Application of Artificial Intelligence Techniques for Monkeypox: A Systematic Review
Abstract
:1. Introduction
- Various diagnostics techniques using machine learning and deep learning for mpox detection are systematically reviewed.
- Articles that used AI to discover new vaccines and drugs for mpox are also reviewed.
- Other AI studies, such as epidemiological modeling of mpox infection spread and web management of information on mpox, are also included.
- A thorough discussion regarding the above applications for mpox is provided.
- Challenges and directions for future mpox research using AI are also discussed.
2. Review Methodology
3. Artificial Intelligence in Mpox Diagnosis
Paper | Images (n) | Classifier (s) | Acc (%) | Pre (%) | Rec (%) | F1 (%) |
---|---|---|---|---|---|---|
Ahsan [8] | Mpox, chickenpox, measles, normal | VGG-16 | 97 | 97 | 97 | 97 |
Ali [25] | Mpox (102), others (126) | VGG-16, ResNet50, Inception-V3, ensemble | 82.96 | 85 | 81 | 83 |
Abdelhamid [26] | Mpox (279), chickenpox (107), measles (91), normal (293) | AlexNet, VGG-19, GoogLeNet, ResNet50 | 98.8 | - | 63 | 74 |
Kumar [27] | - | AlexNet, GoogLeNet, VGG-16, support vector machine, k-nearest neighbor, naïve Bayes, decision tree, random forest | 91.11 | - | - | - |
Sitaula [28] | Mpox, chickenpox, measles, normal | 13 deep learning models. | 87.13 | 85.44 | 85.47 | 85.4 |
Sahin [29] | Mpox (102), others (126) | Modified MobilNetV2 | 91.11 | - | - | - |
Islam [30] | Mpox, chickenpox, smallpox, cowpox, measles, normal | ResNet50, DenseNet121, Inception-V3, SqueezeNet, MobileNet-V2, ShuffleNet-V2, ensemble | 83 | - | 58 | - |
Saavedra [31] | Mpox (100), other rashes (100), normal (100) | VGG-16, VGG-19, ResNet-50, MobileNet-V2, EfficientNet, ensembles | 98.33 | - | - | - |
Sizikova [33] | Mpox, tuberculosis | VGG-16, EfficientNet-B3 | 88.64 | - | - | - |
Akin [34] | Mpox (252), others (264) | 12 deep learning algorithms | 98.25 | - | - | 98.25 |
Ahsan [35] | Mpox, normal | 6 deep learning models | 99 | - | - | - |
Alcalá-Rmz [36] | Mpox, control | MiniGoogLeNet | 97.08 | - | - | - |
Khafaga [37] | Mpox, control | Al-Biruni Earth radius optimization-based stochastic fractal search | 98.83 | - | 85 | 80 |
Haque [38] | Mpox, others (total 2142) | 5 deep learning algorithms | 84 | 90 | 89 | 90 |
Saleh [39] | Mpox (296), others (204) | Various machine learning and deep learning models | 98.48 | 91.11 | 89 | - |
Islam [40] | Mpox (1428), others (1764) | ResNet18, block-chain federated learning for privacy protection | 99.81 | - | - | - |
4. Other Applications of AI in Combating Mpox
4.1. Epidemiological Modeling of Mpox Infection Spread
4.2. Candidate Vaccine and Drug Design
4.3. Web Management of Information on Mpox
5. Discussion
6. Limitations and Future Directions
6.1. Limitations
6.2. Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gessain, A.; Nakoune, E.; Yazdanpanah, Y. Monkeypox. N. Engl. J. Med. 2022, 387, 1783–1793. [Google Scholar] [CrossRef] [PubMed]
- Mileto, D.; Riva, A.; Cutrera, M.; Moschese, D.; Mancon, A.; Meroni, L.; Giacomelli, A.; Bestetti, G.; Rizzardini, G.; Gismondo, M.R.; et al. New challenges in human monkeypox outside Africa: A review and case report from Italy. Travel Med. Infect. Dis. 2022, 49, 102386. [Google Scholar] [CrossRef] [PubMed]
- Hemati, S.; Farhadkhani, M.; Sanami, S.; Mohammadi-Moghadam, F. A review on insights and lessons from COVID-19 to the prevent of monkeypox pandemic. Travel Med. Infect. Dis. 2022, 50, 102441. [Google Scholar] [CrossRef] [PubMed]
- Hernaez, B.; Muñoz-Gómez, A.; Sanchiz, A.; Orviz, E.; Valls-Carbo, A.; Sagastagoitia, I.; Ayerdi, O.; Martín, R.; Puerta, T.; Vera, M.; et al. Monitoring monkeypox virus in saliva and air samples in Spain: A cross-sectional study. Lancet Microbe 2022, 4, e21–e28. [Google Scholar] [CrossRef]
- Beeson, A.M.; Haston, J.; McCormick, D.W.; Reynolds, M.; Chatham-Stephens, K.; McCollum, A.M.; Godfred-Cato, S. Mpox in Children and Adolescents: Epidemiology, Clinical Features, Diagnosis, and Management. Pediatrics 2023, 151, e2022060179. [Google Scholar] [CrossRef]
- WHO. Monkeypox Outbreak 2022. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/monkeypox (accessed on 30 January 2023).
- Bala, D. Monkeypox Skin Images Dataset (MSID). 2022. Available online: https://www.kaggle.com/datasets/dipuiucse/monkeypoxskinimagedataset?resource=download.10.34740/kaggle/dsv/3971903 (accessed on 30 December 2022).
- Ahsan, M.M.; Uddin, M.R.; Farjana, M.; Sakib, A.N.; Momin, K.A.; Luna, S.A. Image Data collection and implementation of deep learning-based model in detecting Monkeypox disease using modified VGG16. arXiv 2022, arXiv:2206.01862. [Google Scholar] [CrossRef]
- Ciotti, M.; Ciccozzi, M.; Terrinoni, A.; Jiang, W.C.; Wang, C.B.; Bernardini, S. The COVID-19 pandemic. Crit. Rev. Clin. Lab. Sci. 2020, 57, 365–388. [Google Scholar] [CrossRef]
- Jahmunah, V.; Ng, E.Y.; San, T.R.; Acharya, U.R. Automated detection of coronary artery disease, myocardial infarction and congestive heart failure using GaborCNN model with ECG signals. Comput. Biol. Med. 2021, 134, 104457. [Google Scholar] [CrossRef]
- Raghavendra, U.; Bhat, N.S.; Gudigar, A.; Acharya, U.R. Automated system for the detection of thoracolumbar fractures using a CNN architecture. Future Gener. Comput. Syst. 2018, 85, 184–189. [Google Scholar] [CrossRef]
- Yıldırım, Ö.; Baloglu, U.B.; Acharya, U.R. A deep convolutional neural network model for automated identification of abnormal EEG signals. Neural Comput. Appl. 2020, 32, 15857–15868. [Google Scholar] [CrossRef]
- Acharya, U.R.; Sree, S.V.; Krishnan, M.M.; Molinari, F.; Garberoglio, R.; Suri, J.S. Non-invasive automated 3D thyroid lesion classification in ultrasound: A class of ThyroScan™ systems. Ultrasonics 2012, 52, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, O.; Talo, M.; Ay, B.; Baloglu, U.B.; Aydin, G.; Acharya, U.R. Automated detection of diabetic subject using pre-trained 2D-C.N.N models with frequency spectrum images extracted from heart rate signals. Comput. Biol. Med. 2019, 113, 103387. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, E.A.; Sassine, J. Antivirals with activity against monkeypox: A clinically oriented review. Clin. Infect. Dis. 2022, 76, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Rizk, J.G.; Lippi, G.; Henry, B.M.; Forthal, D.N.; Rizk, Y. Prevention and treatment of monkeypox. Drugs 2022, 82, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Lum, F.M.; Torres-Ruesta, A.; Tay, M.Z.; Lin, R.T.; Lye, D.C.; Rénia, L.; Ng, L.F. Monkeypox: Disease epidemiology, host immunity and clinical interventions. Nat. Rev. Immunol. 2022, 22, 597–613. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Surti, M.; Adnan, M. Artificial intelligence (A.I.) in Monkeypox infection prevention. J. Biomol. Struct. Dyn. 2022, 41, 1–5. [Google Scholar] [CrossRef]
- Gul, I.; Liu, C.; Yuan, X.; Du, Z.; Zhai, S.; Lei, Z.; Chen, Q.; Raheem, M.A.; He, Q.; Hu, Q.; et al. Current and Perspective Sensing Methods for Monkeypox Virus. Bioengineering 2022, 9, 571. [Google Scholar] [CrossRef]
- Sanchez, P.; Voisey, J.P.; Xia, T.; Watson, H.I.; O’Neil, A.Q.; Tsaftaris, S.A. Causal machine learning for healthcare and precision medicine. R. Soc. Open Sci. 2022, 9, 220638. [Google Scholar] [CrossRef]
- Bojkova, D.; Bechtel, M.; Rothenburger, T.; Steinhorst, K.; Zöller, N.; Kippenberger, S.; Schneider, J.; Corman, V.M.; Uri, H.; Wass, M.N.; et al. Drug Sensitivity of Currently Circulating Mpox Viruses. N. Engl. J. Med. 2022, 388, 279–281. [Google Scholar] [CrossRef]
- Sarkis-Onofre, R.; Catalá-López, F.; Aromataris, E.; Lockwood, C. How to properly use the PRISMA Statement. Syst. Rev. 2021, 10, 117. [Google Scholar] [CrossRef]
- Alakus, T.B.; Baykara, M. Comparison of Monkeypox and Wart, DNA Sequences with Deep Learning Model. Appl. Sci. 2022, 12, 10216. [Google Scholar] [CrossRef]
- Wang, Z.; Tober-Lau, P.; Farztdinov, V.; Lemke, O.; Schwecke, T.; Steinbrecher, S.; Muenzner, J.; Kriedemann, H.; Sander, L.E.; Hartl, J.; et al. The human host response to monkeypox infection: A proteomic case series study. EMBO Mol. Med. 2022, 14, e16643. [Google Scholar] [CrossRef]
- Ali, S.N.; Ahmed, M.; Paul, J.; Jahan, T.; Sani, S.M.; Noor, N.; Hasan, T. Monkeypox skin lesion detection using deep learning models: A feasibility study. arXiv 2022, arXiv:2207.03342. [Google Scholar] [CrossRef]
- Abdelhamid, A.A.; El-Kenawy, E.S.; Khodadadi, N.; Mirjalili, S.; Khafaga, D.S.; Alharbi, A.H.; Ibrahim, A.; Eid, M.M.; Saber, M. Classification of Monkeypox Images Based on Transfer Learning and the Al-Biruni Earth Radius Optimization Algorithm. Mathematics 2022, 10, 3614. [Google Scholar] [CrossRef]
- Kumar, V. Analysis of CNN features with multiple machine learning classifiers in diagnosis of monkepox from digital skin images. medRxiv 2022. [Google Scholar] [CrossRef]
- Sitaula, C.; Shahi, T.B. Monkeypox virus detection using pre-trained deep learning-based approaches. J. Med. Syst. 2022, 46, 78. [Google Scholar] [CrossRef]
- Sahin, V.H.; Oztel, I.; Yolcu Oztel, G. Human Monkeypox Classification from Skin Lesion Images with Deep Pre-trained Network using Mobile Application. J. Med. Syst. 2022, 46, 79. [Google Scholar] [CrossRef] [PubMed]
- Islam, T.; Hussain, M.A.; Chowdhury, F.U.; Islam, B.R. Can artificial intelligence detect Monkeypox from digital skin images? bioRxiv 2022. [Google Scholar] [CrossRef]
- Muñoz-Saavedra, L.; Escobar-Linero, E.; Civit-Masot, J.; Luna-Perejón, F.; Civit, A.; Domínguez-Morales, M. Monkeypox Diagnostic-Aid System with Skin Images Using Convolutional Neural Networks. SSRN 2022, SSRN4186534. [Google Scholar] [CrossRef]
- Loh, H.W.; Ooi, C.P.; Seoni, S.; Barua, P.D.; Molinari, F.; Acharya, U.R. Application of Explainable Artificial Intelligence for Healthcare: A Systematic Review of the Last Decade (2011–2022). Comput. Methods Programs Biomed. 2022, 226, 107161. [Google Scholar] [CrossRef]
- Sizikova, E.; Vendrow, J.; Cao, X.; Grotheer, R.; Haddock, J.; Kassab, L.; Kryshchenko, A.; Merkh, T.; Madushani, R.W.; Moise, K.; et al. Automatic Infectious Disease Classification Analysis with Concept Discovery. arXiv 2022, arXiv:2209.02415. [Google Scholar] [CrossRef]
- Akin, K.D.; Gurkan, C.; Budak, A.; Karataş, H. Classification of Monkeypox Skin Lesion using the Explainable Artificial Intelligence Assisted Convolutional Neural Networks. Avrupa Bilim Teknol. Derg. 2022, 40, 106–110. [Google Scholar] [CrossRef]
- Ahsan, M.M.; Abdullah, T.A.; Ali, M.S.; Jahora, F.; Islam, M.K.; Alhashim, A.G.; Gupta, K.D. Transfer learning and Local interpretable model agnostic based visual approach in Monkeypox Disease Detection and Classification: A Deep Learning insights. arXiv 2022, arXiv:2211.05633. [Google Scholar] [CrossRef]
- Alcalá-Rmz, V.; Villagrana-Bañuelos, K.E.; Celaya-Padilla, J.M.; Galván-Tejada, J.I.; Gamboa-Rosales, H.; Galván-Tejada, C.E. Convolutional Neural Network for Monkeypox Detection. In Proceedings of the International Conference on Ubiquitous Computing and Ambient Intelligence 2022, Córdoba, Spain, 30 November–2 December 2022; Springer: Cham, Switzerland, 2022; pp. 89–100. [Google Scholar] [CrossRef]
- Khafaga, D.S.; Ibrahim, A.; El-Kenawy, E.S.; Abdelhamid, A.A.; Karim, F.K.; Mirjalili, S.; Khodadadi, N.; Lim, W.H.; Eid, M.M.; Ghoneim, M.E. An Al-Biruni Earth Radius Optimization-Based Deep Convolutional Neural Network for Classifying Monkeypox Disease. Diagnostics 2022, 12, 2892. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.; Ahmed, M.; Nila, R.S.; Islam, S. Classification of Human Monkeypox Disease Using Deep Learning Models and Attention Mechanisms. arXiv 2022, arXiv:2211.15459. [Google Scholar] [CrossRef]
- Saleh, A.I.; Rabie, A.H. Human monkeypox diagnose (H.M.D) strategy based on data mining and artificial intelligence techniques. Comput. Biol. Med. 2022, 152, 106383. [Google Scholar] [CrossRef]
- Islam, A.; Shin, S.Y. A Blockchain-Based Privacy Sensitive Data Acquisition Scheme during Pandemic Through the Facilitation of Federated Learning. In Proceedings of the 13th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 19–21 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 83–87. [Google Scholar] [CrossRef]
- Tom, J.J.; Anebo, N.P. A Neuro-Fussy Based Model for Diagnosis of Monkeypox Diseases. Available online: http://repository.elizadeuniversity.edu.ng/jspui/handle/20.500.12398/733 (accessed on 30 January 2023).
- Arotolu, T.E.; Afe, A.E.; Wang, H.; Lv, J.; Shi, K.; Huang, L.; Wang, X. Spatial modeling and ecological suitability of monkeypox disease in Southern Nigeria. PLoS ONE 2022, 17, e0274325. [Google Scholar] [CrossRef]
- Majumder, P. Analyses of polynomial neural networks for prediction of the prevalence of monkeypox infections in Asia and around the world. Electron. J. Gen. Med. 2022, 19, em410. [Google Scholar] [CrossRef]
- Eid, M.M.; El-Kenawy, E.S.; Khodadadi, N.; Mirjalili, S.; Khodadadi, E.; Abotaleb, M.; Alharbi, A.H.; Abdelhamid, A.A.; Ibrahim, A.; Amer, G.M.; et al. Meta-Heuristic Optimization of LSTM-Based Deep Network for Boosting the Prediction of Monkeypox Cases. Mathematics 2022, 10, 3845. [Google Scholar] [CrossRef]
- Yasmin, F.; Hassan, M.M.; Zaman, S.; Aung, S.T.; Karim, A.; Azam, S. A Forecasting Prognosis of the Monkeypox Outbreak Based on a Comprehensive Statistical and Regression Analysis. Computation 2022, 10, 177. [Google Scholar] [CrossRef]
- Qureshi, M.; Khan, S.; Bantan, R.A.; Daniyal, M.; Elgarhy, M.; Marzo, R.R.; Lin, Y. Modeling and Forecasting Monkeypox Cases Using Stochastic Models. J. Clin. Med. 2022, 11, 6555. [Google Scholar] [CrossRef]
- Aiman, S.; Alhamhoom, Y.; Ali, F.; Rahman, N.; Rastrelli, L.; Khan, A.; Farooq, Q.U.; Ahmed, A.; Li, C. Multi-epitope chimeric vaccine design against emerging Monkeypox virus via reverse vaccinology techniques-a bioinformatics and immunoinformatics approach. Front. Immunol. 2022, 13, 985450. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, M.; Chatterjee, S.; Nag, S.; Dhama, K.; Chakraborty, C. Designing, characterization, and immune stimulation of a novel multi-epitopic peptide-based potential vaccine candidate against monkeypox virus through screening its whole genome encoded proteins: An immunoinformatics approach. Travel Med. Infect. Dis. 2022, 50, 102481. [Google Scholar] [CrossRef] [PubMed]
- Pickett, B.E.; Sadat, E.L.; Zhang, Y.; Noronha, J.M.; Squires, R.B.; Hunt, V.; Liu, M.; Kumar, S.; Zaremba, S.; Gu, Z.; et al. ViPR.: An open bioinformatics database and analysis resource for virology research. Nucleic Acids Res. 2012, 40, D593–D598. [Google Scholar] [CrossRef]
- Ullah, A.; Shahid, F.A.; Haq, M.U.; Qamar, M.T.; Irfan, M.; Shaker, B.; Ahmad, S.; Alrumaihi, F.; Allemailem, K.S.; Almatroudi, A. An integrative reverse vaccinology, immunoinformatic, docking and simulation approaches towards designing of multi-epitopes based vaccine against monkeypox virus. J. Biomol. Struct. Dyn. 2022, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Altayb, H.N. Fludarabine, a potential D.N.A-dependent R.N.A polymerase inhibitor, as a prospective drug against monkeypox virus: A computational approach. Pharmaceuticals 2022, 15, 1129. [Google Scholar] [CrossRef] [PubMed]
- Lam, T.P.; Tran, V.H.; Mai, T.T.; Lai, N.V.; Dang, B.T.; Le, M.T.; Tran, T.D.; Trinh, D.T.; Thai, K.M. Identification of Diosmin and Flavin Adenine Dinucleotide as Repurposing Treatments for Monkeypox Virus: A Computational Study. Int. J. Mol. Sci. 2022, 23, 11570. [Google Scholar] [CrossRef] [PubMed]
- Kolluri, A.; Vinton, K.; Murthy, D. PoxVerifi: An Information Verification System to Combat Monkeypox Misinformation. arXiv 2022, arXiv:2209.09300. [Google Scholar] [CrossRef]
- Mohbey, K.K.; Meena, G.; Kumar, S.; Lokesh, K. A CNN-LSTM-based hybrid deep learning approach to detect sentiment polarities on Monkeypox tweets. arXiv 2022, arXiv:2208.12019. [Google Scholar] [CrossRef]
- Ng, Q.X.; Yau, C.E.; Lim, Y.L.; Wong, L.K.; Liew, T.M. Public sentiment on the global outbreak of monkeypox: An unsupervised machine learning analysis of 352,182 twitter posts. Public Health 2022, 213, 1–4. [Google Scholar] [CrossRef]
- AL-Ahdal, T.; Coker, D.; Awad, H.; Reda, A.; Żuratyński, P.; Khailaie, S. Improving Public Health Policy by Comparing the Public Response during the Start of COVID-19 and Monkeypox on Twitter in Germany: A Mixed Methods Study. Vaccines 2022, 10, 1985. [Google Scholar] [CrossRef]
- Jahmunah, V.; Ng, E.Y.; Tan, R.S.; Oh, S.L.; Acharya, U.R. Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals. Comput. Biol. Med. 2022, 146, 105550. [Google Scholar] [CrossRef] [PubMed]
- Jahmunah, V.; Ng, E.Y.; Tan, R.S.; Oh, S.L.; Acharya, U.R. Uncertainty quantification in DenseNet model using myocardial infarction ECG signals. Comput. Methods Programs Biomed. 2023, 229, 107308. [Google Scholar] [CrossRef] [PubMed]
- Kapusuzoglu, B.; Mahadevan, S. Information fusion and machine learning for sensitivity analysis using physics knowledge and experimental data. Reliab. Eng. Syst. Saf. 2021, 214, 107712. [Google Scholar] [CrossRef]
Paper | Dataset | Model | Results |
---|---|---|---|
Arotolu. [42] | 116 mpox patients from Nigeria | Maximum entropy algorithm | Area under curve 92% |
Majumder [43] | Mpox cases from 6 May to 28 July 2022 | Polynomial neural network | Predicted mpox cases would decrease after 20 October 2022 |
Eid [44] | Global mpox cases dataset, Kaggle | BER-LSTM | Mean absolute error 15.25 |
Yasmin [45] | Global mpox cases dataset, Kaggle | Nine forecasting models | Mean absolute error 146.29 |
Quereshi [46] | From website “Our World in Data” between 6 May to 28 July 2022 | Multi-layer perceptron, ARIMA model | Mean absolute error 32.59 |
Paper | Use Case | Dataset | Model | Results |
---|---|---|---|---|
Kolluri [53] | Handling mpox misinformation using a browser extension | 170 actual facts and 55 wrong facts collected from the internet | BERT-based machine learning model. | 96% accuracy |
Mohbet [54] | Sentiment analysis of Twitter users | Twitter posts about mpox | Hybrid CNN–LSTM | 94% accuracy |
Ng [55] | Sentiment analysis of Twitter users | 352,182 Twitter posts | BERT, BERTopic | - |
Al Ahdal [56] | Sentiment analysis of Twitter users in Germany | 15,936 Twitter posts from Germany | Latent Dirichlet allocation | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chadaga, K.; Prabhu, S.; Sampathila, N.; Nireshwalya, S.; Katta, S.S.; Tan, R.-S.; Acharya, U.R. Application of Artificial Intelligence Techniques for Monkeypox: A Systematic Review. Diagnostics 2023, 13, 824. https://doi.org/10.3390/diagnostics13050824
Chadaga K, Prabhu S, Sampathila N, Nireshwalya S, Katta SS, Tan R-S, Acharya UR. Application of Artificial Intelligence Techniques for Monkeypox: A Systematic Review. Diagnostics. 2023; 13(5):824. https://doi.org/10.3390/diagnostics13050824
Chicago/Turabian StyleChadaga, Krishnaraj, Srikanth Prabhu, Niranjana Sampathila, Sumith Nireshwalya, Swathi S. Katta, Ru-San Tan, and U. Rajendra Acharya. 2023. "Application of Artificial Intelligence Techniques for Monkeypox: A Systematic Review" Diagnostics 13, no. 5: 824. https://doi.org/10.3390/diagnostics13050824
APA StyleChadaga, K., Prabhu, S., Sampathila, N., Nireshwalya, S., Katta, S. S., Tan, R. -S., & Acharya, U. R. (2023). Application of Artificial Intelligence Techniques for Monkeypox: A Systematic Review. Diagnostics, 13(5), 824. https://doi.org/10.3390/diagnostics13050824