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Abstract: Peripheral bronchoscopy with the use of thin/ultrathin bronchoscopes and radial-probe
endobronchial ultrasound (RP-EBUS) has been associated with a fair diagnostic yield. Mobile cone-
beam CT (m-CBCT) could potentially improve the performance of these readily available technologies.
We retrospectively reviewed the records of patients undergoing bronchoscopy for peripheral lung
lesions with thin/ultrathin scope, RP-EBUS, and m-CBCT guidance. We studied the performance
(diagnostic yield and sensitivity for malignancy) and safety (complications, radiation exposure) of
this combined approach. A total of 51 patients were studied. The mean target size was 2.6 cm
(SD, 1.3 cm) and the mean distance to the pleura was 1.5 cm (SD, 1.4 cm). The diagnostic yield
was 78.4% (95 CI, 67.1–89.7%), and the sensitivity for malignancy was 77.4% (95 CI, 62.7–92.1%).
The only complication was one pneumothorax. The median fluoroscopy time was 11.2 min (range,
2.9–42.1) and the median number of CT spins was 1 (range, 1–5). The mean Dose Area Product from
the total exposure was 41.92 Gy·cm2 (SD, 11.35 Gy·cm2). Mobile CBCT guidance may increase the
performance of thin/ultrathin bronchoscopy for peripheral lung lesions in a safe manner. Further
prospective studies are needed to corroborate these findings.

Keywords: cone beam CT; bronchoscopy; peripheral lung tumors

1. Introduction

Lung cancer is the number one cause of cancer-related mortality for both men and
women throughout the world [1]. Five-year survival in lung cancer is largely dependent
on the stage of the disease at the time of diagnosis, ranging from 55% in early stages to 4%
in metastatic disease [2]. Thus there is an effort to detect lung cancer at an early stage with
annual screening by low-dose chest CT [3]. The combination of lung cancer screening with
low-dose chest CT and the wide-spread use of chest CT scans has led to an increase in the
number of detected lung nodules.

Diagnosis of peripherally located lung nodules can be achieved with a variety of
techniques: bronchoscopy, CT-guided transthoracic needle biopsy, and video-assisted
thoracoscopic surgery (VATS) [4]. With a favorable safety profile and the ability to pro-
vide nodal staging of lung cancer when indicated, the use of bronchoscopy to diagnose
peripheral lung tumors has substantially grown in the past two decades. Navigational
technologies (electromagnetic and non-electromagnetic) and, more recently, robotic bron-
choscopy, have been added to the bronchoscopists’ armamentarium. These technologies
have been demonstrated to provide a greater diagnostic yield than the use of thin/ultrathin
(T/UT) bronchoscopy with radial-probe endobronchial ultrasound (RP-EBUS) [5–9]. How-
ever, these technologies are costly (requiring capital equipment purchase and disposables
for every case) and not widely available outside the United States of America.
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As we have previously described, there are three main phases during peripheral
bronchoscopy: navigation, confirmation, and acquisition [10]. For long, RP-EBUS has
been the sole method to confirm that a target has been reached during bronchoscopy.
Unfortunately, RP-EBUS is not an accurate method of target confirmation, as has been
highlighted by recent work from our group demonstrating that atelectasis occurs very
commonly during bronchoscopy under general anesthesia, and can easily create false-
positive RP-EBUS images [11,12]. Thus the interest in the use of cone-beam CT (CBCT)
guidance, in particular for the phase of confirmation, to compensate for the suboptimal
performance of RP-EBUS [11–17]. Multiple studies have demonstrated that CBCT can
increase the yield of different navigational techniques [11,14–17]. However, most of these
studies were performed with “fixed” CBCTs. This type of CBCTs is typically located outside
of the bronchoscopy suites (interventional radiology suites, hybrid operating rooms), and
most pulmonologists do not have access to it. Hence, the interest in “mobile” CBCT
(m-CBCT)—a more affordable alternative which has the advantage of being able to be
shared amongst multiple hospital service lines, can be easily “rolled” in and out of most
bronchoscopy suites and can provide both two dimensional (2D) and three dimensional
(3D) images [13]. The combination of m-CBCT along with the readily available T/UT
bronchoscopes and RP-EBUS has been briefly described in case reports and a small case
series [18,19]. Data on diagnostic performance and radiation exposure are needed before
adopting this new imaging technology to guide our bronchoscopies. Here, we report our
initial experience with the use of m-CBCT in combination with T/UT bronchoscopy and
RP-EBUS for patients with peripheral lung lesions, and its efficacy and safety.

2. Materials and Methods
2.1. Study Center and Population

After obtaining IRB approval (2021-0268), consecutive patients were captured retro-
spectively through electronic medical records at The University of Texas MD Anderson
Cancer Center between June 2020 and March 2021. Bronchoscopies performed for the
diagnosis of peripheral lung lesions (located in the outer two-thirds of the lungs) with the
combination of thin (BF-P190F; Olympus, Tokyo, Japan) or ultra-thin scopes (BF-MP190F;
Olympus, Tokyo, Japan), RP-EBUS (UM-S20-17S, Olympus, Tokyo, Japan), and m-CBCT
(Cios Spin, Siemens Healthineers, Forchheim, Germany) were included in this analysis.

2.2. Procedures

Bronchoscopies were performed under general anesthesia, without a ventilatory
strategy to prevent atelectasis (data not available at that time), through a laryngeal-mask
airway (LMA) in most cases, with 100% FiO2 and 0–5 cmH2O of positive-end of expiration
pressure (PEEP). Five different physicians performed bronchoscopies. These physicians
operated the m-CBCT C-arm themselves. A combination of sampling tools including needle
(21 G PeriView FLEX needle; Olympus, Tokyo, Japan), cytology brush (BC-202D, Olympus,
Tokyo, Japan), and biopsy forceps (FB-231D, Olympus, Tokyo, Japan) was utilized at the
discretion of the operators. Broncho-alveolar lavage was performed when infection was
suspected. Rapid on-site cytology examination (ROSE) was present for all cases. The
m-CBCT C-arm was utilized for both fluoroscopy imaging (2D) and CT scans (3D) at the
discretion of the operator. Using its laser projection, the m-CBCT C-arm was isocentered
on the target lesion. The m-CBCT scan consisted of a 30 s spin, with the target nodule
positioned in the center and C-arm rotating around the patient acquiring 400 projection
images in fixed angular intervals that are reconstructed into multiplanar cross-sectional
CT-like images. Each m-CBCT spin was performed with a ventilatory breath hold of 30 s
(time required for spin). During spins, the bronchoscope was fixed in position with an
articulating arm that attaches to the bronchoscopy boom (The Arm, Neuwave Medical Inc.,
Madison, WI, USA), so that all personnel could exit the room (except for one anesthesia staff
that remained behind a protective shield) (Figure 1). Patients were recovered per standard
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of care and all patients underwent post-procedural chest X-ray to rule out pneumothorax
at the end of the recovery period.
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Figure 1. Bronchoscopy suite set up with m-CBCT. The red arrow corresponds to the metallic arm
holding the bronchoscope during cone beam CT scan.

2.3. Study Definitions

Our primary endpoint was “diagnostic yield”, defined as the number of patients in
whom diagnostic samples are obtained divided by the total number of patients undergoing
bronchoscopy. Samples were considered diagnostic if they demonstrated malignancy or
a benign (but abnormal) process. Samples showing blood, bronchial cells, macrophages,
and non-specific acute or chronic inflammation were considered “non-diagnostic”. Benign
tumors, specific infections or granulomatous inflammation were considered diagnostic
(provided that further biopsies, surgery or clinical-radiographical follow-up agreed with
this). All patients with samples that did not show malignancy were further assessed by
either CT-guided fine needle aspiration (FNA), surgery, or radiographic follow-up at the
discretion of their managing physicians. Chart records and radiographic follow-up were
reviewed 18 months post-bronchoscopy.

The main secondary endpoints included sensitivity for malignancy, complications, and
radiation exposure. The gold standard to calculate sensitivity for malignancy was either
surgical pathology (from lung resection when available), CT-guided FNA, or 18-month
clinical and radiographic follow-up. We defined sensitivity as true positives (TP)/true
positives (TP) + false negatives (FN) with the disease being malignancy of any type. All
bronchoscopic samples showing malignancy were considered TP. Cases where broncho-
scopic samples were not diagnostic of malignancy and malignancy was later confirmed by
either CT-guided FNA, surgery, or radiographical progression of disease were considered
FN. Intra-bronchoscopy and post-bronchoscopy complications were extracted from medical
records. Fluoroscopy time, number of m-CBCT spins, and radiation exposure associated
with each were recorded. Radiation exposure measured as the dose area product (DAP)
was defined as product of dose and beam area (Gy·cm2) and it was measured using an
ionization chamber placed between the X-ray tube/collimator setup and the patient. Other
relevant data collected included demographics, patient characteristics, target characteristics
(anatomic location, distance to the pleura, size, radiographic characteristics, presence of
bronchus sign), and procedure characteristics (e.g., duration which was defined as first
scope “in” to last scope “out” and concomitant mediastinal staging).

Descriptive statistics (frequencies, proportions, means, standard deviations, medians,
and range) were provided for patient, target, procedure characteristics, and radiation
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exposure. Diagnostic yield and sensitivity for malignancy with 95% confidence intervals
were reported. SAS 9.4 (SAS Institute INC, Cary, NC, USA) was used for data analysis.

3. Results

A total of 51 patients were included in the analysis. The mean target size was 2.6 cm
(SD, 1.3 cm) and the mean distance to the pleura was 1.5 cm (SD, 1.4 cm) (see patient and
target characteristics in Table 1). Procedure characteristics are depicted in Table 2. The most
utilized sampling tool was the needle (94% of the procedures). The median procedural
time was 85 min (range of 24–144 min), which included the time required for mediastinal
staging which was performed in 33 patients (65%). The diagnostic yield was 78.4% (95 CI,
67.1–89.7%), and the sensitivity for malignancy was 77.4% (95 CI, 62.7–92.1%). Specific
diagnoses are described in Table 3. Malignancy was detected in 24 patients and missed
in 11 patients. Sixteen patients had benign diagnoses. The only recorded complication
was one case of pneumothorax requiring a chest tube. The median fluoroscopy time was
11.2 min (range, 2.9–42.1) and the median number of CT spins was 1 (range, 1–5). The
mean fluoroscopy time was 13.59 min (range, 2.9 to 42.1). Fluoroscopy and CBCT (3D
spins)-associated radiation exposure is described in Table 4.

Table 1. Patient and target characteristics.

Characteristics N = 51
Gender

- Female
- Male

26 (51)
25 (49)

Smoking History

- Never
- Ex-smoker
- Current

18 (35)
24 (47)
9 (18)

Prior Malignancy

- Lung cancer
- Others

10 (20)
20 (40)

ECOG
Median (range) 1 (0–2)

ASA Score
Median (range) 3 (2–4)

Target Size (cm)
Mean (SD) 2.6 (1.3)

Target Characteristics

- Solid
- Semi-solid

37 (73)
14 (27)

Target Location

- Right Upper Lobe
- Right Middle Lobe
- Right Lower Lobe
- Left Upper Lobe
- Left Lower Lobe

21 (41)
3 (6)
5 (10)

17 (33)
5 (10)

Bronchus Sign 39 (75)

Distance to Pleura (cm)
Mean (SD) 1.5 (1.4)

(ECOG = Eastern Cooperative Oncology Group; ASA = American Society of Anesthesiology; SD = standard deviation).
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Table 2. Procedure Characteristics.

Procedure Characteristics N = 51
Artificial Airway

- Laryngeal Mask Airway
- Endotracheal Tube

44 (86)
7 (14)

Sampling Tools *

- Needle
- Forceps
- Cytology Brush

48 (94)
29 (57)
20 (21)

Radial-Probe EBUS

- Eccentric view
- Concentric view
- Image not recorded

29 (57)
13 (25)
9 (18)

Presence of Atelectasis by CT 24 (47)

Procedure Time (min)
Median (range) 85 (24–144)

Mediastinal Staging 33 (65)

Fluoroscopy Time (min)
Median (range) 11.2 (2.9–42.1)

Number of CBCT Spins
Median (range) 1 (1–5)

* More than one tool was utilized in most cases. RP-EBUS = radial-probe endobronchial ultrasound;
CBCT = Cone-Beam Computed Tomography.

Table 3. Diagnosis Obtained with Bronchoscopy.

Malignancy (n = 24) Benign (n = 16) Non-Diagnostic Sample (n = 11)
Lung Cancer
Adenocarcinoma
Squamous Cell Carcinoma
Non-Small Cell (not specified)
Small Cell Lung Cancer
Carcinoid
Others
Lymphoma
Melanoma
Renal Cell Carcinoma

14
3
1
1
1

2
1
1

Infectious/Presumed Infectious
Granulomas
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Table 4. Fluoroscopy and Cone-Beam CT-Associated Radiation Exposure.

Total Fluoroscopy
Time (min) Number of 3D Spins Dose Area Product from Total

Exposure (Gy·cm2)
Dose Area Product from 3D

Spins (Gy·cm2)
Mean 13.59 1.82 41.92 11.35
Std 7.91 1.01 26.19 6.24
Min 2.9 1 9.10 4.38
Max 42.1 5 113.08 28.53

4. Discussion

This is the largest report on the specific combination of T/UT bronchoscopy, RP-EBUS,
and m-CBCT, and the largest one to report radiation exposure associated with m-CBCT.
When comparing with prior literature of UT/T bronchoscopy and RP-EBUS, the addition
of m-CBCT seems to positively impact its results in terms of diagnostic yield and sensitivity
for malignancy [6,7]. Procedures were safe (only one pneumothorax) with acceptable levels
of radiation exposure (approximately two-thirds of DAP was secondary to fluoroscopy and
one-third due to the m-CBCT spins).
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Navigational bronchoscopy platforms, robotic bronchoscopy platforms, use of to-
mosynthesis, augmented fluoroscopy, and fixed CBCT are rapidly evolving and increasing
our reach for peripheral lung lesions. Unfortunately, these pieces of equipment and the
required disposables are too costly and not within reach to the majority of bronchoscopists
world-wide. Because of this, it is imperative to improve the performance of the simpler
and readily available tools such as the use of T/UT bronchoscopes. A large multicenter
randomized controlled trial of standard fluoroscopy guided bronchoscopy versus thin
bronchoscope with RP-EBUS by Tanner and coworkers reported a fair diagnostic yield of
49% with thin bronchoscopy/RP-EBUS [6]. This same study showed one of the greatest
gaps reported in the literature between navigation and diagnostic yield. Of 179 patients
who underwent RP-EBUS either because of randomization or subsequent crossover, 174
(97%) had ultrasound “confirmation” of lesion localization, with a concentric image seen in
113 (65%). Yet, diagnostic yield was 50% for concentric and 31% for eccentric lesions. A
potential partial explanation for this enormous gap between navigational yield and diag-
nostic yield is the “pseudo-confirmation” of target reach given by falsely positive RP-EBUS
images (attributed to atelectasis, clotting, etc.). Of course, factors associated with the sam-
pling tools they utilized may have had a role as well in this enormous gap. As mentioned
before, electromagnetic navigational bronchoscopy has also demonstrated a diagnostic
yield around 70%, close to what we have shown in this study [8]. Nevertheless, from the
cost-effective aspect, the need of specific disposable navigational tools, and sometimes the
need for repeat chest CT with specific slice thickness, makes these navigational techniques
less feasible for many bronchoscopists throughout the world. Lastly, transthoracic needle
aspiration—with a higher yield, lower cost, and higher rate of pneumothorax—is unable
to provide nodal staging, making it a less attractive option for patients with suspected or
known lung cancer.

The need for a more precise and certain method for confirmation of navigation success
has led our group and many others to investigate the additional value of CBCT guidance
during peripheral bronchoscopy. One of the initial studies to combine T/UT broncho-
scopes with fixed CBCT came from our own group [11]. We performed a prospective pilot
study (n = 20 patients) in which we assessed the effect on navigational and diagnostic
yield provided by the addition of fixed-CBCT imaging to the standard 2D fluoroscopy
and T/UT bronchoscopy combination. CBCT imaging resulted in a 25% absolute increase
in navigational yield (from 50 to 75%, p = 0.02), and 20% absolute increase in diagnos-
tic yield (from 50 to 70%, p = 0.04). The median fluoroscopy time was 8.6 min (range,
5–15.4), and the median number of CT scans was 1.5 (range, 1–2). The mean DAP from
the total exposure was 64.57 Gy·cm2 (range, 6.14–114.89 Gy·cm2), and originating in the
CBCTs 50.45 Gy·cm2 (range, 5.43–66.75 Gy·cm2). Both diagnostic and navigational yield
and overall radiation exposure figures were not that distant from our current study. Of
note, opposite to our current study, most radiation exposure originated from the CBCTs,
instead of originating from 2D fluoroscopy. A more recent report of T/UT bronchoscopy
along with fixed CBCT and “augmented fluoroscopy” (Artis zeego, Siemens Healthineers,
Forchheim, Germany) is that of DiBardino and coworkers [17]. This study retrospectively
analyzed three cohorts of patients: UT bronchoscope + fixed CBCT + RP-EBUS (n = 30);
thin or therapeutic bronchoscope + fixed CBCT + RP-EBUS (n = 27); thin or therapeutic
bronchoscope + RP-EBUS (n = 59). Diagnostic yields were 85.0% (95% CI, 68.6% to 100%),
68.3% (95% CI, 50.1% to 86.6%), and 44.5% (95% CI, 31.0% to 58.0%), respectively. The
median pulmonary lesion diameter was 1.95 cm (interquartile range, 1.5 to 2.75 cm). Virtual
navigational bronchoscopy (VNB) (Archimedes, Broncus Medical Inc., San Jose, CA, USA)
was most utilized in the thin or therapeutic bronchoscope + RP-EBUS group (45.8% vs.
18.5%, p = 0.02; 45.8% vs. 13.3%, p = 0.002) compared with the thin or therapeutic broncho-
scope + fixed CBCT + RP-EBUS and UT bronchoscope + fixed CBCT + UTB + RP-EBUS
groups, respectively. They reported a median radiation dose in the fixed-CBCT groups of
70.42 Gy·cm2 (IQR: 42.49 to 99.70). Their study differed from our current one in multiple
ways: they utilized augmented fluoroscopy with their fixed CBCT in all cases and they
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allowed for virtual navigational bronchoscopy. While their reported diagnostic yield is only
slightly higher than ours, their mean radiation exposure is substantially higher. This could
be explained, in part, by the fact that the operators obtained an extra scan to corroborate
tool in lesion.

Data on m-CBCT guiding T/UT bronchoscopy are truly scant. The first report is in
the form of a “research letter” by Avasarala and coworkers [19]. They reported on the
use of an m-CBCT (Cios Spin, Siemens Medical Solutions, Malvern, PA, USA) as a guide
for peripheral bronchoscopy in eight patients with an average lesion size of 2.6 cm (elec-
tromagnetic navigational bronchoscopy, superDimension Navigation System version 7.0;
Medtronic, Minneapolis, MN, USA was used in two cases). Though results are restricted by
the sample size, they reported a mean radiation exposure per procedure of 40.92 Gy·cm2,
quite similar to ours. The only additional report on the m-CBCT guiding T/UT bron-
choscopy combination (same m-CBCT system) that we could find in the literature is that
of Sadoughi and coworkers, which consists of a case series of four patients [18]. The use
of a different m-CBCT system, the O-arm O2 Imaging System (Medtronic, Minneapolis,
MN, USA), was reported in combination with electromagnetic navigational bronchoscopy
(EMN) (superDimension Navigation System version 7.0; Medtronic, Minneapolis, MN,
USA), and RP-EBUS by Cho and coworkers [20]. In this very small report, the average
nodule size was 2.1 cm, and only two of the six cases were diagnostic. Unfortunately,
DAP was not reported in this case series for comparison, they only reported an estimated
average effective dose per 3D spin of 3.73 mSv.

Mobile-CBCT guidance use has been reported with more sophisticated bronchoscopy
technologies such as electromagnetic navigation and robotic bronchoscopy [21,22]. In a very
interesting brief research report, Chan and coworkers reported the use of EMN with both
mobile-CBCT (Cios Spin, Siemens Healthineers, Forchheim, Germany) and floor-mounted
CBCT (syngo DynaCT® of Artis Zeego by Siemens Healthineers) in a hybrid operating
room [21]. They utilized this combination for a total of 11 procedures: 5 diagnostic biopsies,
4 transbronchial microwave ablations, and 2 cases of dye marking followed by surgery.
They intentionally utilized both CBCT systems in order to compare image quality and
ease of use. Navigation success was achieved in four out of five cases. The authors
reported comparable ease-of-use, and they stated that the m-CBCT unit was able to identify
most lung lesions, especially the larger and denser nodules. In two cases of ground glass
opacities (8 and 13 mm in diameter), the authors describe that these lesions were faintly
seen with m-CBCT and clearly seen with their floor-mounted counterpart. An elegant study
by Reisenauer and coworkers reported the combination of m-CBCT (Cios Spin, Siemens
Healthineers, Forchheim, Germany) and Shape-Sensing Robotic-Assisted Bronchoscopy
(SSRAB) (Ion Endoluminal Robotic Bronchoscopy System, Intuitive Surgical, Sunnyvale,
CA, USA) [22]. The objectives of this small prospective pilot study were to assess the ability
of m-CBCT to demonstrate tool in lesion, to calculate CT-to-body divergence, and report
diagnostic yield and radiation exposure. A total of 30 nodules were sampled, with a median
size of 17.5 mm (SD, 6.8) in the largest dimension. The mean airway generation was 7, with
a mean distance to pleura of 14.9 mm (range, 1–45.8 mm). Bronchus sign was present in
40% of patients. In 100% of procedures, the proceduralist was able to navigate to the lesion,
with a mean number of m-CBCT spins of 2.5 (SD of 1.6). Nineteen (63.3%) cases had an
eccentric RP-EBUS signal, 13.3% had a concentric signal, and 23.3% had no signal with
RP-EBUS. The total mean fluoroscopy time was 8.7 min (range, 2–27 min) and the total
mean DAP was 50.3 Gycm2 with an average of 2.5 spins overall for all cases. The authors
reported a diagnostic yield of 93.3%, with a true positive rate 73.3% (22/30 cases) with a
6.7% false negative rate (2/30 cases), and an overall sensitivity for malignancy of 91.7%.
These promising results once again show how image guidance with m-CBCT can improve
the navigational and diagnostic yield of the most sophisticated bronchoscopy technologies,
such as this new robotic platform. The fact that a mean of 2.5 spins were necessary to reach
lesions and obtain diagnosis shows that in many of these cases success would have not
occurred without this image guidance helping correct the CT to body divergence.



Diagnostics 2023, 13, 827 8 of 10

With our aging population and the wide-spread use of chest CT, we are bound to diag-
nose more and more often early-stage lung cancer in medically inoperable patients. In the
past few years, bronchoscopists have ventured into the field of therapeutic bronchoscopy
with the development of several different modalities for bronchoscopic ablation of lung
cancer or lung metastases [23]. While these different ablative techniques are still at a very
early investigational level, they do have something in common, which is the need for a
real-time imaging modality that can show the location of the ablative probe with respect to
the target, vital structures, and the pleura [10]. Whereas fixed-CBCT has been utilized in
most reported experiments, Chan and coworkers described the use of m-CBCT in four cases
of transbronchial microwave ablations, and Chen and coworkers described another case of
transbronchial microwave ablation of a 15 mm left upper lobe ground glass opacity [21,24].
With comparable image quality, m-CBCT will likely allow more centers throughout the
world to slowly adopt bronchoscopic ablative techniques once they are demonstrated to be
safe and effective.

Our study has a few limitations. At the time these bronchoscopies were done, not all
m-CBCT images were being recorded and some proceduralists were not obtaining an extra
spin to document tool in lesion (TIL). Thus, we do not have information with regards to
TIL, which we believe is key when utilizing CBCT guidance. As described in the methods,
ROSE was utilized in all cases. ROSE may not be available in some institutions, and it may
have increased our diagnostic yield. Our clinical and radiographic follow-up for suspected
benign lesions was 18 months. Though we considered this appropriate and in line with
other publications, slow or non-growing adenocarcinomas of the lung could be missed
with this observation period.

5. Conclusions

Bronchoscopic navigational platforms have been shown to improve the yield of periph-
eral bronchoscopy but they are also costly and not available world-wide. In lieu of the new
evidence suggesting that RP-EBUS may be an inaccurate confirmatory tool for peripheral
bronchoscopy, image guidance with m-CBCT may be key to improving the performance
of the widely available thin and ultrathin bronchoscopes. Our report, the largest of its
kind, suggests that m-CBCT guidance may increase the performance of thin and ultrathin
bronchoscopes for peripheral lung lesions in a safe manner. Further prospective studies are
needed to corroborate these findings.
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