI-assisted methods of detecting residual
inflammation can be an important tool in long-term surveillance in IBD populations.
Maeda et al. [41] used a CAD-assisted machine learning model to detect the severity of
histologic inflammation using endocytoscopy-enhanced colonoscopy still images from
ulcerative colitis patients, achieving an accuracy, sensitivity, and specificity of 90%, 74%,
and 91%, respectively. However, the applicability of endocytoscopy-enhanced colonoscopy
is limited in real life practice due to increased costs and procedural times as well as the
limited number of physicians with EC experience.

The versatility of AI means that algorithms are not only limited to conventional
endoscopy but can also be applied to videocapsule endoscopy (VCE) [42]. In a study of AI
in Crohn’s disease patients undergoing videocapsule endoscopy, Barash et al. [43] observed
an accuracy of the algorithm of 0.91 for discriminating grade 1 vs. grade 3 ulcers, 0.78 for
grade 2 vs. grade 3, and 0.624 for grade 1 vs. grade 2.

Even though colonoscopy with ileal intubation is the first-line investigation in sus-
pected IBD, VCE plays a pivotal role [15,44], along with other imaging modalities such as
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enteroscopy and cross-sectional imaging in diagnosing CD restricted to the small bowel.
Adding AI to conventional VCE could increase the diagnosis accuracy and help charac-
terize disease extend and severity. AI could enhance the detection rate of subtle ulcers
that are difficult to discriminate from normal tissue. Fan et al. were the first to exploit a
deep learning framework on automated ulcer and erosion detection in VCE images with
promising results: the accuracy for the ulcer was 95.16% and 95.34%, a sensitivity of 96.80%
and 93.67% was obtained, and a specificity of 94.79% and 95.98% was achieved, corre-
spondingly [45]. Another study showed that a CNN system reduced the reading time of
endoscopists without decreasing the detection rate of mucosal breaks (3.1 vs. 12.2 min) [46].

5. The Role of Artificial Intelligence in Screening for Early Neoplasia in IBD

The association of longstanding inflammatory bowel diseases (IBDs), especially ul-
cerative colitis, with colorectal cancer is already well acknowledged. A young age at
diagnosis, longer disease duration, higher inflammatory burden, greater extent, family
history of colorectal cancer (CRC), and association with primary sclerosing cholangitis are
the risk factors for neoplasia development [47,48]. Persistent levels of inflammation, with
repeated flares of disease, can lead to the oncogenic insult of the colonic epithelium in these
patients [49,50].

Colonoscopic findings in IBD surveillance can be classified as polypoid or non-
polypoid lesions and invisible dysplasia. Sporadic adenomas may appear as discrete,
visible lesions, but they also appear as a “field cancerization” that develops in IBD
when the entire mucosa is chronically inflamed, increasing the risk of synchronous and
metachronous neoplasms [51]. The current guidelines (European Crohn’s and Colitis
Organisation—ECCO, American Gastroenterological Association—AGA, and the British
Society of Gastroenterology—BSG) recommend that surveillance colonoscopies should
begin in 8–10 years after the onset of the symptoms, and should be done at 1, 2–3, and
5 years in high-, intermediate-, and low-risk patients, respectively [52–56]. Patients with
colonic stenosis detected within 5 years after diagnosis should have a low threshold for
cancer screening, as they are at a high risk of developing CRC and a colonoscopy should be
performed annually [57].

Current surveillance strategies include high-definition endoscopy and chromoen-
doscopy, with indigo-carmine or methylene blue, and targeted biopsies of abnormal ap-
pearing mucosa [58]. Virtual chromoendoscopy is considered a suitable alternative to dye
chromoendoscopy when using high-definition endoscopy [59,60]. If virtual or dye-based
chromoendoscopy are not available, non-targeted biopsies every 10 cm should be taken
and additional biopsies should be collected from areas of previously known dysplasia or
poor mucosal visibility.

One meta-analysis [58] revealed that chromoendoscopy increases the yield of dysplasia
compared with white-light endoscopy (absolute risk increase = 6% (3–9%)). However,
conventional chromoendoscopy is a time-consuming and operator-dependent method,
requiring an adequate bowel preparation and mucosal healing [61].

Despite the development of high-definition endoscopes and dye-based chromoen-
doscopy, the mortality and morbidity related to IBD neoplasia remains high [62,63]. In
order to address some of the limitations in the current strategies of neoplasia surveillance,
such as a high variability in disease presentation and the associated risk, imperfect endo-
scopic techniques, or a high susceptibility to interobserver variability in lesion assessment,
artificial intelligence was explored to aid traditional colonoscopy [64]. Many AI algorithms
were developed in order to alert the endoscopist of neoplastic lesions in real-time by using
visual and auditory signals during the colonoscopy [65].

With this purpose, CNN were trained to detect neoplastic lesions in the non-IBD popu-
lation, using still images annotated by expert endoscopists, proving a good sensitivity and
specificity for lesion detection. Hassan et al. showed that the GI-Genius Medtronic system
reached a sensibility of 99.7% in polyps’ detection [66], while another recent computer-
aided detection system demonstrated an increased sensitivity for all, diminutive, protruded,
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and flat polyps (98%, 98.3% and 97%, respectively) [67]. However, its use for the detection
of dysplasia in patients with IBD has not been concluded. Fukunag reported the case of
a high-grade dysplasia flat lesion detected by the EndoBRAIN system in a patient with
longstanding colitis [68], which was successfully removed via submucosal dissection.

In IBD patients, CADe/CADx systems are useful in the detection and differentiation
of colon polyps/lesions and for dysplasia surveillance [4]. Additionally, virtual chro-
moendoscopy (VCE) was recently evaluated for the potential role of the identification of
dysplastic lesions and it seemed to have a similar detection rate of dysplasia in IBD as
high-definition WLE (HD-WLE) [69]. This study showed similar intraepithelial neopla-
sia detection rates between VCE-enhanced colonoscopy with targeted biopsies and WL
colonoscopy with targeted and stepwise random biopsies (57% vs. 48%, respectively),
but with significantly longer procedure times and higher numbers of acquired biopsy
specimens in the WLE group. There are still challenges in clinical practice for IBD patients
in using AI technology, such as the ability to differentiate pseudopolyps from true polyps
and to detect flat lesions which appear mostly in long-standing colitis [70].

6. AI in Aiding IBD Treatment—Disease Progression Prediction/Response
to Treatment

In more recent years, the goal of IBD treatment have evolved from traditional clinical
remission to a more integrated and complete mucosal healing and deep remission [71–73].

Despite ongoing development in IBD therapies, with newer drugs ranging from
biologics that interfere with the inflammatory cascade (anti-tumor necrosis factor-α, anti-
interleukin-12/23, anti-integrins) to small molecules (JAK-inhibitors) [74,75], clinicians still
lack the adequate tools for predicting the treatment response, thus adequately matching
patients and drugs, thereby improving the patient outcomes and reducing the financial
burden of these treatments [76]. Since the concept of artificial intelligence was popularized,
its applicability in disease progression and treatment response prediction has become a
major subject of interest. Researchers have used random forest (RF) classifiers on data
gathered from hospital databases in order to predict the response to therapy [77]. Waljee
and colleagues have conducted many studies in this domain [78–83]. In one of the first
studies, they attempted to identify three different outcomes in patients treated with thiop-
urines (clinical response, thiopurine non-adherence, and patients who were most likely
to shunt from 6-thioguanine nucleotide [6-TGN] to 6-methylmercaptopurine [6-MMP]
metabolites). The models were efficient in predicting the outcomes, with an AUC of 0.86
[95% CI 0.79–0.92] for the clinical response [78]. In a more recent study, they have devel-
oped an algorithm using the same cohort and similar outcomes, except they focused on the
objective response (defined as absence of intestinal inflammation) with an AUC of 0.79 (95%
CI 0.78–0.81). Some of the most important variables included: hemoglobin, lymphocytes,
hematocrit, neutrophils, and platelets [79].

Based on the data collected from large clinical trials, prediction models regarding
the response to biological treatment (particularly to vedolizumab and ustekinumab) were
evaluated [80–83]. Vedolizumab is a gut selective alpha-4-beta-7 integrin therapy approved
for the treatment of ulcerative colitis (UC) as well as Crohn’s disease (CD) [80]. Waljee et al.
have used three different RF models (baseline, week 6, and simplified) in order to predict
corticosteroid-free Vedolizumab remission in CD patients (defined as no corticosteroid
use and CRP reduction to ≤5 mg/dL) at week 52. Of these three, the Week 6 model and
the simplified week 6 model (HGB * ALB * VDZ level)/(CRP * weight in kg) had the best
accuracy (AUC 0.75; 95% CI 0.64–0.86 and AUC 0.75; 95% CI 0.70–0.81, respectively). Some
of the most important variables used for the week 6 model were: CRP, slope of Vedolizumab
level, hemoglobin, albumin, the vedolizumab level, and slope of CRP. Patients predicted to
be in corticosteroid-free remission by the week 6 model achieved the endpoint in almost
one third of cases (35.8%), while those predicted to fail succeeded in 6.7% of cases, therefore
allowing the user to identify the majority of patients that are unlikely to achieve remission
by week 6 [81].
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In another study, the same author used baseline data and week 6 data from patients
with UC treated with Vedolizumab (GEMINI II) and developed two models to predict
corticosteroid-free remission at week 52, defined as no corticosteroid use and an endoscopic
Mayo subscore of 0 or 1. A simplified week 6 model was also created, using a fecal
calprotectin cut-off of under 234 µg/g to predict the composite outcome. However, the week
6 model proved to have a higher accuracy, with an AUC of 0.73 [95% CI: 0.65–0.82] [82].

Last but not least, the most recent study conducted by Waljee and colleagues focuses
on predicting the biological remission at week 42 (defined as the CRP level under 5 mg/dL)
for CD patients treated with ustekinumab in UNITI and IM-UNITI studies. They developed
two models: one baseline and one for week 8, and also a simplified version, week 6 albumin-
to-CRP ratio. The AUC for the week 8 model was 0.78 (95% CI, 0.69–0.87), with a similar
value for the simplified model (0.76 (95% CI, 0.71–0.82)); the baseline levels of Ustekinumab
did not improve the performance of the prediction model [83].

7. Discussion

The management of IBD patients remains a challenge to healthcare professionals as
patients undergo the complex process of diagnosis, the evaluation of the disease severity,
the response to treatment, the long-term follow-up, and complication management. The
ability of AI to integrate large volumes of data theoretically would allow for a more
targeted approach tailored to the patient’s disease subtype, concomitant comorbidities, and
differences in the socioeconomic and psychological factors [84].

The application of AI has the potential to improve the accuracy and precision of
predicting outcomes with various IBD treatments, but it is momentarily limited to a
research setting.

There is a significant heterogeneity in the treatment response to biologics, therefore
being able to predict the response after a short course is of utmost importance at an indi-
vidual but also systemic level. If implemented in a real-life setting, AI-based management
algorithms could help guide therapy and consequently reduce the costs associated with
an expensive but unsuccessful treatment, as well as the complications associated with the
suboptimal control of the disease.

Although exciting, the applications of AI in the management of IBD need to be
considered in the context of their inherent challenges and limitations. Inherent pitfalls
of AI consist of selection bias, spectrum bias [85], and the low complexity of algorithm
development, which can lead to the inappropriate generalization of the results.

Current evidence is limited by the predominance of retrospective data on which the
training of AI algorithms was performed [23–29,66–68]. Data retrieved from the cohorts
enrolled in the clinical trials of investigational drugs is probably significantly different
from a real-life setting. Additionally, CNN models trained on single-center databases
had a poor performance when assessed for achieving a wide applicability, stressing the
need for multi-center data acquisition and the external validation of AI algorithms [86].
Additionally, prospective studies using AI in IBD management are necessary to evaluate
their efficacy, in conformity to the new CONSORT-AI and SPIRIT guidelines [87,88]. AI-
assisted colonoscopies are also limited by the use of still images in algorithm development,
which can be hard to adapt to real-life video colonoscopies. The challenge AI faces is
analyzing raw full-motion videos and differentiating informative from non-informative
frames (i.e., affected mucosa vs. unaffected mucosa) and applying different layers of
analysis in real time, in order to offer an output on the disease type, severity, treatment
response, or neoplasia development.

It is also important to clearly mention that AI models provide possibilities of a predic-
tion and not an absolute answer. Moreover, clarifications should be made on the ethical
implications of using potentially biased AI machines as well as the legal implications of
erroneous decisions being made while using AI [89].
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In an effort to overcome these limitations, a close collaboration between physicians,
statisticians, and bioinformaticians is needed in order to develop algorithms capable of
delivering clinically meaningful outputs [64].

8. Future Directions

The promise of AI in medicine is the ability to analyze and integrate a variety of data
and provide information in innovative applications. The use of AI in gastroenterology
in general, and in IBD management in particular, continues to evolve rapidly at multiple
levels of patient care, enabling more than ever the possibility of “precision medicine”. The
integration of monitoring devices (e.g., smartwatches and smartphones) that could send
real-life data on the treatment response (such as the clinical data sent from the patients)
could be integrated in the ML algorithm, which could receive much attention in the future.
Prospective, multidisciplinary, and multicenter AI studies are needed to establish clinical
use in monitoring IBD patients.

9. Conclusions

AI technology in IBD is still in a research phase that can only be experimentally used.
However, the AI applications developed so far in the IBD field already have the potential to
improve the standards for patient care, starting from the diagnosis to long-term therapeutic
decisions and neoplasia surveillance.

Author Contributions: Conceptualization, C.D. and T.V.; investigation, C.D., M.S., M.B., M.I., G.B.,
T.G. and B.M.; resources, C.D., M.S., M.B., M.I., G.B. and T.G.; data curation, C.D., M.I., T.V. and
M.S.; writing—original draft preparation, C.D., M.S., M.B., M.I., G.B. and T.G.; writing—review and
editing, T.V., B.M. and M.S.; visualization, C.D.; supervision, C.D.; project administration, M.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Knowles, S.R.; Graff, L.; Wilding, H.; Hewitt, C.; Keefer, L.; Mikocka-Walus, A. Quality of Life in Inflammatory Bowel Disease: A

Systematic Review and Meta-analyses—Part I. Inflamm. Bowel Dis. 2018, 24, 742–751. [CrossRef] [PubMed]
2. Singh, S.; Chowdhry, M.; Umar, S.; Bilal, M.; Clarke, K. Variations in the medical treatment of inflammatory bowel disease among

gastroenterologists. Gastroenterol. Rep. 2017, 6, 61–64. [CrossRef]
3. Rubin, D.T.; Rothe, J.A.; Hetzel, J.T.; Cohen, R.D.; Hanauer, S.B. Are dysplasia and colorectal cancer endoscopically visible in

patients with ulcerative colitis? Gastrointest. Endosc. 2007, 65, 998–1004. [CrossRef] [PubMed]
4. Sundaram, S.; Choden, T.; Mattar, M.C.; Desai, S.; Desai, M. Artificial intelligence in inflammatory bowel disease endoscopy:

Current landscape and the road ahead. Ther. Adv. Gastrointest. Endosc. 2021, 14, 26317745211017809. [CrossRef]
5. Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Futur. Health J. 2019, 6, 94–98. [CrossRef]

[PubMed]
6. Sinonquel, P.; Eelbode, T.; Bossuyt, P.; Maes, F.; Bisschops, R. Artificial intelligence and its impact on quality improvement in

upper and lower gastrointestinal endoscopy. Dig. Endosc. 2020, 33, 242–253. [CrossRef]
7. Okagawa, Y.; Abe, S.; Yamada, M.; Oda, I.; Saito, Y. Artificial Intelligence in Endoscopy. Dig. Dis. Sci. 2022, 67, 1553–1572.

[CrossRef] [PubMed]
8. Choudhary, K.; DeCost, B.; Chen, C.; Jain, A.; Tavazza, F.; Cohn, R.; Park, C.W.; Choudhary, A.; Agrawal, A.; Billinge, S.J.K.; et al.

Recent advances and applications of deep learning methods in materials science. npj Comput. Mater. 2022, 8, 59. [CrossRef]
9. Pannala, R.; Krishnan, K.; Melson, J.; Parsi, M.A.; Schulman, A.R.; Sullivan, S.; Trikudanathan, G.; Trinidade, A.J.; Watson, R.R.;

Maple, J.T.; et al. Emerging role of artificial intelligence in GI endoscopy. Gastrointest. Endosc. 2020, 92, 1151–1152. [CrossRef]
10. Chen, G.; Shen, J. Artificial Intelligence Enhances Studies on Inflammatory Bowel Disease. Front. Bioeng. Biotechnol. 2021,

9, 635764. [CrossRef]

http://doi.org/10.1093/ibd/izx100
http://www.ncbi.nlm.nih.gov/pubmed/29562277
http://doi.org/10.1093/gastro/gox005
http://doi.org/10.1016/j.gie.2006.09.025
http://www.ncbi.nlm.nih.gov/pubmed/17451704
http://doi.org/10.1177/26317745211017809
http://doi.org/10.7861/futurehosp.6-2-94
http://www.ncbi.nlm.nih.gov/pubmed/31363513
http://doi.org/10.1111/den.13888
http://doi.org/10.1007/s10620-021-07086-z
http://www.ncbi.nlm.nih.gov/pubmed/34155567
http://doi.org/10.1038/s41524-022-00734-6
http://doi.org/10.1016/j.gie.2020.09.022
http://doi.org/10.3389/fbioe.2021.635764


Diagnostics 2023, 13, 735 10 of 13

11. Rex, D.K.; Mori, Y.; Sharma, P.; Lahr, R.E.; Vemulapalli, K.C.; Hassan, C. Strengths and Weaknesses of an Artificial Intelligence
Polyp Detection Program as Assessed by a High-Detecting Endoscopist. Gastroenterology 2022, 163, 354–358. [CrossRef] [PubMed]

12. Kamitani, Y.; Nonaka, K.; Isomoto, H. Current Status and Future Perspectives of Artificial Intelligence in Colonoscopy. J. Clin.
Med. 2022, 11, 2923. [CrossRef]

13. van der Sommen, F.; de Groof, J.; Struyvenberg, M.; van der Putten, J.; Boers, T.; Fockens, K.; Schoon, E.J.; Curvers, W.; de With, P.;
Mori, Y.; et al. Machine learning in GI endoscopy: Practical guidance in how to interpret a novel field. Gut 2020, 69, 2035–2045.
[CrossRef] [PubMed]

14. Kudo, S.-E.; Ichimasa, K.; Villard, B.; Mori, Y.; Misawa, M.; Saito, S.; Hotta, K.; Saito, Y.; Matsuda, T.; Yamada, K.; et al. Artificial
Intelligence System to Determine Risk of T1 Colorectal Cancer Metastasis to Lymph Node. Gastroenterology 2021, 160, 1075–1084.e2.
[CrossRef] [PubMed]

15. Maaser, C.; Sturm, A.; Vavricka, S.R.; Kucharzik, T.; Fiorino, G.; Annese, V.; Calabrese, E.; Baumgart, D.C.; Bettenworth, D.;
Nunes, P.B.; et al. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD,
detection of complications. J. Crohns Colitis 2019, 13, 144–164. [CrossRef]

16. Sturm, A.; Maaser, C.; Calabrese, E.; Annese, V.; Fiorino, G.; Kucharzik, T.; Vavricka, S.R.; Verstockt, B.; van Rheenen, P.; Tolan, D.;
et al. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 2: IBD scores and general principles and technical aspects.
J. Crohns Colitis 2019, 13, 273–284. [CrossRef]

17. Wei, Z.; Wang, W.; Bradfield, J.; Li, J.; Cardinale, C.; Frackelton, E.; Kim, C.; Mentch, F.; Van Steen, K.; Visscher, P.M.; et al. Large
Sample Size, Wide Variant Spectrum, and Advanced Machine-Learning Technique Boost Risk Prediction for Inflammatory Bowel
Disease. Am. J. Hum. Genet. 2013, 92, 1008–1012. [CrossRef] [PubMed]

18. Chen, P.; Zhou, G.; Lin, J.; Li, L.; Zeng, Z.; Chen, M.; Zhang, S. Serum Biomarkers for Inflammatory Bowel Disease. Front. Med.
2020, 7, 123. [CrossRef] [PubMed]

19. Isakov, O.; Dotan, I.; Ben-Shachar, S. Machine Learning-Based Gene Prioritization Identifies Novel Candidate Risk Genes for
Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2017, 23, 1516–1523. [CrossRef]

20. Annese, V.; Daperno, M.; Rutter, M.D.; Amiot, A.; Bossuyt, P.; East, J.; Ferrante, M.; Gotz, M.; Katsanos, K.H.; Kießlich, R.; et al.
European evidence based consensus for endoscopy in inflammatory bowel disease. J. Crohns Colitis 2013, 7, 982–1018. [CrossRef]
[PubMed]

21. Peyrin-Biroulet, L.; Sandborn, W.; Sands, B.E.; Reinjsch, W.; Bemelman, W.; Bryant, R.V.; D’Haens, G.; Dotan, I.; Dubinsky, M.;
Faegan, B.; et al. Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE): Determining Therapeutic Goals for
Treat-toTarget. Am. J. Gastroenterol. 2015, 110, 1324–1338. [CrossRef] [PubMed]

22. Fernandes, S.R.; Pinto, J.S.L.D.; Marques da Costa, P.; Correira, L. Disagreement Among Gastroenterologists Using the Mayo and
Rutgeerts Endoscopic Scores. Inflamm. Bowel Dis. 2018, 24, 254–260. [CrossRef] [PubMed]

23. Bhambhvani, H.P.; Zamora, A. Deep learning enabled classification of Mayo endoscopic subscore in patients with ulcerative
colitis. Eur. J. Gastroenterol. Hepatol. 2021, 33, 645–649. [CrossRef] [PubMed]

24. Becker, B.G.; Arcadu, F.; Thalhammer, A. Training and deploying a deep learning model for endoscopic severity grading in
ulcerative colitis using multicenter clinical trial data. Ther. Adv. Gastrointest. Endosc. 2021, 14, 2631774521990623. [CrossRef]

25. Takenaka, K.; Ohtsuka, K.; Fujii, T.; Oshima, S.; Okamoto, R.; Watanbe, M. Deep neural network accurately predicts prognosis of
ulcerative colitis using endoscopic images. Gastroenterology 2021, 160, 2175–2177. [CrossRef] [PubMed]

26. Yao, H.; Najarian, K.; Gryak, J.; Bishu, S.; Rice, M.D.; Waljee, A.K.; Wilkins, H.J.; Stidham, R.W. Fully automated endoscopic
disease activity assessment in ulcerative colitis. Gastrointest. Endosc. 2020, 93, 728–736.e1. [CrossRef]

27. Gottlieb, K.; Requa, J.; Karnes, W.; Gudivada, R.C.; Shen, J.; Rael, E.; Arora, V.; Dao, T.; Ninh, A.; McGill, J. Central reading of
ulcerative colitis clinical trial videos using neural networks. Gastroenterology 2021, 160, 710–719. [CrossRef]

28. Uttam, S.; Hashash, J.G.; LaFace, J.; Binion, D.; Regueiro, M.; Hartman, D.J.; Brand, R.E.; Liu, Y. Three-Dimensional Nanoscale
Nuclear Architecture Mapping of Rectal Biopsies Detects Colorectal Neoplasia in Patients with Inflammatory Bowel Disease.
Cancer Prev. Res. 2019, 12, 527–538. [CrossRef]

29. Klang, E.; Barash, Y.; Margalit, R.Y.; Soffer, S.; Shimon, O.; Albshesh, A.; Ben-Horin, S.; Amitai, M.M.; Eliakim, R.; Kopylov, U.
Deep learning algorithms for automated detection of Crohn’s disease ulcers by video capsule endoscopy. Gastrointest. Endosc.
2019, 91, 606–613. [CrossRef]

30. Klenske, E.; Bojarski, C.; Waldner, M.; Rath, T.; Neurath, M.F.; Atreya, R. Targeting mucosal healing in Crohn’s disease: What the
clinician needs to know. Ther. Adv. Gastroenterol. 2019, 12, 1756284819856865. [CrossRef]

31. Colombel, J.F.; Rutgeerts, P.; Reinisch, W.; Esser, D.; Wang, Y.; Lang, Y.; Marano, C.W.; Strauss, R.; Oddens, B.J.; Feagan, B.G.;
et al. Early mucosal healing with infliximab is associated with improved long-term clinical outcomes in ulcerative colitis.
Gastroenterology 2011, 141, 1194–1201. [CrossRef] [PubMed]

32. Turner, D.; Ricciuto, A.; Lewis, A.; D’Amico, F.; Dhaliwal, J.; Griffiths, A.M.; Bettenworth, D.; Sandborn, W.J.; Sands, B.E.; Reinisch,
W.; et al. STRIDE-II: An Update on the Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE) Initiative of the
International Organization for the Study of IBD (IOIBD): Determining Therapeutic Goals for Treat-to-Target strategies in IBD.
Gastroenterology 2021, 160, 1570–1583. [CrossRef] [PubMed]

33. Daperno, M.; Comberlato, M.; Bossa, F.; Biancone, L.; Bonanomi, A.G.; Cassinotti, A.; Cosintino, R.; Lombardi, G.; Mangiarotti, R.;
Papa, A.; et al. Inter-observer agreement in endoscopic scoring systems: Preliminary report of an ongoing study from the Italian
Group for Inflammatory Bowel Disease (IG-IBD). Dig. Liver Dis. 2014, 46, 969–973. [CrossRef] [PubMed]

http://doi.org/10.1053/j.gastro.2022.03.055
http://www.ncbi.nlm.nih.gov/pubmed/35427574
http://doi.org/10.3390/jcm11102923
http://doi.org/10.1136/gutjnl-2019-320466
http://www.ncbi.nlm.nih.gov/pubmed/32393540
http://doi.org/10.1053/j.gastro.2020.09.027
http://www.ncbi.nlm.nih.gov/pubmed/32979355
http://doi.org/10.1093/ecco-jcc/jjy113
http://doi.org/10.1093/ecco-jcc/jjy114
http://doi.org/10.1016/j.ajhg.2013.05.002
http://www.ncbi.nlm.nih.gov/pubmed/23731541
http://doi.org/10.3389/fmed.2020.00123
http://www.ncbi.nlm.nih.gov/pubmed/32391365
http://doi.org/10.1097/MIB.0000000000001222
http://doi.org/10.1016/j.crohns.2013.09.016
http://www.ncbi.nlm.nih.gov/pubmed/24184171
http://doi.org/10.1038/ajg.2015.233
http://www.ncbi.nlm.nih.gov/pubmed/26303131
http://doi.org/10.1093/ibd/izx066
http://www.ncbi.nlm.nih.gov/pubmed/29361106
http://doi.org/10.1097/MEG.0000000000001952
http://www.ncbi.nlm.nih.gov/pubmed/33079775
http://doi.org/10.1177/2631774521990623
http://doi.org/10.1053/j.gastro.2021.01.210
http://www.ncbi.nlm.nih.gov/pubmed/33485853
http://doi.org/10.1016/j.gie.2020.08.011
http://doi.org/10.1053/j.gastro.2020.10.024
http://doi.org/10.1158/1940-6207.CAPR-19-0024
http://doi.org/10.1016/j.gie.2019.11.012
http://doi.org/10.1177/1756284819856865
http://doi.org/10.1053/j.gastro.2011.06.054
http://www.ncbi.nlm.nih.gov/pubmed/21723220
http://doi.org/10.1053/j.gastro.2020.12.031
http://www.ncbi.nlm.nih.gov/pubmed/33359090
http://doi.org/10.1016/j.dld.2014.07.010
http://www.ncbi.nlm.nih.gov/pubmed/25154049


Diagnostics 2023, 13, 735 11 of 13

34. Yang, L.S.; Perry, E.; Shan, L.; Wilding, H.; Connell, W.; Thompson, A.J.; Taylor, A.C.F.; Desmond, P.V.; Holt, B.A. Clinical
application and diagnostic accuracy of artificial intelligence in colonoscopy for inflammatory bowel disease: Systematic review.
Endosc. Int. Open 2022, 10, E1004–E1013. [CrossRef]

35. Ozawa, T.; Ishihara, S.; Fujishiro, M.; Saito, H.; Kumagai, Y.; Shichijo, S.; Aoyama, K.; Tada, T. Novel computer-assisted diagnosis
system for endoscopic disease activity in patients with ulcerative colitis. Gastrointest. Endosc. 2018, 89, 416–421. [CrossRef]

36. Takenaka, K.; Ohtsuka, K.; Fujii, T.; Negi, M.; Suzuki, K.; Shimizu, H.; Oshima, S.; Akiyama, S.; Motobayashi, M.; Nagahori, M.;
et al. Development and validation of a deep neural network for accurate evaluation of endoscopic images from patients with
ulcerative colitis. Gastroenterology 2020, 158, 2150–2157. [CrossRef]

37. Quénéhervé, L.; David, G.; Bourreille, A.; Hardouin, J.B.; Rahmi, G.; Neunlist, M.; Bregeon, J.; Coron, E. Quantitative assessment
of mucosal architecture using computer-based analysis of confocal laser endomicroscopy in infammatory bowel diseases.
Gastrointest. Endosc. 2019, 89, 626–636. [CrossRef]

38. Stidham, R.W.; Liu, W.; Bishu, S.; Rice, M.D.; Higgins, P.D.R.; Zhu, J.; Nallamothu, B.K.; Waljee, A.K. Performance of a deep
learning model vs. human reviewers in grading endoscopic disease severity of patients with ulcerative colitis. JAMA Netw. Open
2019, 2, 193963. [CrossRef]

39. Bossuyt, P.; Nakase, H.; Vermeire, S.; de Hertogh, G.; Eelbode, T.; Ferrante, M.; Hasegawa, T.; Willekens, H.; Ikemoto, Y.; Makino,
T.; et al. Automatic, computeraided determination of endoscopic and histological infammation in patients with mild to moderate
ulcerative colitis based on red density. Gut 2020, 69, 1778–1786. [CrossRef]

40. Maeda, Y.; Kudo, S.E.; Mori, Y.; Misawa, M.; Ogata, N.; Sesanuma, S.; Wakamura, K.; Oda, M.; Mori, K.; Ohtsuka, K. Fully
automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation
associated with ulcerative colitis (with video). Gastrointest. Endosc. 2019, 89, 408–415. [CrossRef]

41. Gui, X.; Bazarova, A.; del Amor, R.; Vieth, M.; de Hertogh, G.; Villanacci, V.; Zardo, D.; Parigi, T.L.; Røyset, E.S.; Shivaji, U.N.;
et al. PICaSSO Histologic Remission Index (PHRI) in ulcerative colitis: Development of a novel simplified histological score for
monitoring mucosal healing and predicting clinical outcomes and its applicability in an artificial intelligence system. Gut 2022,
71, 889–898. [CrossRef]

42. Kim, S.H.; Lim, Y.J. Artificial Intelligence in Capsule Endoscopy: A Practical Guide to Its Past and Future Challenges. Diagnostics
2021, 11, 1722. [CrossRef]

43. Barash, Y.; Azaria, L.; Soffer, S.; Yehuda, R.M.; Shlomi, O.; Ben-Horin, S.; Eliakim, R.; Klang, E.; Kopylov, U. Ulcer severity grading
in video capsule images of patients with Crohn’s disease: An ordinal neural network solution. Gastrointest. Endosc. 2020, 93,
187–192. [CrossRef]

44. Kamiya, K.J.L.; Hosoe, N.; Hayashi, Y.; Kawaguchi, T.; Takabayashi, K.; Ogata, H.; Kanai, T. Video capsule endoscopy in
inflammatory bowel disease. DEN Open 2021, 2, e26. [CrossRef]

45. Fan, S.; Xu, L.; Fan, Y.; Wei, K.; Li, L. Computer-aided detection of small intestinal ulcer and erosion in wireless capsule endoscopy
images. Phys. Med. Biol. 2018, 63, 165001. [CrossRef] [PubMed]

46. Aoki, T.; Yamada, A.; Aoyama, K.; Saito, H.; Fujisawa, G.; Odawara, N.; Kondo, R.; Tsuboi, A.; Ishibashi, R.; Nakada, A.; et al.
Clinical usefulness of a deep learning-based system as the first screening on small-bowel capsule endoscopy reading. Dig. Endosc.
2019, 32, 585–591. [CrossRef] [PubMed]

47. Yashiro, M. Ulcerative colitis-associated colorectal cancer. World J. Gastroenterol. 2014, 20, 16389–16397. [CrossRef] [PubMed]
48. Herszenyi, L.; Miheller, P.; Tulassay, Z. Carcinogenesis in inflammatory bowel disease. Dig. Dis. 2007, 25, 267–269. [CrossRef]

[PubMed]
49. Marabotto, E.; Kayali, S.; Buccilli, S.; Levo, F.; Bodini, G.; Giannini, E.G.; Savarino, V.; Savarino, E.V. Colorectal Cancer in

Inflammatory Bowel Diseases: Epidemiology and Prevention: A Review. Cancers 2022, 14, 4254. [CrossRef]
50. Scarpa, M.; Castagliuolo, I.; Castoro, C.; Pozza, A.; Scarpa, M.; Kotsafti, A.; Angriman, I. Inflammatory colonic carcinogenesis: A

review on pathogenesis and immunosurveillance mechanisms in ulcerative colitis. World J. Gastroenterol. 2014, 20, 6774–6785.
[CrossRef]

51. Ang, T.L.; Wang, L.M. Artificial intelligence for the diagnosis of dysplasia in inflammatory bowel diseases. J. Gastroenterol. Hepatol.
2022, 37, 1469–1470. [CrossRef] [PubMed]

52. Wallace, M.B.; Sharma, P.; Bhandari, P.; East, J.; Antonelli, G.; Lorenzetii, R.; Vieth, M.; Speranza, I.; Spadaccini, M.; Desai, M.; et al.
Impact of Artificial Intelligence on Miss Rate of Colorectal Neoplasia. Gastroenterology 2022, 163, 295–304. [CrossRef] [PubMed]

53. Magro, F.; Gionchetti, P.; Eliakim, R.; Ardizzone, S.; Armuzzi, A.; Barreiro-de Acosta, M.; Burisch, J.; Gecse, K.B.; Hart, A.L.;
Hindryckx, P.; et al. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1:
Definitions, Diagnosis, Extra-intestinal Manifestations, Pregnancy, Cancer Surveillance, Surgery, and Ileo-anal Pouch Disorders. J.
Crohns Colitis 2017, 11, 649–670. [CrossRef] [PubMed]

54. Rubin, D.T.; Ananthakrishnan, A.N.; Siegel, C.A.; Sauer, B.G.; Long, M.D. ACG Clinical Guideline: Ulcerative Colitis in Adults.
Am. J. Gastroenterol. 2019, 114, 384–413. [CrossRef]

55. Lamb, C.A.; Kennedy, N.A.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Hayee, B.; Lomer, M.C.E.; Parkes, G.C.; Selinger, C.;
et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut
2019, 68 (Suppl. 3), s1–s106. [CrossRef]

56. Shah, S.C.; Itzkowitz, S.H. Colorectal Cancer in Inflammatory Bowel Disease: Mechanisms and Management. Gastroenterology
2022, 162, 715–730. [CrossRef]

http://doi.org/10.1055/a-1846-0642
http://doi.org/10.1016/j.gie.2018.10.020
http://doi.org/10.1053/j.gastro.2020.02.012
http://doi.org/10.1016/j.gie.2018.08.006
http://doi.org/10.1001/jamanetworkopen.2019.3963
http://doi.org/10.1136/gutjnl-2019-320056
http://doi.org/10.1016/j.gie.2018.09.024
http://doi.org/10.1136/gutjnl-2021-326376
http://doi.org/10.3390/diagnostics11091722
http://doi.org/10.1016/j.gie.2020.05.066
http://doi.org/10.1002/deo2.26
http://doi.org/10.1088/1361-6560/aad51c
http://www.ncbi.nlm.nih.gov/pubmed/30033931
http://doi.org/10.1111/den.13517
http://www.ncbi.nlm.nih.gov/pubmed/31441972
http://doi.org/10.3748/wjg.v20.i44.16389
http://www.ncbi.nlm.nih.gov/pubmed/25469007
http://doi.org/10.1159/000103898
http://www.ncbi.nlm.nih.gov/pubmed/17827953
http://doi.org/10.3390/cancers14174254
http://doi.org/10.3748/wjg.v20.i22.6774
http://doi.org/10.1111/jgh.15943
http://www.ncbi.nlm.nih.gov/pubmed/35922056
http://doi.org/10.1053/j.gastro.2022.03.007
http://www.ncbi.nlm.nih.gov/pubmed/35304117
http://doi.org/10.1093/ecco-jcc/jjx008
http://www.ncbi.nlm.nih.gov/pubmed/28158501
http://doi.org/10.14309/ajg.0000000000000152
http://doi.org/10.1136/gutjnl-2019-318484
http://doi.org/10.1053/j.gastro.2021.10.035


Diagnostics 2023, 13, 735 12 of 13

57. Marques, K.F.; Marques, A.F.; Lopes, M.A.; Beraldo, R.F.; Lima, T.B.; Sassaki, L.Y. Artificial intelligence in colorectal cancer
screening in patients with inflammatory bowel disease. Artif. Intell. Gastrointest. Endosc. 2022, 3, 1–8. [CrossRef]

58. Laine, L.; Kaltenbach, T.; Barkun, A.; McQuaid, K.R.; Subramanian, V.; Soetikno, R. SCENIC Guideline Development Panel.
SCENIC international consensus statement on surveillance and management of dysplasia in inflammatory bowel disease.
Gastroenterology 2015, 148, 639–651. [CrossRef]

59. Murthy, S.K.; Feuerstein, J.D.; Nguyen, G.C.; Velayos, F.S. AGA clinical practice update on endoscopic surveillance and
management of colorectal dysplasia in inflammatory bowel disease: Expert review. Gastroenterology 2021, 161, 1043–1051.
[CrossRef]

60. Bisschops, R.; Bessissow, T.; Joseph, J.A.; Baert, F.; Ferrante, M.; Ballet, V.; Willekens, H.; Demedts, I.; Geboes, K.; De Hertogh, G.;
et al. Chromoendoscopy versus narrow band imaging in UC: A prospective randomised controlled trial. Gut 2018, 67, 1087–1094.
[CrossRef]

61. Shukla, R.; Salem, M.; Hou, J.K. Use and barriers to chromoendoscopy for dysplasia surveillance in inflammatory bowel disease.
World J. Gastrointest. Endosc. 2017, 9, 359–367. [CrossRef] [PubMed]

62. Jess, T.; Rungoe, C.; Peyrin-Biroulet, L. Risk of colorectal cancer in patients with ulcerative colitis: A meta-analysis of population-
based cohort studies. Clin. Gastroenterol. Hepatol. 2012, 10, 639–645. [CrossRef] [PubMed]

63. Farraye, F.; Odze, R.D.; Eaden, J.; Itzkowitz, S.H.; McCabe, R.P.; Dassopoulos, T.; Lewis, J.D.; Ullman, T.A.; James, T.; McLeod, R.;
et al. AGA medical position statement on the diagnosis and management of colorectal neoplasia in inflammatory bowel disease.
Gastroenterology 2010, 138, 738–745. [CrossRef] [PubMed]

64. Kohli, A.; Holzwanger, E.A.; Levy, A.N. Emerging use of artificial intelligence in inflammatory bowel disease. World J. Gastroenterol.
2020, 26, 6923–6928. [CrossRef]

65. Alagappan, M.; Brown, J.R.G.; Mori, Y.; Berzin, T.M. Artificial intelligence in gastrointestinal endoscopy: The future is almost
here. World J. Gastrointest. Endosc. 2018, 10, 239–249. [CrossRef] [PubMed]

66. Hassan, C.; Wallace, M.B.; Sharma, P.; Maselli, R.; Craviotto, V.; Spadaccini, M.; Repici, A. New artificial intelligence system: First
validation study versus experienced endoscopists for colorectal polyp detection. Gut 2020, 69, 799–800. [CrossRef] [PubMed]

67. Misawa, M.; Kudo, S.-E.; Mori, Y.; Hotta, K.; Ohtsuka, K.; Matsuda, T.; Saito, S.; Kudo, T.; Baba, T.; Ishida, F.; et al. Development
of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video).
Gastrointest. Endosc. 2020, 93, 960–967. [CrossRef] [PubMed]

68. Maeda, Y.; Kudo, S.E.; Ogata, N.; Misawa, M.; Mori, Y.; Mori, K.; Ohtsuka, K. Can artificial intelligence help to detect dysplasia in
patients with ulcerative colitis? Endoscopy 2021, 53, E273–E274. [CrossRef]

69. Leifeld, L.; Rogler, G.; Stallmach, A.; Schmidt, C.; Zuber-Jerger, I.; Hartmann, F.; Plauth, M.; Drabik, A.; Hofstadter, F.; Dienes,
H.P.; et al. Detect Dysplasia Study Group. White-light or narrow-band imaging colonoscopy in surveillance of ulcerative colitis:
A prospective multicenter study. Clin. Gastroenterol. Hepatol. 2015, 13, 1776–1781. [CrossRef]

70. Solitano, V.; Zilli, A.; Franchellucci, G.; Allocca, M.; Fiorino, G.; Furfaro, F.; D’amico, F.; Danese, S.; Al Awadhi, S. Artificial
Endoscopy and Inflammatory Bowel Disease: Welcome to the Future. J. Clin. Med. 2022, 11, 569. [CrossRef]

71. Panaccione, R.; Colombel, J.-F.; Louis, E.; Peyrin-Biroulet, L.; Sandborn, W.J. Evolving definitions of remission in Crohn’s disease.
Inflamm. Bowel Dis. 2013, 19, 1645–1653. [CrossRef] [PubMed]

72. Sandborn, W.J.; Hanauer, S.; Van Assche, G.; Panes, J.; Wilson, S.; Petersson, J.; Panaccione, R. Treating beyond symptoms with a
view to improving patient outcomes in inflammatory bowel diseases. J. Crohns Colitis 2014, 8, 927–935. [CrossRef] [PubMed]

73. Neurath, M.F.; Travis, S.P. Mucosal healing in inflammatory bowel diseases: A systematic review. Gut 2012, 61, 1619–1635.
[CrossRef] [PubMed]

74. Neurath, M.F. Current and emerging therapeutic targets for IBD. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 269–278. [CrossRef]
[PubMed]

75. Weisshof, R.; El Jurdi, K.; Zmeter, N.; Rubin, D.T. Emerging Therapies for Inflammatory Bowel Disease. Adv. Ther. 2018, 35,
1746–1762. [CrossRef]

76. Yu, H.; MacIsaac, D.; Wong, J.J.; Sellers, Z.M.; Wren, A.A.; Bensen, R.; Kin, C.; Park, K.T. Market share and costs of biologic
therapies for inflammatory bowel disease in the USA. Aliment. Pharmacol. Ther. 2018, 47, 364–370. [CrossRef]

77. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
78. Waljee, A.K.; Joyce, J.C.; Wang, S.; Saxena, A.; Hart, M.; Zhu, J.; Higgins, P.D. Algorithms outperform metabolite tests in predicting

response of patients with inflammatory bowel disease to thiopurines. Clin. Gastroenterol. Hepatol. 2010, 8, 143–150. [CrossRef]
[PubMed]

79. Waljee, A.K.; Sauder, K.; Patel, A.; Segar, S.; Liu, B.; Zhang, Y.; Zhu, J.; Stidham, R.W.; Balis, U.; Higgins, P.D. Machine Learning
Algorithms for Objective Remission and Clinical Outcomes with Thiopurines. J. Crohns Colitis 2017, 11, 801–810. [CrossRef]

80. Sandborn, W.J.; Feagan, B.G.; Rutgeerts, P.; Hanauer, S.; Colombel, J.F.; Sands, B.E.; Lukas, M.; Fedorak, R.N.; Lee, S.; Bressler, B.;
et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N. Engl. J. Med. 2013, 369, 711–721. [CrossRef]
[PubMed]

81. Waljee, A.K.; Liu, B.; Sauder, K.; Zhu, J.; Govani, S.M.; Stidham, R.W.; Higgins, P.D. Predicting Corticosteroid-Free Biologic
Remission with Vedolizumab in Crohn’s Disease. Inflamm. Bowel Dis. 2018, 24, 1185–1192. [CrossRef] [PubMed]

82. Waljee, A.K.; Liu, B.; Sauder, K.; Zhu, J.; Govani, S.M.; Stidham, R.W.; Higgins, P.D. Predicting corticosteroid-free endoscopic
remission with vedolizumab in ulcerative colitis. Aliment. Pharmacol. Ther. 2018, 47, 763–772. [CrossRef] [PubMed]

http://doi.org/10.37126/aige.v3.i1.1
http://doi.org/10.1053/j.gastro.2015.01.031
http://doi.org/10.1053/j.gastro.2021.05.063
http://doi.org/10.1136/gutjnl-2016-313213
http://doi.org/10.4253/wjge.v9.i8.359
http://www.ncbi.nlm.nih.gov/pubmed/28874956
http://doi.org/10.1016/j.cgh.2012.01.010
http://www.ncbi.nlm.nih.gov/pubmed/22289873
http://doi.org/10.1053/j.gastro.2009.12.037
http://www.ncbi.nlm.nih.gov/pubmed/20141808
http://doi.org/10.3748/wjg.v26.i44.6923
http://doi.org/10.4253/wjge.v10.i10.239
http://www.ncbi.nlm.nih.gov/pubmed/30364792
http://doi.org/10.1136/gutjnl-2019-319914
http://www.ncbi.nlm.nih.gov/pubmed/31615835
http://doi.org/10.1016/j.gie.2020.07.060
http://www.ncbi.nlm.nih.gov/pubmed/32745531
http://doi.org/10.1055/a-1261-2944
http://doi.org/10.1016/j.cgh.2015.04.172
http://doi.org/10.3390/jcm11030569
http://doi.org/10.1097/MIB.0b013e318283a4b3
http://www.ncbi.nlm.nih.gov/pubmed/23598817
http://doi.org/10.1016/j.crohns.2014.02.021
http://www.ncbi.nlm.nih.gov/pubmed/24713173
http://doi.org/10.1136/gutjnl-2012-302830
http://www.ncbi.nlm.nih.gov/pubmed/22842618
http://doi.org/10.1038/nrgastro.2016.208
http://www.ncbi.nlm.nih.gov/pubmed/28144028
http://doi.org/10.1007/s12325-018-0795-9
http://doi.org/10.1111/apt.14430
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.cgh.2009.09.031
http://www.ncbi.nlm.nih.gov/pubmed/19835986
http://doi.org/10.1093/ecco-jcc/jjx014
http://doi.org/10.1056/NEJMoa1215739
http://www.ncbi.nlm.nih.gov/pubmed/23964933
http://doi.org/10.1093/ibd/izy031
http://www.ncbi.nlm.nih.gov/pubmed/29668915
http://doi.org/10.1111/apt.14510
http://www.ncbi.nlm.nih.gov/pubmed/29359519


Diagnostics 2023, 13, 735 13 of 13

83. Waljee, A.K.; Wallace, B.I.; Cohen-Mekelburg, S.; Liu, Y.; Liu, B.; Sauder, K.; Stidham, R.W.; Zhu, J.; Higgins, P.D.R. Development
and Validation of Machine Learning Models in Prediction of Remission in Patients With Moderate to Severe Crohn Disease.
JAMA Netw. Open 2019, 2, e197386. [CrossRef] [PubMed]

84. Denson, L.A.; Curran, M.; McGovern, D.P.B.; Koltun, Q.A.; Duerr, R.H.; Kim, S.C.; Sartor, R.B.; Silvester, F.A.; Abraham, C.;
Zoeten, E.F. Challenges in IBD Research: Precision Medicine. Inflamm. Bowel Dis. 2019, 25, S31–S39. [CrossRef] [PubMed]

85. England, J.R.; Cheng, P.M. Artificial intelligence for medical image analysis: A guide for authors and reviewers. Am. J. Roentgenol.
2019, 212, 513–519. [CrossRef]

86. Khorasani, H.M.; Usefi, H.; Peña-Castillo, L. Detecting ulcerative colitis from colon samples using efficient feature selection and
machine learning. Sci. Rep. 2020, 10, 13744. [CrossRef]

87. Liu, X.; Rivera, S.C.; Moher, D.; Calvert, M.J.; Denniston, A.K. Reporting guidelines for clinical trial reports for interventions
involving artificial intelligence: The CONSORT-AI extension. BJM 2020, 370, m3210.

88. Cruz Rivera, S.; Liu, X.; Chan, A.W.; Calvert, M.J. Guidelines for clinical trial protocols for interventions involving artificial
intelligence: The SPIRIT-AI extension. Nat. Med. 2020, 26, 1351–1363. [CrossRef]

89. Cohen-Mekelburg, S.; Berry, S.; Stidham, R.W.; Zhu, J.; Waljee, A.K. Clinical applications of artificial intelligence and machine
learning-based methods in inflammatory bowel disease. J. Gastroenterol. Hepatol. 2021, 36, 279–285. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1001/jamanetworkopen.2019.3721
http://www.ncbi.nlm.nih.gov/pubmed/31074823
http://doi.org/10.1093/ibd/izz078
http://www.ncbi.nlm.nih.gov/pubmed/31095701
http://doi.org/10.2214/AJR.18.20490
http://doi.org/10.1038/s41598-020-70583-0
http://doi.org/10.1038/s41591-020-1037-7
http://doi.org/10.1111/jgh.15405

	Introduction 
	Understanding the Role of Artificial Intelligence in Gastroenterology 
	Potential Applications of AI in IBD 
	The Role of Artificial Intelligence in Assessing Disease Activity 
	The Role of Artificial Intelligence in Screening for Early Neoplasia in IBD 
	AI in Aiding IBD Treatment—Disease Progression Prediction/Response to Treatment 
	Discussion 
	Future Directions 
	Conclusions 
	References

