Ethnic Differences in Western and Asian Sacroiliac Joint Anatomy for Surgical Planning of Minimally Invasive Sacroiliac Joint Fusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population and Assessment
2.2. Data Set Preparation and Analysis
2.2.1. Reproducibility
2.2.2. Symmetry
2.2.3. Primary Analysis Data Set
2.2.4. Distance Sufficiency
2.2.5. Body Height Distribution
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernard, T.N., Jr.; Kirkaldy-Willis, W.H. Recognizing specific characteristics of nonspecific low back pain. Clin. Orthop. Relat. Res. 1987, 217, 266–280. [Google Scholar] [CrossRef]
- Sembrano, J.N.; Polly, D.W., Jr. How often is low back pain not coming from the back? Spine 2009, 34, E27–E32. [Google Scholar] [CrossRef]
- Polly, D.W., Jr.; Holton, K.J. Minimally Invasive Sacroiliac Joint Fusion: A Lateral Approach Using Triangular Titanium Implants and Navigation. JBJS Essent. Surg. Tech. 2020, 10, e19. [Google Scholar] [CrossRef]
- Dengler, J.; Kools, D.; Pflugmacher, R.; Gasbarrini, A.; Prestamburgo, D.; Gaetani, P.; Cher, D.; Van Eeckhoven, E.; Annertz, M.; Sturesson, B. Randomized Trial of Sacroiliac Joint Arthrodesis Compared with Conservative Management for Chronic Low Back Pain Attributed to the Sacroiliac Joint. J. Bone Joint Surg. Am. 2019, 101, 400–411. [Google Scholar] [CrossRef]
- Polly, D.W.; Swofford, J.; Whang, P.G.; Frank, C.J.; Glaser, J.A.; Limoni, R.P.; Cher, D.J.; Wine, K.D.; Sembrano, J.N. Two-Year Outcomes from a Randomized Controlled Trial of Minimally Invasive Sacroiliac Joint Fusion vs. Non-Surgical Management for Sacroiliac Joint Dysfunction. Int. J. Spine Surg. 2016, 10, 28. [Google Scholar] [CrossRef] [Green Version]
- Duhon, B.S.; Bitan, F.; Lockstadt, H.; Kovalsky, D.; Cher, D.; Hillen, T. Triangular Titanium Implants for Minimally Invasive Sacroiliac Joint Fusion: 2-Year Follow-Up from a Prospective Multicenter Trial. Int. J. Spine Surg. 2016, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- Rudolf, L.; Capobianco, R. Five-year clinical and radiographic outcomes after minimally invasive sacroiliac joint fusion using triangular implants. Open Orthop. J. 2014, 8, 375–383. [Google Scholar] [CrossRef] [Green Version]
- Sachs, D.; Kovalsky, D.; Redmond, A.; Limoni, R.; Meyer, S.C.; Harvey, C.; Kondrashov, D. Durable intermediate-to long-term outcomes after minimally invasive transiliac sacroiliac joint fusion using triangular titanium implants. Med. Devices 2016, 9, 213–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ledonio, C.G.; Polly, D.W., Jr.; Swiontkowski, M.F. Minimally invasive versus open sacroiliac joint fusion: Are they similarly safe and effective? Clin. Orthop. Relat. Res. 2014, 472, 1831–1838. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.G.; Capobianco, R.; Cher, D.; Rudolf, L.; Sachs, D.; Gundanna, M.; Kleiner, J.; Mody, M.G.; Shamie, A.N. Open versus minimally invasive sacroiliac joint fusion: A multi-center comparison of perioperative measures and clinical outcomes. Ann. Surg. Innov. Res. 2013, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Vanaclocha, V.; Herrera, J.M.; Sáiz-Sapena, N.; Rivera-Paz, M.; Verdú-López, F. Minimally Invasive Sacroiliac Joint Fusion, Radiofrequency Denervation, and Conservative Management for Sacroiliac Joint Pain: 6-Year Comparative Case Series. Neurosurgery 2018, 82, 48–55. [Google Scholar] [CrossRef]
- Anastasiou, E.; Chamberlain, A.T. The sexual dimorphism of the sacro-iliac joint: An investigation using geometric morphometric techniques. J. Forensic. Sci. 2013, 58 (Suppl. 1), S126–S134. [Google Scholar] [CrossRef] [PubMed]
- Plochocki, J.H. Directional bilateral asymmetry in human sacral morphology. Int. J. Osteoarchaeol. 2002, 12, 349–355. [Google Scholar] [CrossRef]
- Shibata, Y.; Shirai, Y.; Miyamoto, M. The aging process in the sacroiliac joint: Helical computed tomography analysis. J. Orthop. Sci. 2002, 7, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Gras, F.; Gottschling, H.; Schröder, M.; Marintschev, I.; Hofmann, G.O.; Burgkart, R. Transsacral Osseous Corridor Anatomy Is More Amenable To Screw Insertion In Males: A Biomorphometric Analysis of 280 Pelves. Clin. Orthop. Relat. Res. 2016, 474, 2304–2311. [Google Scholar] [CrossRef] [Green Version]
- Hasenboehler, A.E.; Stahel, P.F.; Williams, A.; Smith, W.R.; Newman, J.T.; Symonds, D.L.; Morgan, S.J. Prevalence of sacral dysmorphia in a prospective trauma population: Implications for a "safe" surgical corridor for sacro-iliac screw placement. Patient Saf. Surg. 2011, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Kwan, M.K.; Jeffry, A.; Chan, C.Y.W.; Saw, L.B. A radiological evaluation of the morphometry and safety of S1, S2 and S2-ilium screws in the Asian population using three dimensional computed tomography scan: An analysis of 180 pelvis. Surg. Radiol. Anat. 2012, 34, 217–227. [Google Scholar] [CrossRef]
- Tian, X.; Li, J.; Sheng, W.; Qu, D.; Ouyang, J.; Xu, D.; Chen, S.; Ding, Z. Morphometry of iliac anchorage for transiliac screws: A cadaver and CT study of the Eastern population. Surg. Radiol. Anat. 2010, 32, 455–462. [Google Scholar] [CrossRef]
- Kaiser, S.P.; Gardner, M.J.; Liu, J.; Routt, M.C.; Morshed, S. Anatomic Determinants of Sacral Dysmorphism and Implications for Safe Iliosacral Screw Placement. J. Bone Joint Surg. Am. 2014, 96, e120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, A.N.; Routt, M.L., Jr. Variations in sacral morphology and implications for iliosacral screw fixation. J. Am. Acad. Orthop. Surg. 2012, 20, 8–16. [Google Scholar] [CrossRef]
- Postacchini, R.; Trasimeni, G.; Ripani, F.; Sessa, P.; Perotti, S.; Postacchini, F. Morphometric anatomical and CT study of the human adult sacroiliac region. Surg. Radiol. Anat. 2017, 39, 85–94. [Google Scholar] [CrossRef]
- Szadek, K.M.; van der Wurff, P.; van Tulder, M.W.; Zuurmond, W.W.; Perez, R.S. Diagnostic validity of criteria for sacroiliac joint pain: A systematic review. J. Pain. 2009, 10, 354–368. [Google Scholar] [CrossRef]
- The R Project for Statistical Computing. Available online: http://www.R-project.org/. (accessed on 22 October 2022).
- Laslett, M.; Aprill, C.N.; McDonald, B.; Young, S.B. Diagnosis of sacroiliac joint pain: Validity of individual provocation tests and composites of tests. Man. Ther. 2005, 10, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Dengler, J.; Duhon, B.; Whang, P.; Frank, C.; Glaser, J.; Sturesson, B.; Garfin, S.; Cher, D.; Rendahl, A.; Polly, D. Predictors of Outcome in Conservative and Minimally Invasive Surgical Management of Pain Originating From the Sacroiliac Joint: A Pooled Analysis. Spine 2017, 42, 1664–1673. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; Bao, H.D.; Yuan, S.; Wang, B.; Qiao, J.; Zhu, Z.Z.; Liu, Z.; Ding, Y.T.; Qiu, Y. Posterior second sacral alar iliac screw insertion: Anatomic study in a Chinese population. Eur. Spine J. 2013, 22, 1683–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conflitti, J.M.; Graves, M.L.; Routt, M.L.C., Jr. Radiographic quantification and analysis of dysmorphic upper sacral osseous anatomy and associated iliosacral screw insertions. J. Orthop. Trauma 2010, 24, 630–636. [Google Scholar] [CrossRef]
- Ohba, S. Morphological study of the sacroiliac joint of aged Japanese and macroscopic and microscopic observations on its articular surface. Nihon Seikeigeka Gakkai Zasshi 1985, 59, 675–689. [Google Scholar] [PubMed]
- Rana, S.H.; Farjoodi, P.; Haloman, S.; Dutton, P.; Hariri, A.; Ward, S.R.; Garfin, S.R.; Chang, D.G. Anatomic Evaluation of the Sacroiliac Joint: A Radiographic Study with Implications for Procedures. Pain Physician 2015, 18, 583–592. [Google Scholar] [PubMed]
- Mahato, N.K. Implications of structural variations in the human sacrum: Why is an anatomical classification crucial? Surg. Radiol. Anat. 2016, 38, 947–954. [Google Scholar] [CrossRef]
Measured using a segmented STL model
|
Measured through multiplanar reconstructions parallel to the S1 body
|
Sacral ala at the midline between the foramen and the lateral border of the SIJ
|
Female | Male | Total | Baseline Characteristics | ||||||
---|---|---|---|---|---|---|---|---|---|
Ethnicity | Patients | Sides | Patients | Sides | Patients | Sides | Age (Years; Mean ± SD) | Height (cm; Mean ± SD) | Weight (kg; Mean ± SD) |
Western | 25 | 50 | 22 | 44 | 47 | 94 | 64.8 ± 11.2 | 178.2 ± 13.6 | 77.5 ± 23.9 |
Asian | 23 | 46 | 16 | 32 | 39 | 78 | 69.2 ± 13.8 | 170.8 ± 7.5 | 62.3 ± 12.6 |
Measurement | Threshold | Rationale |
---|---|---|
Superior articular limb | 28.4 mm | Distance across inscribed diameters of two implants. Two implants are typically placed in the superior limb of the SIJ. |
Inferior articular limb | 28.4 mm | Distance across inscribed diameters of two implants. Two implants are typically placed in the inferior limb of the SIJ. Note that second implant is in both limbs. |
Surface area | 3 × π*r2 = 475 mm2 | Cross-sectional area of circles formed by three implants. |
Lateral border of the S1 foramen to the lateral cortex | 10 mm | 10 mm engagement depth represents minimal implant engagement likely resulting in immediate stabilization. |
Lateral border of the S2 foramen to the lateral cortex | ||
S1 body midline to the lateral cortex of the sacrum | ||
S2 body midline to the lateral cortex of the sacrum | ||
SIJ height | 42.6 mm | Total length of three diameters of implants. |
AP thickness of the sacral ala | 14.2 mm | The AP thickness should be larger than the inscribed diameter of the implant; otherwise, the implant protrudes from the sacrum. |
Measurement * | Sex | |||
---|---|---|---|---|
Women | Men | |||
R ** | p Value | R ** | p Value | |
Superior articular limb | 0.17 | 0.1691 | 0.52 | 0.0003 |
Inferior articular limb | 0.29 | 0.0155 | 0.54 | 0.0002 |
Surface area | 0.26 | 0.0315 | 0.49 | 0.0008 |
Height of the SIJ | 0.42 | 0.0003 | 0.38 | 0.0093 |
S1 body midline to the sacral cortex | 0.38 | 0.0013 | 0.60 | <0.0001 |
S1 lateral foramen to the sacral cortex | 0.02 | 0.8400 | 0.59 | <0.0001 |
S2 body midline to the sacral cortex | 0.42 | 0.0003 | 0.50 | 0.0003 |
S2 lateral foramen to the sacral cortex | 0.11 | 0.3746 | 0.45 | 0.0015 |
AP at the S1 body | 0.31 | 0.0097 | 0.67 | <0.0001 |
AP at the S1 foramen | 0.28 | 0.0208 | 0.44 | 0.0019 |
AP at the S2 body | 0.05 | 0.6583 | 0.23 | 0.1186 |
AP at the S2 foramen | −0.08 | 0.5298 | 0.36 | 0.0134 |
Women | Men | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Measurement * | Regression Coefficient ** | p Value | Predicted 1 *** | Predicted 99 | Range **** | Regression Coefficient ** | p Value | Predicted 1 *** | Predicted 99 | Range |
SAL | 0.14 | 0.1691 | 37.2 | 40.4 | 3.2 | 0.40 | 0.0003 | 41.0 | 51.0 | 10.0 |
IAL | 0.23 | 0.0155 | 47.1 | 52.3 | 5.2 | 0.48 | 0.0002 | 53.2 | 65.2 | 12.1 |
Surface area | 9.21 | 0.0315 | 1211.3 | 1421.3 | 210.0 | 36.10 | 0.0008 | 1385.1 | 2288.8 | 903.7 |
Height of the SIJ | 0.36 | 0.0003 | 50.0 | 58.2 | 8.1 | 0.20 | 0.0093 | 60.2 | 65.1 | 4.9 |
S1 body midline to the sacral cortex | 0.24 | 0.0013 | 52.5 | 58.0 | 5.5 | 0.29 | <0.0001 | 52.1 | 59.5 | 7.4 |
S1 lateral foramen to the sacral cortex | 0.02 | 0.8400 | 21.9 | 22.2 | 0.4 | 0.21 | <0.0001 | 17.9 | 23.3 | 5.4 |
S2 body midline to the sacral cortex | 0.27 | 0.0003 | 41.2 | 47.4 | 6.2 | 0.22 | 0.0003 | 41.4 | 46.9 | 5.5 |
S2 lateral foramen to the sacral cortex | 0.05 | 0.3745 | 16.6 | 17.7 | 1.1 | 0.14 | 0.0015 | 13.9 | 17.5 | 3.6 |
AP at the S1 body | 0.22 | 0.0097 | 28.8 | 33.8 | 5.1 | 0.35 | <0.0001 | 31.3 | 40.2 | 8.9 |
AP at the S1 foramen | 0.15 | 0.0208 | 24.8 | 28.3 | 3.5 | 0.20 | 0.0019 | 26.7 | 31.8 | 5.1 |
AP at the S2 body | 0.05 | 0.6583 | 23.9 | 25.0 | 1.0 | 0.12 | 0.1186 | 25.1 | 28.1 | 3.0 |
AP at the S2 foramen | −0.05 | 0.5298 | 20.1 | 18.9 | −1.2 | 0.16 | 0.0134 | 17.6 | 21.5 | 3.9 |
Comparison | ||
---|---|---|
Men vs. Women | ||
Measurement * | Regression Coefficient ** | p Value |
Superior articular limb | 2.8 | 0.0743 |
Inferior articular limb | 3.8 | 0.0224 |
Surface area | 142.2 | 0.2438 |
Height of the SIJ | 4.8 | 0.0004 |
S1 body midline to the sacral cortex | −3.5 | 0.0008 |
S1 lateral foramen to the sacral cortex | −3.6 | 0.0004 |
S2 body midline to the sacral cortex | −3.7 | 0.0004 |
S2 lateral foramen to the sacral cortex | −3.0 | 0.0001 |
AP at the S1 body | −0.1 | 0.9420 |
AP at the S1 foramen | 0.0 | 0.9895 |
AP at the S2 body | 0.8 | 0.5608 |
AP at the S2 foramen | −1.1 | 0.3425 |
Comparison | ||
---|---|---|
Asian vs. Western Patients | ||
Measurement * | Regression Coefficient ** | p Value |
Superior articular limb | −1.9 | 0.2425 |
Inferior articular limb | −0.2 | 0.9207 |
Surface area | 5.0 | 0.9714 |
Height of the SIJ | 1.5 | 0.2596 |
S1 body midline to the sacral cortex | 2.2 | 0.0114 |
S1 lateral foramen to the sacral cortex | 2.3 | 0.0245 |
S2 body midline to the sacral cortex | 0.4 | 0.7076 |
S2 lateral foramen to the sacral cortex | −0.3 | 0.6675 |
AP at the S1 body | −3.0 | 0.0109 |
AP at the S1 foramen | −0.4 | 0.7171 |
AP at the S2 body | −1.5 | 0.3158 |
AP at the S2 foramen | 0.2 | 0.8912 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Liu, Y.-C.; Koga, H.; Lee, C.-Y.; Wang, P.-Y.; Cher, D.; Reckling, W.C.; Huang, T.-J.; Wu, M.-H. Ethnic Differences in Western and Asian Sacroiliac Joint Anatomy for Surgical Planning of Minimally Invasive Sacroiliac Joint Fusion. Diagnostics 2023, 13, 883. https://doi.org/10.3390/diagnostics13050883
Wu C, Liu Y-C, Koga H, Lee C-Y, Wang P-Y, Cher D, Reckling WC, Huang T-J, Wu M-H. Ethnic Differences in Western and Asian Sacroiliac Joint Anatomy for Surgical Planning of Minimally Invasive Sacroiliac Joint Fusion. Diagnostics. 2023; 13(5):883. https://doi.org/10.3390/diagnostics13050883
Chicago/Turabian StyleWu, Christopher, Yu-Cheng Liu, Hiroaki Koga, Ching-Yu Lee, Po-Yao Wang, Daniel Cher, W. Carlton Reckling, Tsung-Jen Huang, and Meng-Huang Wu. 2023. "Ethnic Differences in Western and Asian Sacroiliac Joint Anatomy for Surgical Planning of Minimally Invasive Sacroiliac Joint Fusion" Diagnostics 13, no. 5: 883. https://doi.org/10.3390/diagnostics13050883
APA StyleWu, C., Liu, Y. -C., Koga, H., Lee, C. -Y., Wang, P. -Y., Cher, D., Reckling, W. C., Huang, T. -J., & Wu, M. -H. (2023). Ethnic Differences in Western and Asian Sacroiliac Joint Anatomy for Surgical Planning of Minimally Invasive Sacroiliac Joint Fusion. Diagnostics, 13(5), 883. https://doi.org/10.3390/diagnostics13050883