Hybrid Multilevel Thresholding Image Segmentation Approach for Brain MRI
Abstract
:1. Introduction
2. Related Work
- The DOBES algorithm is proposed by invoking the DOL method in the initialization, as well as exploitation, phases of the BES algorithm to solve the problems of slow convergence speed and local optima stagnation.
- A hybrid multilevel threshing approach is proposed for the segmentation of the brain tumor.
- The proposed hybrid segmentation approach is compared with state-of-the-art algorithms to show its significance.
3. Proposed Hybrid Multilevel Thresholding Image Segmentation Approach
3.1. DOBES Based Multilevel Threshold Selection
Fitness Function for Multilevel Thresholding
3.2. Morphology-Based Post-Processing Procedure
4. Dataset Description
5. Results and Discussions
5.1. Comparison of Proposed DOBES and BES Algorithm for Benchmark Images
5.2. Analysis of Proposed Hybrid Segmentation Approach for the Brain Images
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Meir, E.G.; Hadjipanayis, C.G.; Norden, A.D.; Shu, H.K.; Wen, P.Y.; Olson, J.J. Exciting New Advances in Neuro-Oncology: The Avenue to a Cure for Malignant Glioma. CA Cancer J. Clin. 2010, 60, 166–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakas, S.; Akbari, H.; Sotiras, A.; Bilello, M.; Rozycki, M.; Kirby, J.S.; Freymann, J.B.; Farahani, K.; Davatzikos, C. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 2017, 4, 170117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, R.; Knecht, U.; Loosli, T.; Bauer, S.; Slotboom, J.; Wiest, R.; Reyes, M. Clinical evaluation of a fully-automatic segmentation method for longitudinal brain tumor volumetry. Sci. Rep. 2016, 6, 23376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usman, M.; Latif, S.; Asim, M.; Lee, B.D.; Qadir, J. Retrospective Motion Correction in Multishot MRI using Generative Adversarial Network. Sci. Rep. 2020, 10, 4786. [Google Scholar] [CrossRef] [Green Version]
- Moltz, J.H.; Bornemann, L.; Kuhnigk, J.M.; Dicken, V.; Peitgen, E.; Meier, S.; Bolte, H.; Fabel, M.; Bauknecht, H.C.; Hittinger, M.; et al. Advanced Segmentation Techniques for Lung Nodules, Liver Metastases, and Enlarged Lymph Nodes in CT Scans. IEEE J. Sel. Top. Signal Process. 2009, 3, 122–134. [Google Scholar] [CrossRef]
- Gordillo, N.; Montseny, E.; Sobrevilla, P. State of the art survey on MRI brain tumor segmentation. Magn. Reson. Imaging 2013, 31, 1426–1438. [Google Scholar] [CrossRef]
- Vaishnavee, K.; Amshakala, K. An automated MRI brain image segmentation and tumor detection using SOM-clustering and Proximal Support Vector Machine classifier. In Proceedings of the 2015 IEEE International Conference on Engineering and Technology (ICETECH), Coimbatore, India, 20 March 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Kamnitsas, K.; Ledig, C.; Newcombe, V.F.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 2017, 36, 61–78. [Google Scholar] [CrossRef]
- Soltanian-Zadeh, H.; Peck, D.J.; Windham, J.P.; Mikkelsen, T. Brain tumor segmentation and characterization by pattern analysis of multispectral NMR images. NMR Biomed. 1998, 11, 201–208. [Google Scholar] [CrossRef]
- Joseph, R.P.; Singh, C.S.; Manikandan, M. Brain Tumor Mri Image Segmentation and Detection in Image Processing. Int. J. Res. Eng. Technol. 2014, 3, 1–5. [Google Scholar]
- Naz, A.R.; Naseem, U.; Razzak, I.; Hameed, I.A. Deep AutoEncoder-Decoder Framework for Semantic Segmentation of Brain Deep AutoEncoder-Decoder Framework for Semantic Segmentation of Brain Tumor. Aust. J. Intell. Inf. Process. Syst. 2019, 15, 54–60. [Google Scholar]
- Toufiq, D.M.; Sagheer, A.M.; Veisi, H. Brain Tumor Segmentation from Magnetic Resonance Image using Optimized Thresholded Difference Algorithm and Rough Set. TEM J. 2022, 11, 631–638. [Google Scholar] [CrossRef]
- Tripathi, S.; Verma, A.; Sharma, N. Automatic segmentation of brain tumour in MR images using an enhanced deep learning approach. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2021, 9, 121–130. [Google Scholar] [CrossRef]
- Bodapati, J.D.; Shaik, N.S.; Naralasetti, V.; Mundukur, N.B. Joint training of two-channel deep neural network for brain tumor classification. Signal Image Video Process. 2021, 15, 753–760. [Google Scholar] [CrossRef]
- Maqsood, S.; Damaševičius, R.; Maskeliūnas, R. Multi-Modal Brain Tumor Detection Using Deep Neural Network and Multiclass SVM. Medicina 2022, 58, 1090. [Google Scholar] [CrossRef] [PubMed]
- Sampath Dakshina Murthy, A.; Karthikeyan, T.; Vinoth Kanna, R. Gait-based person fall prediction using deep learning approach. Soft Comput. 2022, 26, 12933–12941. [Google Scholar] [CrossRef]
- Aja-Fernández, S.; Curiale, A.H.; Vegas-Sánchez-Ferrero, G. A local fuzzy thresholding methodology for multiregion image segmentation. Knowl.-Based Syst. 2015, 83, 1–12. [Google Scholar] [CrossRef]
- Patil, R.; Jondhale, K. Edge based technique to estimate number of clusters in k-means color image segmentation. In Proceedings of the 2010 3rd International Conference on Computer Science and Information Technology, Chengdu, China, 9–11 July 2010; Volume 2, pp. 117–121. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Kapur, J.N.; Sahoo, P.K.; Wong, A.K. A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 1985, 29, 273–285. [Google Scholar] [CrossRef]
- Dakshina Murthy, A.S.; Pavani, T.; Lakshmi, K. An Application of Firefly Hybrid Extended Kalman Filter Tracking a Reentry Object. Indian J. Sci. Technol. 2016, 9, 1–6. [Google Scholar] [CrossRef]
- Singh, D.; Singh, B.; Kaur, M. Simultaneous feature weighting and parameter determination of Neural Networks using Ant Lion Optimization for the classification of breast cancer. Biocybern. Biomed. Eng. 2020, 40, 337–351. [Google Scholar] [CrossRef]
- Mostafa, R.R.; El-Attar, N.E.; Sabbeh, S.F.; Vidyarthi, A.; Hashim, F.A. ST-AL: A hybridized search based metaheuristic computational algorithm towards optimization of high dimensional industrial datasets. Soft Comput. 2022, 1–29. [Google Scholar] [CrossRef]
- Minocha, S.; Singh, B. A novel phishing detection system using binary modified equilibrium optimizer for feature selection. Comput. Electr. Eng. 2022, 98, 107689. [Google Scholar] [CrossRef]
- Adnan, R.M.; Dai, H.L.; Mostafa, R.R.; Parmar, K.S.; Heddam, S.; Kisi, O. Modeling Multistep Ahead Dissolved Oxygen Concentration Using Improved Support Vector Machines by a Hybrid Metaheuristic Algorithm. Sustainability 2022, 14, 3470. [Google Scholar] [CrossRef]
- Elaziz, M.A.; Abualigah, L.; Ewees, A.A.; Al-qaness, M.A.; Mostafa, R.R.; Yousri, D.; Ibrahim, R.A. Triangular mutation-based manta-ray foraging optimization and orthogonal learning for global optimization and engineering problems. Appl. Intell. 2022, 1–30. [Google Scholar] [CrossRef]
- Hashim, F.A.; Mostafa, R.R.; Hussien, A.G.; Mirjalili, S.; Sallam, K.M. Fick’s Law Algorithm: A physical law-based algorithm for numerical optimization. Knowl.-Based Syst. 2023, 260, 110146. [Google Scholar] [CrossRef]
- Oliva, D.; Cuevas, E.; Pajares, G.; Zaldivar, D.; Perez-Cisneros, M. Multilevel thresholding segmentation based on harmony search optimization. J. Appl. Math. 2013, 2013, 575414. [Google Scholar] [CrossRef] [Green Version]
- Oliva, D.; Cuevas, E.; Pajares, G.; Zaldivar, D.; Osuna, V. A multilevel thresholding algorithm using electromagnetism optimization. Neurocomputing 2014, 139, 357–381. [Google Scholar] [CrossRef] [Green Version]
- Kandhway, P.; Bhandari, A.K. Spatial context cross entropy function based multilevel image segmentation using multi-verse optimizer. Multimed. Tools Appl. 2019, 78, 22613–22641. [Google Scholar] [CrossRef]
- Upadhyay, P.; Chhabra, J.K. Kapur’s entropy based optimal multilevel image segmentation using crow search algorithm. Appl. Soft Comput. 2020, 97, 105522. [Google Scholar] [CrossRef]
- Rather, S.A.; Bala, P.S. Constriction coefficient based particle swarm optimization and gravitational search algorithm for multilevel image thresholding. Expert Syst. 2021, 38, e12717. [Google Scholar] [CrossRef]
- Baby Resma, K.P.; Nair, M.S. Multilevel thresholding for image segmentation using Krill Herd Optimization algorithm. J. King Saud Univ. Comput. Inf. Sci. 2021, 33, 528–541. [Google Scholar] [CrossRef]
- Houssein, E.H.; Helmy, B.E.d.; Oliva, D.; Elngar, A.A.; Shaban, H. A novel black widow optimization algorithm for multilevel thresholding image segmentation. Expert Syst. Appl. 2021, 167, 114159. [Google Scholar] [CrossRef]
- Alsattar, H.A.; Zaidan, A.A.; Zaidan, B.B. Novel meta-heuristic bald eagle search optimisation algorithm. Artif. Intell. Rev. 2020, 53, 2237–2264. [Google Scholar] [CrossRef]
- Ben Ishak, A. A two-dimensional multilevel thresholding method for image segmentation. Appl. Soft Comput. 2017, 52, 306–322. [Google Scholar] [CrossRef]
- Gao, H.; Kwong, S.; Yang, J.; Cao, J. Particle swarm optimization based on intermediate disturbance strategy algorithm and its application in multi-threshold image segmentation. Inf. Sci. 2013, 250, 82–112. [Google Scholar] [CrossRef]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [Google Scholar] [CrossRef]
- van den Boomgaard, R.; van Balen, R. Methods for fast morphological image transforms using bitmapped binary images. CVGIP: Graph. Model. Image Process. 1992, 54, 252–258. [Google Scholar] [CrossRef]
- Gonzalez, R.C. Digital Image Processing; Pearson Education India: Bengaluru, India, 2009. [Google Scholar]
- Soille, P. Morphological Image Analysis; Springer: Berlin/Heidelberg, Germnay, 2004. [Google Scholar] [CrossRef]
Image Name | Algo Name | Optimal Level | Best Fitness Value | Mean Fitness | Standard Deviation | MSE | PSNR | SSIM |
---|---|---|---|---|---|---|---|---|
Baboon | DOBES | [1, 38, 76, 79, 115, 143, 160, 255] | 44.5825 | 41.2860 | 1.8289 | × | 22.2251 | 0.9028 |
BES | [1, 61, 69, 115, 127, 176, 185, 240] | 43.2949 | 41.0181 | 2.4316 | × | 17.9447 | 0.7972 | |
Boat | DOBES | [1, 50, 91, 107, 128, 176, 181, 255] | 45.0538 | 43.4139 | 1.4986 | × | 20.4532 | 0.7886 |
BES | [1, 1, 78, 107, 109, 142, 229, 253] | 44.5601 | 42.7437 | 1.6598 | × | 19.6419 | 0.7593 | |
Cameraman | DOBES | [18, 59, 100, 128, 146, 193, 197, 254] | 44.6614 | 42.7581 | 0.9297 | × | 22.0586 | 0.7587 |
BES | [19, 45, 94, 97, 146, 147, 197, 254] | 43.9419 | 41.5759 | 2.0517 | × | 20.6824 | 0.7063 | |
Couple | DOBES | [2, 37, 67, 76, 119, 124, 170, 255] | 43.9526 | 41.4636 | 1.1683 | × | 23.5099 | 0.5521 |
BES | [2, 3, 67, 77, 77, 119, 180, 189] | 41.8404 | 40.1056 | 1.7395 | × | 19.3993 | 0.4066 | |
Male | DOBES | [2, 37, 67, 76, 119, 124, 170, 255] | 45.6260 | 43.7534 | 1.4264 | × | 20.2439 | 0.7806 |
BES | [1, 56, 66, 108, 123, 172, 174, 250] | 43.6013 | 43.4959 | 1.6096 | × | 20.6373 | 0.7598 |
Tumor Name | Image Number | Algo Name | Optimal Level | Best Fitness Value | Mean Fitness | Standard Deviation | MSE | PSNR | SSIM (Input Image vs. Threshold Image) | SSIM (Segmented Image vs. Ground Truth) |
---|---|---|---|---|---|---|---|---|---|---|
Meningioma | 1 | Proposed hybrid segmentation approach | [7,32,97,98,150,159,208,209,255] | 47.9206 | 45.4620 | 1.7862 | × | 21.1280 | 0.6750 | 0.9998 |
BES | [7,8,97,99,120,172,172,244,245] | 47.4714 | 44.8024 | 2.3320 | 1.07 × | 17.8513 | 0.5552 | 0.9998 | ||
CPSOGSA [32] | [8,30,98,129,135,172,202,212,246] | 44.5615 | 42.1077 | 1.7931 | 5.12 × | 21.0401 | 0.6665 | 0.9998 | ||
EMO [29] | [9,33,57,83,111,142,172,202,225] | 44.3197 | 44.2593 | 0.0754 | 8.67 × | 28.7517 | 0.7650 | 0.9931 | ||
HS [28] | [8,14,59,89,103,135,158,199,217] | 42.1911 | 41.8324 | 0.2809 | 1.51 × | 26.3402 | 0.7319 | 0.9927 | ||
177 | Proposed hybrid segmentation approach | [7,7,110,110,110,188,188,253,255] | 46.0736 | 44.4955 | 1.5804 | 1.35 × | 16.8425 | 0.4624 | 0.9999 | |
BES | [7,9,11,110,112,112,182,222,229] | 45.3021 | 43.2352 | 2.5435 | 1.20 × | 17.3250 | 0.4791 | 0.9975 | ||
CPSOGSA [32] | [38,58,69,107,108,129,135,168,201] | 43.5696 | 41.1617 | 1.4121 | 1.09 × | 27.7433 | 0.6206 | 0.9973 | ||
EMO [29] | [10,38,63,87,110,138,166,192,220] | 44.1964 | 44.1614 | 0.0422 | 6.47 × | 30.0209 | 0.6547 | 0.9974 | ||
HS [28] | [14,31,87,105,114,143,170,190,227] | 42.0029 | 41.4002 | 0.5052 | 2.38 × | 24.3740 | 0.5914 | 0.9967 | ||
660 | Proposed hybrid segmentation approach | [7,8,83,83,130,144,145,255,255] | 48.8510 | 47.7180 | 1.5629 | 1.33 × | 16.8945 | 0.4046 | 0.9997 | |
BES | [8,8,83,114,132,144,178,245,252] | 48.8194 | 46.1231 | 1.7590 | 1.28 × | 17.0730 | 0.3872 | 0.0.9888 | ||
CPSOGSA [32] | [8,8,110,114,117,170,194,206,225] | 47.9582 | 42.7699 | 2.7136 | 1.92 × | 15.2996 | 0.2862 | 0.9951 | ||
EMO [29] | [16,52,83,110,133,156,179,202,226] | 44.7735 | 44.6824 | 0.0878 | 1.94 × | 25.2540 | 0.6314 | 0.9913 | ||
HS [28] | [18,39,49,74,87,145,157,188,204] | 41.9134 | 41.9134 | 0.0000 | 1.50 × | 26.3837 | 0.6498 | 0.9916 | ||
Giloma | 719 | Proposed hybrid segmentation approach | [8,88,89,132,142,173,198,213,253] | 48.3412 | 45.8864 | 1.8913 | 1.00 × | 18.1200 | 0.5247 | 0.9999 |
BES | [8,8,90,94,115,161,167,252,254] | 47.8164 | 44.8459 | 2.3497 | 1.04 × | 17.9696 | 0.5205 | 0.9999 | ||
CPSOGSA [32] | [8,36,60,104,108,118,148,165,218] | 44.5352 | 40.5329 | 2.5836 | 1.29 × | 27.0192 | 0.7309 | 0.9959 | ||
EMO [29] | [10,38,63,89,115,142,168,195,222] | 44.5907 | 44.5582 | 0.0728 | 9.33 × | 28.4307 | 0.7228 | 0.9958 | ||
HS [28] | [26,41,53,87,100,149,186,208,229] | 42.5611 | 42.5611 | 0.3693 | 1.35 × | 26.8168 | 0.7018 | 0.9961 | ||
799 | Proposed hybrid segmentation approach | [10,11,94,95,140,156,159,255,255] | 48.2201 | 46.6109 | 2.7537 | 1.33 × | 16.8896 | 0.5149 | 0.9999 | |
BES | [4,11,94,94,124,156,157,227,255] | 48.1490 | 44.7736 | 2.2807 | 1.31 × | 16.9455 | 0.5821 | 0.9969 | ||
CPSOGSA [32] | [11,41,92,109,121,141,162,171,225] | 43.4365 | 40.8422 | 1.9584 | 3.70 × | 22.4465 | 0.6895 | 0.9999 | ||
EMO [29] | [17,43,67,92,117,142,166,191,217] | 44.0809 | 44.0121 | 0.1339 | 1.15 × | 27.5277 | 0.7183 | 0.9989 | ||
HS [28] | [11,26,60,84,89,122,150,180,216] | 41.8422 | 41.8422 | 0.0000 | 1.40 × | 26.6661 | 0.7505 | 0.9986 | ||
895 | Proposed hybrid segmentation approach | [6,6,81,108,111,141,193,255,255] | 47.9738 | 46.3416 | 1.9144 | 1.42 × | 16.6180 | 0.3920 | 0.9999 | |
BES | [6,7,80,111,112,130,193,206,237] | 47.8793 | 45.2731 | 2.2741 | 1.35 × | 16.8191 | 0.4138 | 0.9977 | ||
CPSOGSA [32] | [6,6,66,109,115,117,154,170,236] | 46.3880 | 42.3097 | 2.5580 | 7.08 × | 19.6282 | 0.5084 | 0.9990 | ||
EMO [29] | [27,53,79,103,125,149,172,193,213] | 44.7794 | 44.6589 | 0.0832 | 1.71 × | 25.8036 | 0.6951 | 0.9985 | ||
HS [28] | [17,35,63,91,138,148,164,182,219] | 42.9729 | 42.5060 | 0.0000 | 1.60 × | 26.1007 | 0.7308 | 0.9986 | ||
Pituitary | 59 | Proposed hybrid segmentation approach | [8,8,91,92,145,168,168,255,255] | 49.2296 | 46.8252 | 2.6490 | 1.82 × | 15.5255 | 0.3652 | 0.9997 |
BES | [8,90,91,92,157,157,168,238,245] | 48.1580 | 45.2139 | 2.0382 | 1.78 × | 15.6157 | 0.3687 | 0.9981 | ||
CPSOGSA [32] | [9,88,91,122,137,154,159,212,248] | 45.7014 | 43.1113 | 2.3225 | 1.62 × | 16.0319 | 0.3885 | 0.9982 | ||
EMO [29] | [14,40,65,91,119,146,173,200,226] | 45.2712 | 45.1999 | 0.1596 | 1.54 × | 26.2647 | 0.7128 | 0.9982 | ||
HS [28] | [26,48,58,70,94,110,124,183,227] | 41.9849 | 41.9453 | 0.1430 | 1.26 × | 27.1156 | 0.7223 | 0.9983 | ||
1391 | Proposed hybrid segmentation approach | [7,7,79,80,109,131,132,248,255] | 45.5724 | 44.3092 | 1.1470 | 1.02 × | 18.0536 | 0.5370 | 1.0000 | |
BES | [7,15,79,84,108,126,132,192,214] | 45.3682 | 43.9759 | 1.4224 | 7.36 × | 19.4634 | 0.6091 | 0.9986 | ||
CPSOGSA [32] | [7,20,78,88,116,132,139,146,200] | 43.5107 | 40.8545 | 1.6167 | 5.72 × | 20.5536 | 0.6519 | 0.9999 | ||
EMO [29] | [10,33,55,78,101,124,147,170,193] | 42.0512 | 41.6049 | 0.2809 | 8.78 × | 28.6962 | 0.7966 | 0.9980 | ||
HS [28] | [11,43,76,97,137,146,161,167,183] | 39.2840 | 38.4971 | 0.9387 | 1.84 × | 25.4932 | 0.7513 | 0.9982 | ||
1405 | Proposed hybrid segmentation approach | [8,8,97,97,106,182,188,255,255] | 46.2615 | 44.8582 | 1.1550 | 1.48 × | 16.4229 | 0.5128 | 0.9998 | |
BES | [8,8,97,106,121,189,198,254,255] | 46.0916 | 42.9182 | 2.3297 | 1.44 × | 16.5362 | 0.5179 | 0.9998 | ||
CPSOGSA [32] | [9,38,90,93,93,129,159,163,184] | 44.3048 | 41.7757 | 1.9603 | 4.08 × | 22.0293 | 0.7199 | 0.9995 | ||
EMO [29] | [11,38,64,91,115,140,165,188,212] | 43.6460 | 43.5694 | 0.1596 | 1.14 × | 27.5647 | 0.8004 | 0.9987 | ||
HS [28] | [25,67,83,91,131,155,173,179,213] | 40.0705 | 40.0705 | 0.0000 | 1.82 × | 25.5385 | 0.7476 | 0.9985 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.R.; Alshathri, S.; Singh, B.; Kaur, M.; Mostafa, R.R.; El-Shafai, W. Hybrid Multilevel Thresholding Image Segmentation Approach for Brain MRI. Diagnostics 2023, 13, 925. https://doi.org/10.3390/diagnostics13050925
Sharma SR, Alshathri S, Singh B, Kaur M, Mostafa RR, El-Shafai W. Hybrid Multilevel Thresholding Image Segmentation Approach for Brain MRI. Diagnostics. 2023; 13(5):925. https://doi.org/10.3390/diagnostics13050925
Chicago/Turabian StyleSharma, Suvita Rani, Samah Alshathri, Birmohan Singh, Manpreet Kaur, Reham R. Mostafa, and Walid El-Shafai. 2023. "Hybrid Multilevel Thresholding Image Segmentation Approach for Brain MRI" Diagnostics 13, no. 5: 925. https://doi.org/10.3390/diagnostics13050925
APA StyleSharma, S. R., Alshathri, S., Singh, B., Kaur, M., Mostafa, R. R., & El-Shafai, W. (2023). Hybrid Multilevel Thresholding Image Segmentation Approach for Brain MRI. Diagnostics, 13(5), 925. https://doi.org/10.3390/diagnostics13050925