Auto-Detection of Motion Artifacts on CT Pulmonary Angiograms with a Physician-Trained AI Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Definitions
2.3. Ground Truth
2.4. Model
2.5. Training
2.6. Statistical Analysis
3. Results
3.1. Model Validation at Three Sites
3.2. Model Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Veikutis, V.; Budrys, T.; Basevicius, A.; Lukosevicius, S.; Gleizniene, R.; Unikas, R.; Skaudickas, D. Artifacts in computer tomography imaging: How it can really affect diagnostic image quality and confuse clinical diagnosis? J. Vibroengineering 2015, 17, 995–1003. [Google Scholar]
- Boas, F.E.; Fleischmann, D. CT artifacts: Causes and reduction techniques. Imaging Med. 2012, 4, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.F.; Keat, N. Artifacts in CT: Recognition and avoidance. Radiographics 2004, 24, 1679–1691. [Google Scholar] [CrossRef]
- Johnson, P.T. Artifacts mimicking pulmonary embolism. In Pearls and Pitfalls in Cardiovascular Imaging: Pseudolesions, Artifacts, and Other Difficult Diagnoses; Cambridge University Press: Cambridge, UK, 2015; pp. 134–136. [Google Scholar]
- Wittram, C.; Maher, M.M.; Yoo, A.J.; Kalra, M.K.; Shepard, J.A.; McLoud, T.C. CT angiography of pulmonary embolism: Diagnostic criteria and causes of misdiagnosis. Radiographics 2004, 24, 1219–1238. [Google Scholar] [CrossRef]
- Jones, S.E.; Wittram, C. The indeterminate CT pulmonary angiogram: Imaging characteristics and patient clinical outcome. Radiology 2005, 237, 329–337. [Google Scholar] [CrossRef]
- Aviram, G.; Levy, G.; Fishman, J.E.; Blank, A.; Graif, M. Pitfalls in the diagnosis of acute pulmonary embolism on spiral computer tomography. Curr. Probl. Diagn. Radiol. 2004, 33, 74–84. [Google Scholar] [CrossRef]
- Global Imaging Market Outlook Report. 2019. Available online: https://imvinfo.com/product/imv-2019-global-imaging-market-outlook-report/ (accessed on 11 November 2021).
- Beri, P. Detection of Motion Artifacts in Thoracic CT Scans. Available online: https://pure.tue.nl/ws/portalfiles/portal/168210888/Puneet_B..pdf (accessed on 13 November 2021).
- Elss, T.; Nickisch, H.; Wissel, T.; Schmitt, H.; Vembar, M.; Morlock, M.; Grass, M. Deep-learning-based CT motion artifact recognition in coronary arteries. In Proceedings of the Medical Imaging 2018: Image Processing, Houston, TX, USA, 11–13 February 2018; p. 1057416. [Google Scholar]
- Xu, Y.; Sushmit, A.; Lyu, Q.; Li, Y.; Cao, X.; Maltz, J.S.; Wang, G.; Yu, H. Cardiac CT motion artifact grading via semi-automatic labeling and vessel tracking using synthetic image-augmented training data. J. X-ray Sci. Technol. 2022, 30, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Doda Khera, R.; Singh, R.; Homayounieh, F.; Stone, E.; Redel, T.; Savage, C.A.; Stockton, K.; Shepard, J.O.; Kalra, M.K.; Digumarthy, S.R. Deploying Clinical Process Improvement Strategies to Reduce Motion Artifacts and Expiratory Phase Scanning in Chest CT. Sci. Rep. 2019, 9, 11858. [Google Scholar] [CrossRef] [Green Version]
- Huhtanen, H.; Nyman, M.; Mohsen, T.; Virkki, A.; Karlsson, A.; Hirvonen, J. Automated detection of pulmonary embolism from CT-angiograms using deep learning. BMC Med. Imaging 2022, 22, 43. [Google Scholar] [CrossRef]
- Soffer, S.; Klang, E.; Shimon, O.; Barash, Y.; Cahan, N.; Greenspana, H.; Konen, E. Deep learning for pulmonary embolism detection on computed tomography pulmonary angiogram: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 15814. [Google Scholar] [CrossRef]
- Ebrahimian, S.; Digumarthy, S.R.; Homayounieh, F.; Bizzo, B.C.; Dreyer, K.J.; Kalra, M.K. Predictive values of AI-based triage model in suboptimal CT pulmonary angiography. Clin. Imaging 2022, 86, 25–30. [Google Scholar] [CrossRef]
- Singh, R.; Wu, W.; Wang, G.; Kalra, M.K. Artificial intelligence in image reconstruction: The change is here. Phys. Med. 2020, 79, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Lenfant, M.; Chevallier, O.; Comby, P.-O.; Secco, G.; Haioun, K.; Ricolfi, F.; Lemogne, B.; Loffroy, R. Deep learning versus iterative reconstruction for CT pulmonary angiography in the emergency setting: Improved image quality and reduced radiation dose. Diagnostics 2020, 10, 558. [Google Scholar] [CrossRef] [PubMed]
- Dasegowda, G.; Bizzo, B.; Gupta, R.; Kaviani, P.; Ebrahimian, S.; Ricciardelli, D.; Abedi-Tari, F.; Neumark, N.; Digumarthy, S.; Kalra, M.; et al. Successful creation of clinical AI without data scientists or software developers: Radiologist-trained AI model for identifying suboptimal chest-radiographs. Res. Sq. 2022, 1–16. [Google Scholar] [CrossRef]
- Mongan, J.; Moy, L.; Kahn, C.E., Jr. Checklist for artificial intelligence in medical imaging (CLAIM): A guide for authors and reviewers. Radiol. Artif. Intell. 2020, 2, e200029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohail, A.; Fahmy, M.A.; Khan, U.A. XAI hybrid multi-staged algorithm for routine & quantum boosted oncological medical imaging. Comput. Part. Mech. 2022, 1–11. [Google Scholar] [CrossRef]
- Idreea, M.; Sohail, A. Explainable machine learning of the breast cancer staging for designing smart biomarker sensors. Sens. Int. 2022, 3, 100202. [Google Scholar] [CrossRef]
- Sarkar, A.; Vandenhirtz, J.; Nagy, J.; Bacsa, D.; Riley, M. Identification of images of COVID-19 from chest X-rays using deep learning: Comparing COGNEX VisionPro deep learning 1.0™ software with open source convolutional neural networks. SN Comput. Sci. 2021, 2, 130. [Google Scholar] [CrossRef]
- Lossau, T.; Nickisch, H.; Wissel, T.; Bippus, R.; Schmitt, H.; Morlock, M.; Grass, M. Motion artifact recognition and quantification in coronary CT angiography using convolutional neural networks. Med. Image Anal. 2019, 52, 68–79. [Google Scholar] [CrossRef]
- Ma, H.; Gros, E.; Baginski, S.G.; Laste, Z.R.; Kulkarni, N.M.; Okerlund, D.; Schmidt, T.G. Automated quantification and evaluation of motion artifact on coronary CT angiography images. Med. Phys. 2018, 45, 5494–5508. [Google Scholar] [CrossRef] [Green Version]
- Maier, J.; Lebedev, S.; Erath, J.; Eulig, E.; Sawall, S.; Fournié, E.; Stierstorfer, K.; Lell, M.; Kachelrieß, M. Deep learning-based coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 2021, 48, 3559–3571. [Google Scholar] [CrossRef] [PubMed]
- Su, B.; Wen, Y.; Liu, Y.; Liao, S.; Fu, J.; Quan, G.; Li, Z. A deep learning method for eliminating head motion artifacts in computed tomography. Med. Phys. 2022, 49, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Doda Khera, R.; Nitiwarangkul, C.; Singh, R.; Homayounieh, F.; Digumarthy, S.R.; Kalra, M.K. Multiplatform, Non-Breath-Hold Fast Scanning Protocols: Should We Stop Giving Breath-Hold Instructions for Routine Chest CT? Can. Assoc. Radiol. J. 2021, 72, 505–511. [Google Scholar] [CrossRef] [PubMed]
Training | Test | Sensitivity | Specificity | Accuracy | AUC | 95% CI (AUC) | ||
---|---|---|---|---|---|---|---|---|
Model validation (training + validation data from all sites) | Motion + | 295 | 126 | 94% | 91% | 93% | 0.93 | 0.89–0.97 |
Motion - | 259 | 113 | ||||||
Model testing (training from A, C, and testing on B) | Motion + | 196 | 173 | 85% | 90% | 86% | 0.87 | 0.82–0.92 |
Motion - | 231 | 86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dasegowda, G.; Bizzo, B.C.; Kaviani, P.; Karout, L.; Ebrahimian, S.; Digumarthy, S.R.; Neumark, N.; Hillis, J.M.; Kalra, M.K.; Dreyer, K.J. Auto-Detection of Motion Artifacts on CT Pulmonary Angiograms with a Physician-Trained AI Algorithm. Diagnostics 2023, 13, 778. https://doi.org/10.3390/diagnostics13040778
Dasegowda G, Bizzo BC, Kaviani P, Karout L, Ebrahimian S, Digumarthy SR, Neumark N, Hillis JM, Kalra MK, Dreyer KJ. Auto-Detection of Motion Artifacts on CT Pulmonary Angiograms with a Physician-Trained AI Algorithm. Diagnostics. 2023; 13(4):778. https://doi.org/10.3390/diagnostics13040778
Chicago/Turabian StyleDasegowda, Giridhar, Bernardo C. Bizzo, Parisa Kaviani, Lina Karout, Shadi Ebrahimian, Subba R. Digumarthy, Nir Neumark, James M. Hillis, Mannudeep K. Kalra, and Keith J. Dreyer. 2023. "Auto-Detection of Motion Artifacts on CT Pulmonary Angiograms with a Physician-Trained AI Algorithm" Diagnostics 13, no. 4: 778. https://doi.org/10.3390/diagnostics13040778
APA StyleDasegowda, G., Bizzo, B. C., Kaviani, P., Karout, L., Ebrahimian, S., Digumarthy, S. R., Neumark, N., Hillis, J. M., Kalra, M. K., & Dreyer, K. J. (2023). Auto-Detection of Motion Artifacts on CT Pulmonary Angiograms with a Physician-Trained AI Algorithm. Diagnostics, 13(4), 778. https://doi.org/10.3390/diagnostics13040778