An m6A-Driven Prognostic Marker Panel for Renal Cell Carcinoma Based on the First Transcriptome-Wide m6A-seq
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Verification of Dysregulated m6A-Driven Target Genes in ccRCC
3.2. Significantly Lower Overall Survival Was Found for NNU Panel Subjects
3.3. Enrichment of Essential Signalling Pathways in ccRCC Is Co-Determined by NDUFA4L2, NXPH4, and UMOD
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Capitanio, U.; Bensalah, K.; Bex, A.; Boorjian, S.A.; Bray, F.; Coleman, J.; Gore, J.L.; Sun, M.; Wood, C.; Russo, P. Epidemiology of Renal Cell Carcinoma. Eur. Urol. 2019, 75, 74–84. [Google Scholar] [CrossRef] [PubMed]
- (MCR), M.C.R. Tumorregister München. Überleben ICD-10 C64: Nierenkarzinom. 2022. Available online: https://www.tumorregister-muenchen.de/facts/surv/sC64__G-ICD-10-C64-Nierenkarzinom-Survival.pdf (accessed on 14 April 2022).
- EAU Guidelines Office. EAU-Guidelines-on-Renal-Cell-Carinoma-2022. 2022. Available online: http://uroweb.org/guidelines/compilations-of-all-guidelines/ (accessed on 14 April 2022).
- Claps, F.; Mir, M.C. Novel Expanding Renal Cell Carcinoma Biomarkers. Soc. Int. d’Urol. J. 2021, 2, 32–42. [Google Scholar] [CrossRef]
- Desrosiers, R.; Friedrich, K.; Rottmann, F. Identification of Methylated Nucleosides in Messenger RNA from Novikoff Hepatoma Cells. Proc. Natl. Acad. Sci. USA 1974, 71, 3971–3975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, K.D.; Saletore, Y.; Zumbo, P.; Elemento, O.; Mason, C.E.; Jaffrey, S.R. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 2012, 149, 1635–1646. [Google Scholar] [CrossRef] [Green Version]
- Dominissini, D.; Moshitch-Moshkovitz, S.; Schwartz, S.; Salmon-Divon, M.; Ungar, L.; Osenberg, S.; Cesarkas, K.; Jacob-Hirsch, J.; Amariglio, N.; Kupiec, M.; et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012, 485, 201–206. [Google Scholar] [CrossRef]
- Linder, B.; Grozhik, A.V.; Olarerin-George, A.O.; Meydan, C.; Mason, C.E.; Jaffrey, S.R. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 2015, 12, 767–772. [Google Scholar] [CrossRef]
- Meyer, K.D.; Jaffrey, S.R. Rethinking m(6)A Readers, Writers, and Erasers. Annu. Rev. Cell Dev. Biol. 2017, 33, 319–342. [Google Scholar] [CrossRef] [Green Version]
- Hoernes, T.P.; Erlacher, M.D. Translating the epitranscriptome. Wiley Interdiscip. Rev. RNA 2017, 8, e1375. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.H.; Zhang, G.L.; Jiang, R.F.; Hong, Y.Q.; Zhang, Q.Y.; He, J.P.; Liu, X.R.; Yang, Z.S.; Yang, L.; Jiang, X.; et al. METTL3 is essential for normal progesterone signaling during embryo implantation via m(6)A-mediated translation control of progesterone receptor. Proc. Natl. Acad. Sci. USA 2023, 120, e2214684120. [Google Scholar] [CrossRef]
- Schwartz, S.; Mumbach, M.R.; Jovanovic, M.; Wang, T.; Maciag, K.; Bushkin, G.G.; Mertins, P.; Ter-Ovanesyan, D.; Habib, N.; Cacchiarelli, D.; et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5’ sites. Cell Rep. 2014, 8, 284–296. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhao, B.S.; Roundtree, I.A.; Lu, Z.; Han, D.; Ma, H.; Weng, X.; Chen, K.; Shi, H.; He, C. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell 2015, 161, 1388–1399. [Google Scholar] [CrossRef] [Green Version]
- Alarcon, C.R.; Goodarzi, H.; Lee, H.; Liu, X.; Tavazoie, S.; Tavazoie, S.F. HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events. Cell 2015, 162, 1299–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knuckles, P.; Carl, S.H.; Musheev, M.; Niehrs, C.; Wenger, A.; Buhler, M. RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding. Nat. Struct. Mol. Biol. 2017, 24, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, J.C. Update: Mechanisms Underlying N(6)-Methyladenosine Modification of Eukaryotic mRNA. Trends Genet. 2016, 32, 763–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.; Pan, T. N6-methyladenosine-encoded epitranscriptomics. Nat. Struct. Mol. Biol. 2016, 23, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.X.; Li, L.M.; Sun, H.L.; Liu, S.M. Link Between m6A Modification and Cancers. Front. Bioeng. Biotechnol. 2018, 6, 89. [Google Scholar] [CrossRef] [Green Version]
- Ying, Y.; Ma, X.; Fang, J.; Chen, S.; Wang, W.; Li, J.; Xie, H.; Wu, J.; Xie, B.; Liu, B.; et al. EGR2-mediated regulation of m(6)A reader IGF2BP proteins drive RCC tumorigenesis and metastasis via enhancing S1PR3 mRNA stabilization. Cell Death Dis. 2021, 12, 750. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Mao, S.; Guo, Y.; Zhang, W.; Liu, J.; Li, C.; Yao, X. N6-methyladenosine RNA methylation regulators participate in malignant progression and have prognostic value in clear cell renal cell carcinoma. Oncol. Rep. 2020, 43, 1591–1605. [Google Scholar] [CrossRef] [Green Version]
- Gundert, L.; Strick, A.; von Hagen, F.; Schmidt, D.; Klümper, N.; Tolkach, Y.; Toma, M.; Kristiansen, G.; Ritter, M.; Ellinger, J. Systematic expression analysis of m(6)A RNA methyltransferases in clear cell renal cell carcinoma. BJUI Compass 2021, 2, 402–411. [Google Scholar] [CrossRef]
- Guan, B.; Ren, F.; Shan, W.; Zhang, S. Molecular subtypes of m(6)A RNA methylation modification patterns and their clinical significance in clear cell renal cell carcinoma. Transl. Cancer Res. 2022, 11, 508–518. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, C.; Sun, Y.; He, X.; Xue, D. m(6)A RNA modification modulates gene expression and cancer-related pathways in clear cell renal cell carcinoma. Epigenomics 2020, 12, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Oerum, S.; Meynier, V.; Catala, M.; Tisné, C. A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Res. 2021, 49, 7239–7255. [Google Scholar] [CrossRef] [PubMed]
- Wiener, D.; Schwartz, S. The epitranscriptome beyond m(6)A. Nat. Rev. Genet. 2021, 22, 119–131. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Li, H.; Wu, A.; Peng, Y.; Shu, G.; Yin, G. Functions of N6-methyladenosine and its role in cancer. Mol. Cancer 2019, 18, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Liu, B.; Nie, Z.; Duan, L.; Xiong, Q.; Jin, Z.; Yang, C.; Chen, Y. The role of m6A modification in the biological functions and diseases. Signal Transduct. Target Ther. 2021, 6, 74. [Google Scholar] [CrossRef]
- Schwartz, S.; Agarwala, S.D.; Mumbach, M.R.; Jovanovic, M.; Mertins, P.; Shishkin, A.; Tabach, Y.; Mikkelsen, T.S.; Satija, R.; Ruvkun, G.; et al. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 2013, 155, 1409–1421. [Google Scholar] [CrossRef] [Green Version]
- Helm, M.; Lyko, F.; Motorin, Y. Limited antibody specificity compromises epitranscriptomic analyses. Nat. Commun. 2019, 10, 5669. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, C.; He, W.; Gou, X. Effect of m(6)A RNA Methylation Regulators on Malignant Progression and Prognosis in Renal Clear Cell Carcinoma. Front. Oncol. 2020, 10, 3. [Google Scholar] [CrossRef]
- Ni, W.J.; Lu, H.; Ma, N.N.; Hou, B.B.; Zeng, J.; Zhou, H.; Shao, W.; Meng, X.M. RNA N(6) -methyladenosine modifications and potential targeted therapeutic strategies in kidney disease. Br. J. Pharmacol. 2023, 180, 5–24. [Google Scholar] [CrossRef]
- Yankova, E.; Blackaby, W.; Albertella, M.; Rak, J.; De Braekeleer, E.; Tsagkogeorga, G.; Pilka, E.S.; Aspris, D.; Leggate, D.; Hendrick, A.G.; et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 2021, 593, 597–601. [Google Scholar] [CrossRef]
- Wang, J.N.; Wang, F.; Ke, J.; Li, Z.; Xu, C.H.; Yang, Q.; Chen, X.; He, X.Y.; He, Y.; Suo, X.G.; et al. Inhibition of METTL3 attenuates renal injury and inflammation by alleviating TAB3 m6A modifications via IGF2BP2-dependent mechanisms. Sci. Transl. Med. 2022, 14, eabk2709. [Google Scholar] [CrossRef] [PubMed]
- Minton, D.R.; Fu, L.; Mongan, N.P.; Shevchuk, M.M.; Nanus, D.M.; Gudas, L.J. Role of NADH Dehydrogenase (Ubiquinone) 1 Alpha Subcomplex 4-Like 2 in Clear Cell Renal Cell Carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016, 22, 2791–2801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Peng, Z.; Wang, K.; Qi, Y.; Yang, Y.; Zhang, Y.; An, X.; Luo, S.; Zheng, J. NDUFA4L2 is associated with clear cell renal cell carcinoma malignancy and is regulated by ELK1. PeerJ 2017, 5, e4065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gui, Z.; Ying, X.; Liu, C. NXPH4 Used as a New Prognostic and Immunotherapeutic Marker for Muscle-Invasive Bladder Cancer. J. Oncol. 2022, 2022, 4271409. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Xin, S.; Jin, L.; Zhang, Y.; Ye, L. Neurexophilin 4 is a prognostic biomarker correlated with immune infiltration in bladder cancer. Bioengineered 2022, 13, 13986–13999. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, P.; Liu, Z.; Xing, Y.; Xiao, Y. NXPH4 Promotes Gemcitabine Resistance in Bladder Cancer by Enhancing Reactive Oxygen Species and Glycolysis Activation through Modulating NDUFA4L2. Cancers 2022, 14, 3782. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Ye, J.; Xu, J.; Liu, S.; Wang, L.; Li, Z.; Li, Q.; Liu, F.; He, X.; Zou, H.; et al. Comprehensive RNA-seq reveals molecular changes in kidney malignancy among people living with HIV. Mol. Ther. Nucleic Acids 2022, 29, 91–101. [Google Scholar] [CrossRef]
- Eikrem, O.S.; Strauss, P.; Beisland, C.; Scherer, A.; Landolt, L.; Flatberg, A.; Leh, S.; Beisvag, V.; Skogstrand, T.; Hjelle, K.; et al. Development and confirmation of potential gene classifiers of human clear cell renal cell carcinoma using next-generation RNA sequencing. Scand. J. Urol. 2016, 50, 452–462. [Google Scholar] [CrossRef]
- Schaeffer, C.; Devuyst, O.; Rampoldi, L. Uromodulin: Roles in Health and Disease. Annu. Rev. Physiol. 2021, 83, 477–501. [Google Scholar] [CrossRef]
- Wang, D.; Qiu, Y.; Fan, J.; Liu, Y.; Chen, W.; Li, Z.; Chen, W.; Wang, X. Upregulation of C/EBP Homologous Protein induced by ER Stress Mediates Epithelial to Myofibroblast Transformation in ADTKD-UMOD. Int. J. Med. Sci. 2022, 19, 364–376. [Google Scholar] [CrossRef]
- Gresh, L.; Fischer, E.; Reimann, A.; Tanguy, M.; Garbay, S.; Shao, X.; Hiesberger, T.; Fiette, L.; Igarashi, P.; Yaniv, M.; et al. A transcriptional network in polycystic kidney disease. EMBO J. 2004, 23, 1657–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devuyst, O.; Olinger, E.; Weber, S.; Eckardt, K.U.; Kmoch, S.; Rampoldi, L.; Bleyer, A.J. Autosomal dominant tubulointerstitial kidney disease. Nat. Rev. Dis. Prim. 2019, 5, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pruijm, M.; Ponte, B.; Ackermann, D.; Paccaud, F.; Guessous, I.; Ehret, G.; Pechère-Bertschi, A.; Vogt, B.; Mohaupt, M.G.; Martin, P.Y.; et al. Associations of Urinary Uromodulin with Clinical Characteristics and Markers of Tubular Function in the General Population. Clin. J. Am. Soc. Nephrol. 2016, 11, 70–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smirnov, A.V.; Khasun, M.; Kayukov, I.G.; Galkina, O.V.; Sipovski, V.G.; Parastaeva, M.M.; Bogdanova, E.O. Serum uromodulin as an early biomarker of tubular atrophy and interstitial fibrosis in patients with glomerulopathies. Ter. Arkh. 2018, 90, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Steubl, D.; Block, M.; Herbst, V.; Nockher, W.A.; Schlumberger, W.; Satanovskij, R.; Angermann, S.; Hasenau, A.L.; Stecher, L.; Heemann, U.; et al. Plasma Uromodulin Correlates With Kidney Function and Identifies Early Stages in Chronic Kidney Disease Patients. Medicine 2016, 95, e3011. [Google Scholar] [CrossRef]
- Nientiedt, M.; Bertolo, R.; Campi, R.; Capitanio, U.; Erdem, S.; Kara, Ö.; Klatte, T.; Larcher, A.; Mir, M.C.; Ouzaid, I.; et al. Chronic kidney disease after partial nephrectomy in patients with preoperative inconspicuous renal function—Curiosity or relevant issue? Clin. Genitourin. Cancer 2020, 18, e754–e761. [Google Scholar] [CrossRef]
- Helm, M.; Motorin, Y. Detecting RNA modifications in the epitranscriptome: Predict and validate. Nat. Rev. Genet. 2017, 18, 275–291. [Google Scholar] [CrossRef]
Gene Name | Chen Pattern | M6A SEQ FC | M6A SEQ p-Value | RNA SEQ FC | RNA SEQ p-Value | TCGA Pattern | TCGA FC | TCGA p-Value | Up/Down Consensus |
---|---|---|---|---|---|---|---|---|---|
FTH1 | Hyper-up | 522.24 | <0.0001 | 6.62 | 0.0114 | up | 1.74 | <0.0001 | yes |
BASP1 | Hyper-up | 122.49 | <0.0001 | 59.26 | <0.0001 | up | 1.91 | <0.0001 | yes |
SAA1 | Hyper-up | 113.99 | <0.0001 | 107.56 | 0.0064 | up | 21.51 | <0.0001 | yes * |
IRS2 | Hyper-up | 94.74 | <0.0001 | 16.48 | 0.0222 | up | 1.68 | <0.0001 | yes |
NDUFA4L2 | Hyper-up | 79.53 | <0.0001 | 82.32 | <0.0001 | up | 55.55 | <0.0001 | yes * |
PLOD2 | Hyper-up | 14.54 | <0.0001 | 47.74 | 0.0351 | up | 3.45 | <0.0001 | yes * |
NXPH4 | Hyper-up | 2.74 | 0.0011 | 53.12 | 0.0239 | up | 23.17 | <0.0001 | yes * |
SCAF11 | Hyper-up | 41.00 | 0.0007 | 29.31 | 0.0365 | up | 1.01 | 0.7654 | yes |
NEPRO | Hyper-up | 3.75 | 0.0262 | 9.25 | 0.0486 | down | 0.96 | 0.2387 | no |
NPAS3 | Hyper-up | 17.60 | 0.0308 | 11.03 | 0.0126 | down | 0.62 | <0.0001 | no |
BMPR1A | Hyper-down | 189.51 | <0.0001 | 0.04 | 0.0180 | down | 0.73 | <0.0001 | yes |
ZNF710 | Hyper-down | 114.10 | <0.0001 | 0.15 | 0.0043 | down | 0.85 | 0.0017 | yes |
CHDH | Hyper-down | 3.96 | 0.0039 | 0.09 | 0.0090 | down | 0.40 | <0.0001 | yes * |
NDUFS7 | Hyper-down | 3.32 | 0.0169 | 0.06 | 0.0118 | down | 0.92 | 0.2739 | yes |
KLF11 | Hypo-down | 0.25 | 0.0028 | 0.09 | 0.0138 | down | 0.86 | 0.0053 | yes |
ESPN | Hypo-down | 0.15 | 0.0022 | 0.01 | 0.0138 | down | 0.57 | <0.0001 | yes |
SETBP1 | Hypo-down | 0.11 | <0.0001 | 0.01 | 0.0022 | down | 0.51 | <0.0001 | yes |
AKAP6 | Hypo-down | 0.07 | 0.0444 | 0.02 | 0.0382 | down | 0.72 | 0.0001 | yes |
CNTFR | Hypo-down | 0.07 | 0.0444 | 0.02 | 0.0401 | down | 0.40 | <0.0001 | yes * |
UMOD | Hypo-down | 0.00 | <0.0001 | 0.00 | <0.0001 | down | 0.00 | <0.0001 | yes * |
ANK3 | Hypo-down | 0.00 | <0.0001 | 0.02 | 0.0327 | down | 0.39 | <0.0001 | yes * |
NAT8 | Hypo-down | 0.01 | <0.0001 | 0.04 | 0.0266 | down | 0.79 | 0.1651 | yes |
NRG1 | Hypo-down | 0.06 | <0.0001 | 0.01 | 0.0043 | down | 0.97 | 0.7982 | yes |
NPR3 | Hypo-down | 0.10 | <0.0001 | 0.01 | 0.0036 | down | 0.96 | 0.8058 | yes |
RERG | Hypo-down | 0.22 | 0.0126 | 0.00 | 0.0003 | up | 1.07 | 0.4987 | no |
ERCC1 | Hypo-up | 0.11 | <0.0001 | 22.76 | 0.0103 | up | 1.39 | <0.0001 | yes |
FCHSD1 | Hypo-up | 0.07 | 0.0444 | 31.01 | 0.0059 | up | 2.46 | <0.0001 | yes * |
FUT8 | Hypo-up | 0.47 | 0.0008 | 32.44 | 0.0376 | up | 1.03 | 0.6715 | yes |
G3BP2 | Hypo-up | 0.37 | 0.0398 | 62.38 | 0.0203 | down | 0.69 | <0.0001 | no |
MMACHC | Hypo-up | 0.17 | <0.0001 | 33.78 | 0.0299 | down | 0.56 | <0.0001 | no |
ALDH1A3 | Hypo-up | 0.16 | 0.0194 | 35.26 | 0.0293 | down | 0.37 | <0.0001 | no |
LCORL | Hypo-up | 0.13 | <0.0001 | 41.21 | 0.0052 | down | 0.79 | <0.0001 | no |
CHKA | Hypo-up | 0.06 | <0.0001 | 12.86 | 0.0079 | up | 1.02 | 0.7452 | yes |
REV1 | Hypo-up | 0.06 | 0.0444 | 291.62 | <0.0001 | down | 1.00 | 0.9467 | no |
SRFBP1 | Hypo-up | 0.03 | 0.0037 | 126.92 | <0.0001 | down | 0.86 | 0.0017 | no |
Gene Set | Size | ES | NES | NOM P-VAL | FDR Q-VAL |
---|---|---|---|---|---|
HALLMARK_HYPOXIA | 200 | 0.47 | 2.26 | <0.0001 * | <0.0001 |
HALLMARK_GLYCOLYSIS | 196 | 0.47 | 2.25 | <0.0001 * | <0.0001 |
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION | 200 | 0.39 | 1.89 | <0.0001 * | 0.0009 |
HALLMARK_COAGULATION | 138 | 0.41 | 1.86 | <0.0001 * | 0.0014 |
HALLMARK_P53_PATHWAY | 196 | 0.35 | 1.70 | <0.0001 * | 0.0030 |
HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY | 49 | 0.45 | 1.70 | 0.0026 * | 0.0029 |
HALLMARK_INTERFERON_ALPHA_RESPONSE | 95 | 0.37 | 1.64 | 0.0030 * | 0.0046 |
HALLMARK_DNA_REPAIR | 148 | 0.36 | 1.64 | <0.0001 * | 0.0040 |
HALLMARK_MYOGENESIS | 199 | 0.32 | 1.54 | <0.0001 * | 0.0106 |
HALLMARK_ANGIOGENESIS | 36 | 0.40 | 1.42 | 0.0420 * | 0.0298 |
HALLMARK_UV_RESPONSE_UP | 156 | 0.29 | 1.38 | 0.0067 * | 0.0384 |
HALLMARK_INTERFERON_GAMMA_RESPONSE | 197 | 0.28 | 1.33 | 0.0070 * | 0.0509 |
HALLMARK_XENOBIOTIC_METABOLISM | 198 | 0.26 | 1.24 | 0.0269 * | 0.0940 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waldbillig, F.; Bormann, F.; Neuberger, M.; Ellinger, J.; Erben, P.; Kriegmair, M.C.; Michel, M.S.; Nuhn, P.; Nientiedt, M. An m6A-Driven Prognostic Marker Panel for Renal Cell Carcinoma Based on the First Transcriptome-Wide m6A-seq. Diagnostics 2023, 13, 823. https://doi.org/10.3390/diagnostics13050823
Waldbillig F, Bormann F, Neuberger M, Ellinger J, Erben P, Kriegmair MC, Michel MS, Nuhn P, Nientiedt M. An m6A-Driven Prognostic Marker Panel for Renal Cell Carcinoma Based on the First Transcriptome-Wide m6A-seq. Diagnostics. 2023; 13(5):823. https://doi.org/10.3390/diagnostics13050823
Chicago/Turabian StyleWaldbillig, Frank, Felix Bormann, Manuel Neuberger, Jörg Ellinger, Philipp Erben, Maximilian C. Kriegmair, Maurice Stephan Michel, Philipp Nuhn, and Malin Nientiedt. 2023. "An m6A-Driven Prognostic Marker Panel for Renal Cell Carcinoma Based on the First Transcriptome-Wide m6A-seq" Diagnostics 13, no. 5: 823. https://doi.org/10.3390/diagnostics13050823
APA StyleWaldbillig, F., Bormann, F., Neuberger, M., Ellinger, J., Erben, P., Kriegmair, M. C., Michel, M. S., Nuhn, P., & Nientiedt, M. (2023). An m6A-Driven Prognostic Marker Panel for Renal Cell Carcinoma Based on the First Transcriptome-Wide m6A-seq. Diagnostics, 13(5), 823. https://doi.org/10.3390/diagnostics13050823