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Abstract: Today, medical images play a crucial role in obtaining relevant medical information for
clinical purposes. However, the quality of medical images must be analyzed and improved. Various
factors affect the quality of medical images at the time of medical image reconstruction. To obtain the
most clinically relevant information, multi-modality-based image fusion is beneficial. Nevertheless,
numerous multi-modality-based image fusion techniques are present in the literature. Each method
has its assumptions, merits, and barriers. This paper critically analyses some sizable non-conventional
work within multi-modality-based image fusion. Often, researchers seek help in apprehending
multi-modality-based image fusion and choosing an appropriate multi-modality-based image fusion
approach; this is unique to their cause. Hence, this paper briefly introduces multi-modality-based
image fusion and non-conventional methods of multi-modality-based image fusion. This paper also
signifies the merits and downsides of multi-modality-based image fusion.

Keywords: multi-modality; wavelet transform; image fusion; edge detection; texture detection

1. Introduction

There is currently a wide range of image-processing techniques available to generate
optimal imaging quality for diagnostic purposes. The best quality image is crucial to
gaining good visual information. Moreover, the fundamental strategy for image processing
converts an analog image into a digital image. It performs some operations and calculates
the mathematical form by using a type of signal processing with an image as input and a
series of all images on it as output [1–5].

Various kinds of medical images are used to distinguish applications such as CT,
PET, and MR images. The pixel is a crucial part of any image, and this little picture
element has some coordinates and intensity color values [6–10]. The various digital image
examples [11–17] represent images performed in relevant space and time by sampling. It is
crucial to use a few processing operations block-wise, and the pixel-to-pixel operation on
the image is the primary operation through which we can resolve the issue of some pixels
overlapping [18–22].

Signal distribution or characteristics are associated with image processing operations
to extract better image quality and some significant information. The set for f (x, y),
where x and y are spatial coordinates and the amplitude of any pair of coordinates, can be
used to determine two-dimensional (2D) images. The digital signal-processing operations
are performed on the digital images [23–28]. The several operations performed are the
enhancement of the image, the restoration of the image, the compression of the image,
and the segmentation of the image [29–33]. These operations perform and concentrate on
image enhancement to improve image quality during image processing. Image fusion is
the merging of complementary information about two or more images into a single output
image. Image fusion is widely used in several applications related to remote sensing,
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medical imaging, the military, and astronomy [34–40]. Image fusion is the technique of
combining images to enhance the content information in the images. Image fusion methods
are critical for improving the performance of object recognition systems by combining
many different sources of images taken from different satellite images, and airborne images,
and relying on ground-based systems for the different datasets [41–45]. The advantages,
disadvantages, and applications of the fusion process are discussed in Table 1.

Table 1. Merits, demerits, and application of image fusion.

Merits Demerits Applications

Extracting all the useful
information from the input

images and merging the two
images to get

crucial information

In the image fusion process,
noise can affect the

fused image
Medical treatment

The fusion technique does not
show any errors for the

human preceptors

During the experimental
analysis because of the

application of the
fusion technique

Object recognition
and detection

In the process of fusion, it has
robust imperfections such as
misregistration and is reliable

The illumination problem in
the fused images Guidance for the navigation

The process of image fusion
can show better reliability,

capability, and
complementary information

The processing of the data is
slow when the images

are fused

Surveillance for military
and civilian

It is good for the identification
and recognition

More input images are
required for the fusion process

In the field of robotics fusion,
images are mostly applied for

the frequency variations in
the images

Major Contributions

Some of the most important contributions of this non-conventional multi-modal
medical image fusion survey are listed below:

1. A detailed introduction to non-conventional multi-modal medical image fusion tech-
niques is presented. Most of the works selected for this survey are recent;

2. In addition, an analysis of non-conventional strategies for fusing many types of
medical images is performed. Using multi-modal-source images generated from a
CT scan, a SPECT, an MR-T1 image, and an MR-T2 image, six typical medical image
fusion algorithms are compared and contrasted based on the results of five prominent
objective metrics;

3. Some future research potentials for non-conventional multi-modal image fusion are
proposed, while the existing difficulties in this area are highlighted.

The rest of this paper is organized as follows: Section 2 presents a brief introduction
to the background of the techniques used in multi-modality image fusion. Section 3 is
about the related work of medical image fusion. A comparative analysis of non-traditional
related work has been critically discussed in Section 4. The outcomes with visual analysis
and performance metrics are discussed in Section 5. Section 6 concludes the paper with a
future perspective.

2. Multi-Modality Image Fusion

Multi-modality image fusion entails a composition of the image taken from different
medical sources and equipment to acquire more detailed and reliable information about the
image. In recent trends, radiography synthesis has used multi-modality in medical diagnosis
and treatment. These methods of cure are adopted for diagnosing or excluding the disease.
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Medical images are classified into several categories; they can be distinguished in the image
based on the various human body functions and physical structure of the image, which has
a relatively low functional image spatial resolution. Thus, it can provide information about
blood circulation and visceral metabolic rate. As in Table 2, MR and CT image fusion CT
images show the physical details, while MR images show the functional details.

In multimodality medical image fusion, the rules are applied in the spatial domain
and wavelet domain. Figure 1 shows an illustration of the image fusion method using the
block-wise focus measure rule in the spatial domain. In this block, both source images
are divided, and by computing the focus measure and choosing the maxima rule, a fused
image is obtained. Similarly, Figure 2 shows the image fusion method using the decision
map rule in the wavelet domain. Here, image fusion is performed in the wavelet domain
by decomposing the approximation and detail parts.
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In a recent area of research, medical imaging that provides a representation of the
object plays a crucial role in the field of medical treatment [46–48]. The complete structure
of the spectrum in digital image processing is helpful in medical diagnosis. For good
treatment, radiologists have to combine organs or diseases. Moreover, because of design
constraints, instruments cannot provide this type of information. For the superior quality of
the image, distinguishing conditions in image processing demand high spatial and spectral
information in a single image [49–53]. In the medical field, the significance of medical
images is distinguished from other images. The significance of body organs or living tissues
present in medical images can be correctly analyzed by improving the heterogeneous areas
of the images. The objects obtained with identical modality and size may vary from
one patient to another; they are defined through a standardized acquisition protocol in
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terms of shape, internal structure, and sometimes various views of the identical patient
at identical times [54,55]. In biological anatomy, object delineation cannot be erased from
the background. Automatic image analysis in the field of medicine does not provide fake
measurements. Rather, the robustness of the algorithm does: because those images cannot
be handled properly, they are simply rejected. This illustration shows that image fusion
enhances the quality of the image. In multimodality, the medical image fusion process has
the objective of improving the quality of images by decreasing error and redundancy in
order to enhance overall image quality [56–59]. Clinical detection in the field of medical
imaging is used for treatment and problem assessment.

In recent research trends in image fusion, motivation for analysis in image fusion is
shown to have a better outcome in the latest innovations in medicine, remote sensing, and
the military. With the high resolution, robustness, and effectiveness of the cost-effective im-
age fusion technique, this methodology continues to generate critical information. Achiev-
ing the crucial data in image fusion is a more challenging and typical task because of the
high cost of instruments and the huge amount of blur data present in the image. It is
essential to understand the concept of image fusion. The idea of “image fusion” is the com-
bination of two or more different or identical images to develop a new image that contains
several increments of information from the various sources of images. The central aspect
of image fusion is increasing the resolution of images taken from various low-resolution
images. The objective is already implemented in the medical research area because coronary
artery disease (CAD) is a type of disease that happens through a lack of blood supply to
the heart; therefore, image transparency is required for this type of disease. The doctor also
determines the report of the patient in the brain tumor disease; thus, in several modalities,
applying the brain images is performed with image fusion. From the perspective of the
researchers, image fusion is both exciting and challenging. Today, image fusion plays
a crucial role in image classification for various applications such as satellite imaging,
medical imaging, aviation, detection of a concealed weapons, multi-focus image fusion
techniques, digital cameras, battle monitoring, awareness in a defense situation, the CCTV
(surveillance) sector of target-tracking, gathering of intelligence concepts, authentication of
the person, the geo-informatics sector, etc.

3. Related Work

Image fusion provides completely new competitive opportunities for technical orga-
nizations. Image fusion is a challenging technology in today’s world, and some survey
results are presented below:

Li, H., et al. (1995) suitably note that the latest scheme is based on the wavelet tech-
nique and obtaining new informative images after applying IWT. The proposed scheme
is much better than the Laplacian pyramid techniques in terms of effectiveness and com-
pactness. The experimental result also includes multi-focus, SAR, infrared, set spot, and
medical (MR, PET) images. It is designed with a four-part framework, but the problem is
clarity. Shu-Long, Z. [2] (2002): the geometric resolution of an image is improved by the
mallet algorithm presented in this study, which proposes wavelet theory to enhance the
quality of a fused image. In this geometric resolution of the image, which fully depends
on the high-frequency information in it, some of the algorithms do not produce a good
result. Two images will be decomposed into sub-images with varying frequencies first. It
is based on the wavelet transform and is entirely focused on time and frequency. Those
sub-images have been converted into the resulting image with rich information after de-
composition. Pradeep K. and M. Hossain [3] (2010): this study discusses the benefits of
fusion in multi-modality as well as the challenges in the five critical aspects of estimation
schemes, classification-based schemes, and multi-modality methods. Fusion for all rules
depends on the schemes: what to fuse, when to fuse, how to fuse, and the level of fusion.

A. K., et al. [4] (2011): In this study, a new algorithm based on wavelet transform and
curvelet transform is described, and the experimental results improve the lines and edges
of images. The authors discussed various aspects, such as multispectral and multi-focus
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image fusion. The best procedure is also described in this research to achieve image fusion
using wavelet transform, and the characteristics of the fused image were fully analyzed
using the proposed method. Multiple features have been discussed, such as entropy, corre-
lation coefficient, mean values, and root mean square. Sahu, V., et al. [7] (2014): Effective
approaches to extracting features are proposed in this study using the transformation
concept and the process of decomposition; however, this method is insufficient to find the
edge information. For the various medical images, the authors used the wavelet transform.
Ramandeep et al. (2014) explained various fusion techniques for medical image fusion.
They defined two types of fusion methods: spatial and transform domain. They highlighted
medical modalities such as MR, CT, and PET. The given concept is presented in a helpful
review that shows the advantages and disadvantages of fusion techniques. It has been
considered in all aspects similar to noise data, contrast, and undesired edges. Alex James
and Belur [9] (2014): In this survey, the study focused on the imaging modalities in medical
image fusion and the algorithms of the fusion in medical image fusion, with a final interest
in the organs. Similar subjects with a large number of analogous studies and topics are
combined. The practical increment and rise in medical image fusion will continue in the
coming years.

Deshmukh, M.D.P., et al. [13] (2015): In this literature, the wavelet method uses remote
sensing images and satellite images. The respective fused image will be more readable
with the MSE and PSNR parameters. The wavelet transformation, which incorporates
statistical parameters such as PSNR, SD, entropy, RMSE, and MSE, will be computed to
prove this method. The authors also discussed some other methods including wavelet
transform (WT), stationary wavelet transform (SWT), continuous wavelet transform (CWT),
and discrete wavelet transform (DWT). Bhavana, V., et al. [14] (2015) defined this medical
fusion approach as a multi-modality concept, i.e., very suitable in the medical field. In
this study, gray and color images and brain images are specially used in the form of grey
and color images. The authors found the edges of the images and proposed a new fusion
scheme for PET and MR brain images. They also applied the wavelet transformation
method to remove the distortion of the color without losing any anatomical information.
Shalima, D., et al. [15] (2015) discussed spatial and temporal domain fusion techniques.
Each technique has its advantages and disadvantages. They focused on the actual gap
between the literature reviews. They took one single image, i.e., Lay’s image, and the image
was blurred on the left side as well as the right side. Every object is focused on a single
image. Fatma El-Zahraa and Mohammed Elmogy [16] (2015): The focus of this study was
on the registration and fusion steps in image fusion, which are frequently debated among
medical imaging modalities. Fusion procedures are described to stand up to further studies,
and some of the challenges in image registration that improved the fusion techniques and
medical image registration are proposed.

Tewari, K., et al. [18] (2016) presented a comparative study of image fusion techniques.
They used their specific techniques to detail all information one by one, such as spatial and
transform domains. They used medical images, grayscale images, and color images. It is
by totally focusing on those parameters that they created a good quality picture, i.e., PSNR,
MSE, entropy, etc. In this work, it has been used to compare various application images
and find the suitable method for each. Li, H., et al. [19] evaluated two novel multi-focus
fusion techniques on a multi-scale and multi-direction neighbor distance (MMND) scheme
and classified the pixels into various mechanisms. Generally, fusion rules are applied to
fuse the image; thus, they improved the performance with two schemes. All experimental
work and results are validated for the proposed work, which can obtain excellent results.
Liu, Z., et al. (2017) proposed a new scheme that is based on a novel fusion scheme with
cartoon–texture decomposition to convert multi-focus images into cartoon content and
texture content (two components). They used a fusion rule. The results show that the
proposed methods provide higher quality, but the challenge is in developing a potential
image decomposition algorithm to accelerate the process [22]. Nejati, M., et al. (2017)
examined the new multi-focus image fusion algorithm based on a novel focus criterion.
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They concentrated on patterns with a few consecutive intersection points in one and two
dimensions. They also used some grayscale images on a clock, leaf, Pepsi, toy, newspaper,
balloon, etc. Image testing is performed with the different values. The approximate area
is focused and calculated with some intersection points. Their work has been carried out
on the different edges of all those images; however, the problem with this research is that
the limitation of different color images has not been used, and the blurring problem is not
completely discussed yet.

Xiao, D., et al. [25] (2017) analyzed the multi-focus with a robust encryption algorithm.
In this paper, there is a scheme based on a security algorithm, a robust encryption algorithm
based on compressive sensing. The latest schemes that may be used in data transmission
volume detract and protest different attacks are discussed in this literature. Multi-focus
fusion in this case is entirely based on discrete wavelet decomposition with a structurally
random matrix, which reduces data volume. The authors used the same grayscale image as
before. The experimental results demonstrate that the new algorithm is both effective and
secure. Luo, X., et al. [26] (2017) investigated all novel multi-focus fusion results with the
latest methods, i.e., higher order singular value decomposition (HOSVD) and edge intensity
(EDI). HOSVD provides better image representation. Using these methods, edge intensity
was presented, and HOSVD was the dominant data-driven decomposition technique. The
authors took Barbara, Clock, Pepsi, and Gold Hill images for the experimental table. A
further activity level measure (ALM) of the coefficient was estimated using edge intensity.
Qin, X., et al. [27] (2017) developed a new multi-focus image fusion based on window
empirical mode decomposition to improve the image representation. The detailed scheme
was entirely focused on visual features, contrast, and local visibility. WEMD involves
the image pixel as well as the grey patches. The experimental results had shown an
effective scheme for capturing the detail and direction information of the source image.
The disadvantage of the given research was that future work was needed to specify how to
extend this for new, different color images.

Manchanda, Meenu, et al. [42] (2018) proposed a new technique for fusing medical
images from many modalities using a fuzzy transform. They combined fuzzy transform
pair reconstructions obtained at different times. Reconstructed error pictures produced
at various stages using fuzzy transform pairs are also fused. It, too, keeps all the vital,
relevant, and interconnected details of medical imaging of various modalities. Yang, Yong,
et al. [43] (2018) want to combine photos with data from several sources. In this study,
using structural patch decomposition (SPD) and fuzzy logic technology, we offer a new
approach to multimodal medical picture fusion. To start, we use the SPD technique to obtain
two important characteristics for fusion discrimination. Then, using the most important
data, we build two brand new fusion decision maps—the incomplete fusion map and the
supplementary fusion map. Singh, S., et al. [44] (2019) combine the deconstructed base
and detail layers using a convolutional neural network (CNN) that employs consistency
checking and structural patch clustering (fuzzy c-means-based). First, the brightness of each
source picture is deconstructed, and then the chrominance is retrieved and separated using
a color space transform. When the base layer has been broken down into its constituent
parts, the next step is to utilize a CNN model that has already been trained to extract the
most salient characteristics from those parts. A fusion score is calculated using an energy-
based activity measure for the final feature map, and this score is then fine-tuned during
consistency verification to optimize the weight map for fusing the base layers. Gambhir,
D., et al. [45] (2019) investigated the wave atoms for use in a wide variety of applications,
including image denoising, fingerprint recognition, and compression; it is recommended
that they be used in medical picture fusion. Numerous medical imaging datasets are used
to test the proposed fusion process and compare it to current best practices.

Li, X., et al. (2020) offered a new Laplacian red composition (LRD) architecture
for multimodal medical picture fusion. There are two new technological features in the
proposed LRD. The authors begin by outlining a Laplacian decision graph decomposition
approach that incorporates picture augmentation in order to glean supplementary data,
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redundancy, and low-frequency subband images. Second, they established the notion
of the overlapping domain (OD) and non-OD (NOD), with the OD contributing to the
fusion of redundant information and the NOD being responsible for fusing complementary
information due to their differences in nature. Arif, M., et al. (2020) suggested a novel
approach and method of fusion for multimodal medical pictures based on the curvelet
transform and the genetic algorithm. Our approach utilizes GA to maximize the features
of picture fusion and clear out any doubts or haze that may have been present in the
original input image. Multiple sets of medical photos have been used to evaluate the
proposed approach, which is also compared to cutting-edge medical image fusion methods.
Li, X. et al. [48] (2021) suggested a multimodal medical picture fusion approach that is
efficient, quick, and insensitive to background noise. After decomposing an image into its
structure and energy layers using a joint filter, a unique local gradient energy operator is
presented for fusing the structure layer, and the abs-max rule is used to fuse the energy
layer. Shehanaz, S., et al. [49] (2021) devised an optimal weighted average fusion (OWAF)
for fusing medical images from different modalities to enhance the multimodal mapping
performance. In our method, the multiple input modalities are decomposed using the
standard discrete wavelet transform (DWT). Weights that were optimally determined using
the popular particle swarm optimization technique were then applied to the resulting
energy bands (PSO).

Tang, W., et al. [50] (2022) demonstrated an innovative unsupervised strategy for
fusing medical pictures from different modalities using a MATR-type multiscale adaptive
transformer. Instead of using plain old convolution, as in the original approach, they
presented an adaptive convolution to dynamically adjust the convolutional kernel in light
of the larger global complementary environment. Furthermore, an adaptive transformer is
used to improve the global semantic extraction capabilities, which allows for the modelling
of long-range relationships. For this reason, they have built a network with a multiscale
architecture that allows us to collect relevant multimodal data at varying sizes. Alseelawi,
N., et al. [51] (2022) offered a hybrid technique using NSCT and DTCWT as a viable way
for fusing multimodal medical images. In the experimental investigation (PET), computed
tomography, magnetic resonance imaging, and positron emission tomography were all used
as input multimodality medical pictures. One strategy proposed is using a convolutional
network to create a weight map that accounts for pixel-level motion data from two or more
different types of multimodality medical images. Li, W., et al. [52] (2023) suggested a model
that uses a combination of the CNN module and the transformer module in order to fuse
many types of medical images into one. The convolutional neural network (CNN) module
is used to extract texture information from images, while the transformer module is used to
obtain information on the intensity distribution of pixels inside an image. Comprehensive
experimental findings on the Harvard brain atlas test dataset show that the suggested
technique outperforms competing methods. We propose and apply to the MR-PET and
MR-SPECT multimodal medical image fusion tasks a fusion approach that maximizes local
energy information and picture gradient information. Without losing the more crucial pixel
distribution difference structure information of the original picture, the original image’s
texture features have been retained. Zhang, C., et al. [53] (2023) presented a unique medical
image fusion framework to address the shortcoming of the joint sparse model using a
single vocabulary. The goal of any good fusion technique is to bring out and improve
upon the already-present comparable information in the source pictures. The proposed
solution decreases the amount of time spent waiting and increases the amount of time
spent working.

Zhou, T. et al. [54] (2023) compile brief descriptions of many common GAN models.
The article goes on to detail the benefits and uses of GAN in the medical image fusion
industry. It examines the obstacles that GAN must overcome and speculates about its pos-
sible future courses of action. Liu, J. et al. [55] (2023) presented a unified fusion architecture
that simply requires a basic training procedure. In this case, we alter the picture fusion
process to take saliency into account. State-of-the-art fusion outcomes are attained using the
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suggested approach. Rajalingam, B., et al. [56] (2023) suggested and examined the hybrid
multimodality medical image fusion approaches, and the key benefits and drawbacks are
discussed. The quality of the resulting multimodal medical image is enhanced by using
hybrid multimodal medical image fusion techniques. The experimental results of the sug-
gested hybrid fusion approaches provide high-quality, fast-processed, and well-visualized
merged multimodal medical pictures. Wang, X. et al. [57] (2023) make a case for using a
transformer and a feedback mechanism to achieve multi-focus image fusion. In order to
enhance the precision of focus area identification, this technique combines a transformer
with a CNN and combines the local information recovered by the CNN with the global
information collected by the transformer. In ref. [58], the deep label fusion (DLF) 3D end-
to-end hybrid MAS and DCNN segmentation pipelines are analyzed and scored. With the
multi-view attention mechanism and adaptive fusion technique in mind, the authors of [59]
recommended the encoder–decoder structure of the U-Net as the core network structure
upon which to build a medical image segmentation algorithm. In ref. [60], researchers
provide a useful supplemental module for features by fusing them cross-wise across the
CNN and transformer domains.

Xie, S., et al. [61] (2023) presented a progressive feature filter architecture in order
to achieve continuous multi-modal fusion. To improve and denoise the source images, a
pre-filtering module is introduced. Liu, X. et al. [62] (2023), who presented a new GAN-
based approach to enhance fusion efficiency. The focus-guided discrimination technique
is meant to make the target more noticeable. Alshathri, S. et al. [63] (2023) provide a
professional-grade audio watermarking method using wavelet-based image fusion, Arnold
transformations, and singular value decomposition for safe data transfer of medical images
and reports over the Medical Internet of Things. Vasu, G.T. et al. [64] (2023) presented
a multi-focus image fusion technique that makes use of a weighted anisotropic diffu-
sion filter and a structural gradient in order to maintain the relevant edges in the final
fused image. Jaganathan, S. et al. [65] (2023) offered a self-supervised 2D/3D registration
approach to close the gap between domains and eradicate the requirement for paired
annotated datasets that combines simulated training with unsupervised feature and pixel
space domain adaptation. Li, H. et al. [66] (2023) use a Siamese conditional generator to
create probabilistic local features with two different points from multi-focus images with
overlapping data. Fletcher, P. et al. [67] (2023) outline the process and demonstrate the
efficiency and acceptability of a new transperineal biopsy approach using electromagnetic
needle tracking and a combination of magnetic resonance imaging and ultrasound, all
performed under local anesthesia. AlDahoul, N. et al. [68] (2023) evaluated several RGB
and depth image fusion techniques for classifying space-related objects. Thirteen fusion
performance measures were used to assess the success of the studies. Bao, H. et al. [69]
(2023) proposed a contextual fusion network that combines information from many scales,
allowing us to simultaneously collect geographical and semantic data as well as data about
the objects themselves. In order to produce the ultimate decision graph, Wu, P. et al. [70]
(2023) suggested an intermediate learning algorithm and judgement module. The capacity
to acquire locally relevant contextual features is strengthened. The capacity to learn locally
relevant semantic information is strengthened. Wang, C. et al. [71] (2023) presented a novel
fuzzy rule for uncertainty that makes use of pixel similarities using a hybrid of fuzzy set
theory and deep learning. When fed feature maps recovered by the VGG-16 network,
the flexible network described by Li, J. et al. [72] (2023) may dynamically optimize the
necessary weights of source pictures. More texture features may be extracted from several
inputs into a unified whole with the use of weight optimization in the fusing process. A
model for multi-grained channel normalized fusion networks (MG-CNFNet) was proposed
by Zeng, X., et al. in 2023 [73]. This model can preserve high-quality spatial texture in
addition to substantial semantic information.

To make the most of the synergies between CNNs and transformers, Zheng, J. et al. [74]
(2023) suggested a cross-attention and cross-scale fusion network. Yin, W. et al. [75] (2023)
presented a unique adaptive visual improvement and high-significant target detection-
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based fusion system. The first zero-shot algorithms for multi-focus picture fusion are
proposed by Hu, X. et al. [76] (2023). Deep priors of a clear and focused merged pic-
ture are effectively mined. Yang X. et al. [77] present a decoupled global–local infrared
and visible image fusion transformer (DGLT-Fusion) (2023). Separating global and local
knowledge acquisition into transformer and CNN sub-modules is what the DGLT-fusion
does. To improve the global–local information interaction in our network, we have lay-
ered these two modules so that they mutually influence one another. In their paper,
Kaya, Y. et al. [78] (2023) offer a new deep learning model for illness detection. Image
fusion is used to boost the suggested model’s efficiency. The purpose of the study con-
ducted by Zhou, H., et al. [79] (2023) was to compare the side-by-side method of assessing
the ablative margin in hepatocellular carcinomas measuring 3 cm in diameter with the
computed tomography image fusion method and determine which was more accurate in
predicting local tumor growth. Wu, L. et al. [80] (2023) offer a fusion approach for multi-
band remote sensing pictures that is built on joint representation. El-Shafai, W. et al. [81]
introduced a CNN architecture for multimodal categorization of medical images in 2023.
In comparison with employing pre-trained deep learning networks, the suggested network
is straightforward and is directly taught using medical pictures. P. Kaur et al. [82] (2023) set
out to observe how different optimization strategies performed when applied to medical
imaging. As part of their routine follow-up, CT and 3D TTE were performed on 14 patients
with congenital cardiac disease by Fournier, E. et al. [83] (2023). Alignment, landmarks, and
superimposition are only a few of the fusion, navigation, and assessment processes that we
laid out. The issue of image registration is formalized as an affine pose graph optimization,
and Li, L. et al. [84] (2023) suggest fusing multiple techniques according to their uncer-
tainties. This paves the way for a unified framework that incorporates landmarks, dense
intensity registration, and learning-based methods. An unsupervised improved medical
image fusion network is proposed in the article [85]. To better maintain data integrity, they
used both shallow and deep restrictions. In [86], the authors suggest using an FDGNet
to fuse medical images from several sources. The fusion architecture is trained with an
optimal level of efficiency using a custom-created hybrid loss. The weighted fidelity loss
helps keep the merged image’s brightness from dropping.

4. Comparative Analysis of Non-Conventional Related Work

This section compares various non-conventional multi-modal image fusion techniques
in tabular form based on parameters such as methodology, merits, and demerits, as shown
in Table 2.

Table 2. Comparison based on methodology, objectives, merits, and demerits.

Related Work Methodology Objectives Merits Demerits

Manchand, Meenu et al.
[42] (2018) Fuzzy transform

Combines many phases
of an FTR pair’s

reconstructed picture.

Protects all vital, useful,
and interconnected

data from input
medical pictures of
various modalities.

Free from the problem
of artifacts.

High computational
cost.

Yang, Yong, et al. [43]
(2018)

Fuzzy discrimination
with structural patch

decomposition

Combining images
with data from many

sources

Successful suppression
of hue shift, leading to
enhanced diagnostic

performance.

Requirement of
optimization to

improve the
computational

efficiency.
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Table 2. Cont.

Related Work Methodology Objectives Merits Demerits

Singh et al. [44] (2019)

Decomposition of
hybrid layers utilizing
convolutional neural
networks for feature

mapping and structural
clustering

Improve diagnostic
prediction, seeks to
combine data from

several sensors into a
single picture.

Enhancing the
structural fine details
while minimizing the

impact of major
artefacts and noise.

Lack in pixel contrast
and preservation of

tiny edges.

Gambhir et al. [45]
(2019)

Wave atoms
transform-based

medical image fusion

Medical analysis and
treatment

Improved clarity and
expanded information;

a real advantage for
faster illness diagnosis

and more effective
therapy.

Requirement of
contrast improvement.

Li, X., et al. [46] (2020)
Laplacian

redecomposition
framework

Image enhancement
while preserving the

heterogeneous
characteristics of
redundant and
complementary

information

Qualitatively and
statistically superior to

other widely used
fusion techniques.

Eliminates the problem
of color distortion,

blurring, and noise.

Arif, M., et al. [47]
(2020)

Fast curvelet transform
through genetic

algorithm

Improve the input
picture by clearing out
any doubts or haze and
maximizing its fusion

qualities in the process.

Keeping all original
data and color

standards intact in the
base picture, Fast

computation process.

Not able to adaptively
identify the breakdown

level.

Li, X. et al. [48] (2021) Joint bilateral filter and
local gradient energy

To fuse the structure
layer and the abs-max
rule to fuse the energy

layer

Easy to
implementation, easy

to understand and
achieve high

computational
efficiency

Has the capability to
successfully used to

another wide variety of
image-fusion issues.

Not able to bridge the
gap between

multimodal medical
image fusion methods
and certain practical
clinical applications.

Shehanaz, S., et al. [49]
(2021)

Optimum weighted
image fusion using

particle swarm
optimization

To improve the
multimodal mapping

performance

Powerful in both
normal and noisy

fusion settings in terms
of information

mapping, edge quality,
and structural

similarity.

Cannot be used in
multicentral

applications, has higher
computational time,

and experimentation is
applied on normalized
and registered public

image database.

Tang, W., et al. [50]
(2022)

Multiscale adaptive
transformer

Integrate the
complementing

information from
several modalities to

improve clinical
diagnosis and surgical

navigation.

Constraints for
preserving information

at both the structural
and feature levels are

built using a structural
loss and a region

mutual information
loss, and good
generalization

capability.

Execution time is
Higher.
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Table 2. Cont.

Related Work Methodology Objectives Merits Demerits

Alseelawi, N., et al. [51]
(2022)

Hybrid approach of
NSCT and DTCWT

Uses a variety of
imaging modalities to

compile a
comprehensive picture

of a disease

Highest-quality fused
pictures, lower

processing period, and
visual quality.

In some cases,
blurriness in the result

is found.

Li, W., et al. [52] (2023)

Network with
improved dual-branch
features, trained using

transformers and
convolutional features

Recover texture
information from

images and determine
the intensity

distribution of pixels in
a picture.

The texture details of
the original image are

well-kept, and the more
important information
about how the pixels
are distributed in the
original image is not

lost.

Tried out a few samples
of medical images.

Zhang, C., et al. [53]
(2023)

Joint sparse model with
coupled dictionary

To correct the flaw in
the joint sparse model

caused by using a
single dictionary, and

to emphasize and
enlarge on the relevant

parts of the source
pictures.

Time efficiency is
enhanced while less

functional and
structural data is lost.

Method is not
implemented on color
medical images as it

can provide more
precise treatment.

Vasu, G.T., et al. [64]
(2023)

Weighted anisotropic
diffusion filter

Generate a single image
from many images of
the same subject with
different forefront and

backdrop emphasis.

Efficient in
edge-preserving

feature.

Execution time is
Higher.

Xu, H., et al. [85] (2021)

Performed
surface-level

and deep-level
constraints in

unsupervised fusion
network

To preserve the unique
information of
source images

To preserve
high-quality texture
details in the MRI

image.

Enhanced information
preservation.

High computational
cost due to pixel level

processing.

Zhang, G., et al. [86]
(2023)

Pair feature difference
guided network

To address the defects
of complementary

feature extraction and
luminance degradation.

Preserves rich
luminance in CT

images, tissue texture
in MRI images, and

functional
(PET/SPECT) details
from source image.

Features that go
together between

source images can be
taken out, less
luminescence

information achieved,
and the network can be
improved to get more

features.

5. Experimental Results

Using the MATLAB version R2022a software, the experimental evaluation is complete.
A resolution of 512 × 512 is used for the experimental results of all the images. There are
numerous multi-modality effects observed in Figures 3–7. Input source images are shown
in Figure 3a,b. Non-conventional methods, such as [44,47,49,51,53], are combined with
the established structures in all images. Figure 3c–g depicts the effects of [44,47,49,51,53],
respectively. Similarly, ref. [53] different modalities are also being investigated in MR-T2
images and SPECT images. In Figure 3, the result of ref. [44] is satisfactory; however, in
terms of edge preservation and texture preservation, the result of ref. [44] is not satisfactory.
However, the contrasts are well-preserved. In some homogenous areas, the texture is also
well-preserved. However, sharpness in the heterogeneous area is missing. In Figure 3, the
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result of ref. [47] is acceptable; nevertheless, when it comes to the preservation of edges
and textures, the result of ref. [47] falls short of expectations. Nevertheless, the contrasts
have been maintained very well. There are some areas of homogeneity, and the texture has
also been nicely conserved. However, there is a lack of brightness in the heterogeneous
area. In Figure 3, the outcome of ref. [49] is satisfactory; nevertheless, when it comes to the
maintenance of edges and textures, the result of ref. [49] does not live up to expectations.
Nevertheless, the contrasts of ref. [48] have been preserved quite beautifully. There are
some places of homogeneity, and the texture has also been carefully preserved. There are
also other areas where the texture has changed. The heterogeneous region, on the other
hand, has an inadequate amount of light. In Figure 3, the result of ref. [51] is satisfactory;
nevertheless, when it comes to the maintenance of the image’s edges and textures, the
result of ref. [51] does not live up to expectations. Nevertheless, the contrasts have been
maintained quite well throughout. There are certain regions of consistency, and the texture
has also been maintained in an admirable fashion. On the other hand, the heterogeneous
region suffers from a lack of brightness. In Figure 3, the result of ref. [53] is fine, but it falls
short when it comes to keeping edges and textures. Nevertheless, the differences have been
maintained in a really good way. There are some areas where everything looks the same,
and the texture has also been maintained well. However, the area that is not homogenous
is not very bright.
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well-preserved and is uniform in some areas. Unfortunately, the heterogeneous area is 
severely lacking in light. As can be seen in Figure 6, the outcome of ref. [49] is passable, 
but it fails to adequately preserve the image’s edges and textures. However, the contrasts 
in ref. [48] have been preserved well. Consistency may be found in some places, and the 
original texture has been preserved with meticulous attention to detail. These are not the 
only locations where the texture has changed. However, there is not enough illumination 
to properly study the region’s heterogeneity. Figure 6 shows that while ref. [51] produces 
a good image, it fails to meet expectations in terms of edge and texture preservation. 
There is a high level of talent involved in maintaining the texture while also achieving 
continuity in a number of key locations. As opposed to this, the area of varying luminos-
ity is known as the “heterogeneous zone.” Figure 6 shows acceptable output from ref. 
[53], but note that it does not preserve the edges or textures. However, there are still clear 
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The visual results are not sufficient to evaluate the performance of fusion methods. 
Hence, some popular performance metrics are utilized to evaluate the performance of 
multi-modality medical image fusion algorithms. Mutual information (MI), edge index 
(Q(ABF)), spatial frequency (SF), SSIM, and NIQE are the performance metrics. The re-
sults are evaluated and compared as shown in Tables 3–5. 

Table 3. Performance evaluation of results using the Figure 1 input image dataset. 

Method 𝑴𝑰𝑨𝑩,𝑭 𝑸𝑨𝑩,𝑭 𝑺𝑭 𝑺𝑺𝑰𝑴 𝑵𝑰𝑸𝑬 
[44] 3.4603 0.2961 12.9609 0.9929 30.1237 
[47] 3.8704 0.7537 11.1020 0.9976 22.2551 

Figure 6. (a) Source image: MR, (b) Source Image: PET, (c) Result of [44], (d) Result of [47], (e) Result
of [48], (f) Result of [49], (g) Result of [51], (h) Result of [53].
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datasets over different methods- CNN-FM [44], FCT-GA [47], OWM-SO [49], NSCT-CWT [51], JSM-
CD [53], JB-LGE [48].
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Figure 4a,b shows both the MR-T2 and SPECT images. These two images are com-
bined into existing structures such as [44,47,49,51,53]. Figure 4c–g expresses the effects
of [44,47,49,51,53], respectively. To test the most current methods, a different modality
dataset is also used. As can be seen in Figure 4, the outcome of ref. [44] is acceptable, but it
falls short when it comes to preserving edges and textures. However, distinctions remain
clear. There are several consistent spots where the original texture has been maintained.
However, there is a lack of clarity in a wildly varying domain. Figure 4 shows that the
output of ref. [47] is passable, but it fails to meet expectations when it comes to edge and
texture preservation. However, the contrasts are excellently preserved. Some places are
consistent, and the texture has been well-preserved overall. The heterogeneous region,
however, suffers from a severe shortage of illumination. While the result of ref. [49] in
Figure 4 is satisfactory, it falls short when it comes to the preservation of edges and textures.
The contrasts of ref. [48], however, have been retained very well. Some areas are consistent,
and the original texture has been maintained with great care. The texture shifts are not
limited to these spots. However, the light levels are inadequate in the area of heterogeneity.
The output of ref. [51] in Figure 4 is good, but it falls short of expectations when it comes to
preserving the image’s edges and textures. However, contrasts have been maintained to a
satisfactory degree. Several areas of continuity have been achieved, and the texture has
been preserved with great skill. In contrast, the area with uneven brightness is considered
to be the heterogeneous zone. The output of ref. [53] in Figure 4 is acceptable, but it fails to
maintain edges and textures. Nevertheless, the distinctions are quite well-preserved. In
some spots, the uniformity of the surface has been maintained, and the texture, too, has
been carefully preserved. The non-uniform region, however, has a low luminosity.

As shown in Figure 5, on the MR-T1 image and the MR-T2 image, the latest methods
were also checked. Figure 5a,b shows the corresponding MR-T1 and MR-T2 images.
Figure 5c–g shows the results of [44,47,49,51,53], respectively. It is evaluated from visual
inspection that the approaches to visual consistency described in [53] are stronger in terms
of edges and content definitions compared to the existing methods. The overall visual
quality of [51,53] is comparatively better. However, [53] outperforms [51]. Refs. [44,47] also
show better texture preservation; in some cases, however, artifacts are observed. Ref. [49]
shows great results in terms of edge preservation and smoothness in uniform and non-
uniform areas. As shown in Figure 5, ref. [44] preserves edges and textures poorly. However,
differences exist. The original texture is preserved in various places. In a diverse domain,
clarity is lacking. Ref. [47]’s output is adequate, but it fails to preserve the edges and texture,
as shown in Figure 5. However, contrasts are maintained well. The texture is consistent in
certain spots. However, the diverse zone lacks light. Ref. [49] in Figure 5 preserves edges
and textures poorly. The contrasts in ref. [48] were wonderfully preserved. Some portions
are consistent, and the original texture has been carefully maintained. These places are not
the only ones with texture changes. In heterogeneity, light levels are inadequate. In Figure 5,
ref. [51]’s result is good, but it fails to preserve the image’s edges and textures. However,
contrasts have been maintained. Several areas of continuity and texture preservation
have been achieved. The heterogeneous zone has inconsistent brightness. Figure 5 shows
ref. [53]’s passable output, but it loses edges and textures. Nevertheless, the distinctions
are well-maintained. The surface’s homogeneity and texture have been preserved in some
areas. However, the non-uniform zone has poor brightness.

Input source images are shown in Figure 6a,b. All images, for non-conventional
methods [44,47,49,51,53], are fused with established structures. Figure 6c–g, respectively,
expresses the results of [44,47,49,51,53]. In this regard, the results of ref. [53] seem better
compared to other existing methods. The result of ref. [51] is also satisfactory. However,
the results of methods refs. [44,47,49] are not satisfactory. Figure 6 shows that while the
result of ref. [44] is passable, it fails to adequately preserve edges and textures. Nonetheless,
disparities persist. The original texture has been preserved in a few regular places. However,
in a field with so many variations, clarity is lacking. As can be seen in Figure 6, while
the output of ref. [47] is serviceable, it falls short of expectations in terms of maintaining
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edges and textures. Contrasts are kept well and the texture has been well-preserved and is
uniform in some areas. Unfortunately, the heterogeneous area is severely lacking in light.
As can be seen in Figure 6, the outcome of ref. [49] is passable, but it fails to adequately
preserve the image’s edges and textures. However, the contrasts in ref. [48] have been
preserved well. Consistency may be found in some places, and the original texture has
been preserved with meticulous attention to detail. These are not the only locations where
the texture has changed. However, there is not enough illumination to properly study
the region’s heterogeneity. Figure 6 shows that while ref. [51] produces a good image,
it fails to meet expectations in terms of edge and texture preservation. There is a high
level of talent involved in maintaining the texture while also achieving continuity in a
number of key locations. As opposed to this, the area of varying luminosity is known as
the “heterogeneous zone.” Figure 6 shows acceptable output from ref. [53], but note that it
does not preserve the edges or textures. However, there are still clear delineations between
the elements. In some areas, the surface’s uniformity and texture have been preserved.
However, the brightness is very low in highly textured areas.

The visual results are not sufficient to evaluate the performance of fusion methods.
Hence, some popular performance metrics are utilized to evaluate the performance of
multi-modality medical image fusion algorithms. Mutual information (MI), edge index
(Q(ABF)), spatial frequency (SF), SSIM, and NIQE are the performance metrics. The results
are evaluated and compared as shown in Tables 3–5.

Table 3. Performance evaluation of results using the Figure 1 input image dataset.

Method MIAB,F QAB,F SF SSIM NIQE

[44] 3.4603 0.2961 12.9609 0.9929 30.1237

[47] 3.8704 0.7537 11.1020 0.9976 22.2551

[48] 3.8104 0.7582 11.1321 0.9967 22.2321

[49] 3.8859 0.7763 11.3601 0.9976 21.6689

[51] 3.8820 0.7918 11.6428 0.9975 24.7500

[53] 3.9616 0.7974 9.6098 0.9969 23.3457

Table 4. Performance evaluation of results using the Figure 2 input image dataset.

Method MIAB,F QAB,F SF SSIM NIQE

[44] 3.4603 0.3387 19.9778 0.9486 22.3801

[47] 3.8704 0.3855 22.7752 0.9729 21.9882

[48] 3.8504 0.3582 21.1221 0.9667 22.0021

[49] 3.8859 0.4369 25.3019 0.9738 20.4692

[51] 3.8820 0.4276 23.1627 0.9752 21.1289

[53] 3.9616 0.3545 18.0624 0.9979 22.4254

Table 5. Performance evaluation of results using the Figure 3 input image dataset.

Method MIAB,F QAB,F SF SSIM NIQE

[44] 3.1319 0.5508 16.9281 0.9949 22.2935

[47] 3.2324 0.5919 14.4240 0.9883 22.1577

[48] 3.1404 0.6682 14.1421 0.9887 22.0111

[49] 3.2335 0.6449 15.1480 0.9902 22.7697

[51] 3.2482 0.6562 14.9759 0.9942 22.4171

[53] 3.2317 0.6439 15.9881 0.9996 22.1535
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For a more critical analysis of performance, the results are also evaluated on a noisy
image dataset, as shown in Table 6. From Tables 3–6, it can be seen that all methods provide
better results for different performance metrics.

Table 6. Performance evaluation of results using Figure 3 input image dataset with Gaussian noise.

Method MIAB,F QAB,F SF SSIM NIQE

[44] 3.0889 0.3118 41.2059 0.9893 22.7915

[47] 3.1979 0.2905 38.9116 0.9905 21.7460

[48] 3.1204 0.3562 38.1021 0.9917 21.7321

[49] 3.1979 0.3505 42.4170 0.9908 20.5352

[51] 3.1990 0.3591 39.8955 0.9938 22.2407

[53] 3.1980 0.3618 36.5719 0.9995 19.5832

Additionally, a graphical result analysis is also shown in Figure 7. In Figure 5, SSIMs
of comparative methods are analyzed between different medical image datasets. In most of
the cases, Refs. [51,53] provide better results compared to others.

6. Challenges, Future Trends, and Significance
6.1. Current Challenges

Even though a lot of progress has been achieved in recent years, there are still some
big problems to solve as regards multi-modal medical image fusion.

First, for frontier zones, making the fusion method perfect requires more work. The
border regions in the source images are the transition zones between sharply defined and
blurred areas, and they are often situated at sharp transitions in depth.

Second, current fusion methods rarely engage with the problem of misregistration
caused by a moving body part or a medical device’s sensor shaking [87].

Third, few studies are dedicated to the development of multi-modal medical image
fusion algorithms for applications in the real-time sectors of biology, medicine, industry, and
practical clinical applications [88]. Most previous papers on multi-modal medical image
fusion chose to use images from a natural open-access database rather than actual data from
patients in the current scenario to test the efficacy of a newly proposed approach [89,90].

6.2. Future Prospects

In the future, researchers on this subject will be able to devote more time and energy to
resolving the aforementioned issues. To begin, more complex methods for fusing medical
images across boundaries will be explored [91,92]. This is an issue that cuts across all other
approaches. Some first efforts have been made on this problem using approaches that
mix the transform domain and the spatial domain, although the selected methodologies
are quite straightforward. Second, it is envisaged that research into the misregistration
problem brought on by a moving body part or medical device sensor shaking would take
off [93,94]. Traditional approaches in the transform domain and the spatial domain have
hit technological roadblocks while trying to solve this problem. Given their impressive
propensity for learning, we believe deep learning approaches still have enough opportunity
to address this issue [95–97]. Third, there will likely be more research conducted on multi-
modal medical image fusion, with a focus on its many applications. Experiments with
multi-modal medical images may be undertaken using actual patient datasets for more
extensive verification than only the open access database images [98–100].

6.3. Significance

The ever-increasing volume of academic output from across the globe is making it
more challenging to stay up to date in the field of multi-modal medical image fusion.
Many researchers respond to this serious problem by doing a critical analysis of previously
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published research papers in their field and then writing a comprehensive review article on
the most up-to-date advances in their research area [101]. This review paper is useful for
the researcher at any stage of his investigation in medical image fusion. It helps to discover
multiple research issues by evaluating the related literature. It follows that the research
problem relies heavily on the literature review. The paper establishes a firm grounding in
this subject matter. It finds examples of previous academic work so that new researchers
may avoid duplicating efforts, properly acknowledge previous academics, and find new
research directions [102]. The paper also finds the inconsistencies in the previous study,
the contradictions between studies, and helps in answering the issues left unanswered by
previous studies. It will also help in determining the necessity for further studies.

7. Conclusions

This comparative survey presents a non-conventional multimodality-based diagnostic
image analysis. Human advanced data should be sensitive to improved contrast (high),
pixel density and edge details, and emphasize contrast view dependence, the edges of
a fusion device, and the recognition of texture. Many types of noise mistakes and im-
provements in the information provided in the fused image show how much data are
acquired from the original image for computation. The results imply that non-conventional
approaches that use the transform domain have better results when utilizing different
spatial domain architectures. In addition to visual effects, the performance measurements
show that approaches employing a transformed domain strategy produce better results for
analogue spatial domain schemes.
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