An Overview of In Vitro Assays of 64Cu-, 68Ga-, 125I-, and 99mTc-Labelled Radiopharmaceuticals Using Radiometric Counters in the Era of Radiotheranostics
Abstract
:1. Introduction
2. Classification of Radionuclides and New Applications in Medical Research
3. Radiopharmaceutical, Radiometric Counters, and Preclinical Imaging Techniques
3.1. β-Counters Overview
3.2. γ-Counters Overview
4. Validation of Radiopharmaceuticals In Vitro by γ-Counter
4.1. Detection of 64Cu Compounds in Cells
4.2. Detection of 68Ga Compounds in Cells
4.3. Detection of 125I Compounds in Cells
4.4. Detection of 99mTc Compounds on Cells
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SPECT | Single-photon emission computed tomography |
TRT | Targeted radionuclide therapy |
LET | Linear energy transfer |
DNA | Deoxyribonucleic acid |
BFC | Bifunctional chelator |
PET | Positron emission tomography |
CT | Computed tomography |
hCTR1 | Human copper transporter receptor 1 |
ATOX1 | Antioxidant 1 copper chaperone |
BMS2P2 | 2-nitroimidazole derivative |
DOTA | S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-tetraacetic acid |
PCTA | 3,6,9,15-tetraazabicyclo [9.3.1] pentadeca-1(15),11,13-triene-4-S-(4 isothiocyanatobenzyl)-3,6,9-triacetic acid |
PSMA | Prostate-specific membrane antigen |
NOTA | 1,4,7-triazacyclononane-N,N′,N″-triacetic acid |
NET | Neuroendocrine tumors |
EDTMP | Ethylenediamine tetra(methylene phosphonic acid) |
GIST | Gastrointestinal stromal tumor |
TKI | Tyrosine kinase inhibitor drugs |
PDGFR | Platelet-derived growth factor receptor |
NT1 | Neurotensin 1 |
SST2A | Somatostatin receptor |
VPAC2 | Vasoactive intestinal peptide receptor type 2 |
GRP | Gastrin-releasing peptide receptor |
CCK2 | Cholecystokinin receptors |
AMBA | 4-(Aminomethyl)benzoic acid |
TREM-2 | Marker triggering receptor expressed on myeloid cells 2 |
COG1410 | Apolipoprotein E (apoE) mimetic small peptide |
TAM | Tumor-associated macrophages |
BON-1 | Pancreatic neuroendocrine tumor cells |
QGP1 | Human pancreatic endocrine cell line |
NCI-H727 | Bronchial carcinoid cell |
GOT1 | Human small intestine NET cell line |
GUL | Glu-urea-lys |
CXCR4 | C-X-C chemokine receptor type 4 |
IGF2R | Insulin-like growth factor 2 receptor |
NSCLC | Non-small cell lung cancer |
MIBI | Hexakis-2-methoxyisobutylisonitrile |
[99mTc]Tat-BN | [99mTc]N2S2-Tat(49–57)-Lys3-bombesin |
References
- Pouget, J.-P.; Konijnenberg, M.; Eberlein, U.; Glatting, G.; Gabina, P.M.; Herrmann, K.; Holm, S.; Strigari, L.; van Leeuwen, F.W.B.; Lassmann, M. An EANM position paper on advancing radiobiology for shaping the future of nuclear medicine. Eur. J. Nucl. Med. 2022, 50, 242–246. [Google Scholar] [CrossRef]
- Beaton, L.; Bandula, S.; Gaze, M.N.; Sharma, R.A. How rapid advances in imaging are defining the future of precision radiation oncology. Br. J. Cancer 2019, 120, 779–790. [Google Scholar] [CrossRef] [Green Version]
- Duan, H.; Iagaru, A.; Aparici, C.M. Radiotheranostics-precision medicine in nuclear medicine and molecular imaging. Nanotheranostics 2022, 6, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Kraeber-Bodéré, F.; Barbet, J. Challenges in Nuclear Medicine: Innovative Theranostic Tools for Personalized Medicine. Front. Med. 2014, 1, 16. [Google Scholar] [CrossRef] [Green Version]
- Yordanova, A.; Eppard, E.; Kürpig, S.; Bundschuh, R.A.; Schönberger, S.; Gonzalez-Carmona, M.; Feldmann, G.; Ahmadzadehfar, H.; Essler, M. Theranostics in nuclear medicine practice. OncoTargets Ther. 2017, 10, 4821–4828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef]
- Li, T.; Ao, E.C.I.; Lambert, B.; Brans, B.; Vandenberghe, S.; Mok, G.S.P. Quantitative imaging for targeted radionuclide therapy dosimetry-technical review. Theranostics 2017, 7, 4551–4565. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Lee, M.S.; Kim, J.H.; Lee, D.S.; Lee, J.S. Preclinical Voxel-Based Dosimetry in Theranostics: A Review. Nucl. Med. Mol. Imaging 2020, 54, 86–97. [Google Scholar] [CrossRef]
- Morris, Z.S.; Wang, A.Z.; Knox, S.J. The radiobiology of radiopharmaceuticals. Semin. Radiat. Oncol. 2020, 31, 20–27. [Google Scholar] [CrossRef]
- Stokke, C.; Kvassheim, M.; Blakkisrud, J. Radionuclides for targeted therapy: Physical properties. Molecules 2022, 27, 5429. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.B.; Bender, D. Advancement in Production of Radiotracers. Semin. Nucl. Med. 2022, 52, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Alongi, P.; Stefano, A.; Comelli, A.; Spataro, A.; Formica, G.; Laudicella, R.; Lanzafame, H.; Panasiti, F.; Longo, C.; Midiri, F.; et al. Artificial intelligence applications on restaging [18F]FDG PET/CT in metastatic colorectal cancer: A preliminary report of morpho-functional radiomics classification for prediction of disease outcome. Appl. Sci. 2022, 12, 2941. [Google Scholar] [CrossRef]
- Bodalal, Z.; Trebeschi, S.; Nguyen-Kim, T.D.L.; Schats, W.; Beets-Tan, R. Radiogenomics: Bridging imaging and genomics. Abdom. Radiol. 2019, 44, 1960–1984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qaim, S.M.; Spahn, I. Development of novel radionuclides for medical applications. J. Label. Compd. Radiopharm. 2017, 61, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Enger, S.A.; Hartman, T.; Carlsson, J.; Lundqvist, H. Cross-fire doses from β-emitting radionuclides in targeted radiotherapy. A theoretical study based on experimentally measured tumor characteristics. Phys. Med. Biol. 2008, 53, 1909–1920. [Google Scholar] [CrossRef]
- Caprioli, J.; Mock, D.; Bitrian, E.; Afifi, A.; Yu, F.; Nouri-Mahdavi, K.; Coleman, A. Author response: On alternative methods for measuring visual field decay: Tobit linear regression. Investig. Opthalmol. Vis. Sci. 2012, 53, 118. [Google Scholar] [CrossRef] [Green Version]
- Benfante, V.; Stefano, A.; Comelli, A.; Giaccone, P.; Cammarata, F.P.; Richiusa, S.; Scopelliti, F.; Pometti, M.; Ficarra, M.; Cosentino, S.; et al. A new preclinical decision support system based on pet radiomics: A preliminary study on the evaluation of an innovative 64Cu-labeled chelator in mouse models. J. Imaging 2022, 8, 92. [Google Scholar] [CrossRef]
- Sgouros, G. Radiopharmaceutical therapy. Health Phys. 2019, 116, 175–178. [Google Scholar] [CrossRef]
- Herrero Álvarez, N.; Bauer, D.; Hernández-Gil, J.; Lewis, J.S. Recent advances in radiometals for combined imaging and therapy in cancer. ChemMedChem 2021, 16, 2909–2941. [Google Scholar] [CrossRef]
- Man, F.; Gawne, P.J.; de Rosales, R.T.M. Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine. Adv. Drug Deliv. Rev. 2019, 143, 134–160. [Google Scholar] [CrossRef]
- Ruth, T.J. The uses of radiotracers in the life sciences. Rep. Prog. Phys. 2008, 72, 016701. [Google Scholar] [CrossRef]
- Ugur, Ö.; Kothari, P.J.; Finn, R.D.; Zanzonico, P.; Ruan, S.; Guenther, I.; Maecke, H.R.; Larson, S.M. Ga-66 labeled somatostatin analogue DOTA-DPhe 1 -Tyr 3 -octreotide as a potential agent for positron emission tomography imaging and receptor mediated internal radiotherapy of somatostatin receptor positive tumors. Nucl. Med. Biol. 2002, 29, 147–157. [Google Scholar] [CrossRef]
- Cherry, S.R. Multimodality imaging: Beyond PET/CT and SPECT/CT. Semin. Nucl. Med. 2009, 39, 348–353. [Google Scholar] [CrossRef] [Green Version]
- Bunka, M.; Müller, C.; Vermeulen, C.; Haller, S.; Türler, A.; Schibli, R.; van der Meulen, N.P. Imaging quality of 44Sc in comparison with five other pet radionuclides using derenzo phantoms and preclinical PET. Appl. Radiat. Isot. 2016, 110, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Gillings, N.; Todde, S.; Behe, M.; Decristoforo, C.; Elsinga, P.; Ferrari, V.; Hjelstuen, O.; Peitl, P.K.; Koziorowski, J.; Laverman, P.; et al. EANM guideline on the validation of analytical methods for radiopharmaceuticals. EJNMMI Radiopharm. Chem. 2020, 5, 7. [Google Scholar] [CrossRef]
- Umbricht, C.A.; Benešová, M.; Schmid, R.M.; Türler, A.; Schibli, R.; van der Meulen, N.P.; Müller, C. 44Sc-PSMA-617 for Radiotheragnostics in Tandem with 177Lu-PSMA-617—Preclinical investigations in comparison with 68Ga-PSMA-11 and 68Ga-PSMA-617. EJNMMI Res. 2017, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Krausz, Y.; Keidar, Z.; Kogan, I.; Even-Sapir, E.; Bar-Shalom, R.; Engel, A.; Rubinstein, R.; Sachs, J.; Bocher, M.; Agranovicz, S.; et al. SPECT/CT Hybrid Imaging with 111 In-Pentetreotide in Assessment of Neuroendocrine Tumours. Clin. Endocrinol. 2003, 59, 565–573. [Google Scholar] [CrossRef]
- Iravani, A.; Violet, J.; Azad, A.; Hofman, M.S. Lutetium-177 prostate-specific membrane antigen (PSMA) theranostics: Practical nuances and intricacies. Prostate Cancer Prostatic Dis. 2020, 23, 38–52. [Google Scholar] [CrossRef]
- Khozeimeh Sarbisheh, E.; Price, E.W. The Radiopharmaceutical Chemistry of the Radioisotopes of Lutetium and Yttrium. In Radiopharmaceutical Chemistry; Springer International Publishing: Cham, Switzerland, 2019; pp. 359–370. [Google Scholar]
- Pandit-Taskar, N. Targeted radioimmunotherapy and theranostics with alpha emitters. J. Med. Imaging Radiat. Sci. 2019, 50, S41–S44. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.H. An introduction to the clinical practice of theranostics in oncology. Br. J. Radiol. 2018, 91, 20180440. [Google Scholar] [CrossRef]
- Won, J.; Kim, M.; Yi, Y.-W.; Kim, Y.H.; Jung, N.; Kim, T.K. A magnetic nanoprobe technology for detecting molecular interactions in live cells. Science 2005, 309, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Müller, C.; Domnanich, K.A.; Umbricht, C.A.; van der Meulen, N.P. Scandium and terbium radionuclides for radiotheranostics: Current state of development towards clinical application. Br. J. Radiol. 2018, 91, 20180074. [Google Scholar] [CrossRef]
- Pellico, J.; Gawne, P.J.; de Rosales, R.T.M. Radiolabelling of nanomaterials for medical imaging and therapy. Chem. Soc. Rev. 2021, 50, 3355–3423. [Google Scholar] [CrossRef]
- Aghevlian, S.; Boyle, A.J.; Reilly, R.M. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α-particles or auger electrons. Adv. Drug Deliv. Rev. 2017, 109, 102–118. [Google Scholar] [CrossRef]
- van Kalmthout, L.W.M.; Lam, M.G.E.H.; de Keizer, B.; Krijger, G.C.; Ververs, T.F.T.; de Roos, R.; Braat, A.J.A.T. Impact of External cooling with icepacks on 68Ga-PSMA uptake in salivary glands. EJNMMI Res. 2018, 8, 56. [Google Scholar] [CrossRef]
- Qaim, S.M. Theranostic radionuclides: Recent advances in production methodologies. J. Radioanal. Nucl. Chem. 2019, 322, 1257–1266. [Google Scholar] [CrossRef]
- Jauregui-Osoro, M.; De Robertis, S.; Halsted, P.; Gould, S.-M.; Yu, Z.; Paul, R.L.; Marsden, P.K.; Gee, A.D.; Fenwick, A.; Blower, P.J. Production of copper-64 using a hospital cyclotron: Targetry, purification and quality analysis. Nucl. Med. Commun. 2021, 42, 1024–1038. [Google Scholar] [CrossRef]
- De Matteis, G.; Mansi, L. Radiopharmaceuticals for therapy by F.F. (Russ) knapp and ashutosh dash. Eur. J. Nucl. Med. 2017, 44, 913. [Google Scholar] [CrossRef]
- Townsend, D.W.; Beyer, T. A combined PET/CT scanner: The path to true image fusion. Br. J. Radiol. 2002, 75, S24–S30. [Google Scholar] [CrossRef]
- Fowler, J.S.; Ding, Y.-S.; Volkow, N.D. Radiotracers for positron emission tomography imaging. Semin. Nucl. Med. 2003, 33, 14–27. [Google Scholar] [CrossRef]
- de Jong, M.; Maina, T. Of mice and humans: Are they the same?—Implications in cancer translational research: Table 1. J. Nucl. Med. 2010, 51, 501–504. [Google Scholar] [CrossRef] [Green Version]
- de Jong, M.; Breeman, W.A.P.; Bernard, B.F.; Rolleman, E.J.; Hoflande, L.J.; Visser, T.J.; Setyono-Han, B.; Bakker, W.H.; van der Pluijm, M.E.; Krenning, E.P. Evaluation in vitro and in rats of161Tb-DTPA-octreotide, a somatostatin analogue with potential for intraoperative scanning and radiotherapy. Eur. J. Nucl. Med. 1995, 22, 608–616. [Google Scholar] [CrossRef] [Green Version]
- Krewski, D.; Acosta, D.; Andersen, M.; Anderson, H.; Bailar, J.C.; Boekelheide, K.; Brent, R.; Charnley, G.; Cheung, V.G.; Green, S.; et al. Toxicity testing in the 21st century: A vision and a strategy. J. Toxicol. Environ. Health Part B 2010, 13, 51–138. [Google Scholar] [CrossRef]
- Bailly, C.; Gouard, S.; Guérard, F.; Chalopin, B.; Carlier, T.; Faivre-Chauvet, A.; Remaud-Le Saëc, P.; Bourgeois, M.; Chouin, N.; Rbah-Vidal, L.; et al. What is the best radionuclide for immuno-pet of multiple myeloma? A comparison study between 89Zr- and 64Cu-Labeled Anti-CD138 in a preclinical syngeneic model. Int. J. Mol. Sci. 2019, 20, 2564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruggiero, A.; Holland, J.P.; Lewis, J.S.; Grimm, J. Cerenkov luminescence imaging of medical isotopes. J. Nucl. Med. 2010, 51, 1123–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giaccone, P.; Benfante, V.; Stefano, A.; Cammarata, F.P.; Russo, G.; Comelli, A. PET Images Atlas-Based Segmentation Performed in Native and in Template Space: A Radiomics Repeatability Study in Mouse Models; Springer: Berlin/Heidelberg, Germany, 2022; pp. 351–361. [Google Scholar]
- Zips, D.; Thames, H.D.; Baumann, M. New anticancer agents: In vitro and in vivo evaluation. In Vivo 2005, 19, 1–7. [Google Scholar]
- Lubberink, M.; Herzog, H. Quantitative imaging of 124I and 86Y with PET. Eur. J. Nucl. Med. 2011, 38, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Salouti, M.; Fazli, A. Infectious Foci Imaging with Targeting Radiopharmaceuticals in Nuclear Medicine. In Medical Imaging in Clinical Practice; InTech: London, UK, 2013. [Google Scholar]
- Vermeulen, K.; Vandamme, M.; Bormans, G.; Cleeren, F. Design and challenges of radiopharmaceuticals. Semin. Nucl. Med. 2019, 49, 339–356. [Google Scholar] [CrossRef]
- Bannik, K.; Madas, B.; Jarzombek, M.; Sutter, A.; Siemeister, G.; Mumberg, D.; Zitzmann-Kolbe, S. Radiobiological effects of the alpha emitter Ra-223 on tumor cells. Sci. Rep. 2019, 9, 18489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broda, R.; Cassette, P.; Kossert, K. Radionuclide metrology using liquid scintillation counting. Metrologia 2007, 44, S36–S52. [Google Scholar] [CrossRef]
- Johansen, G.A.; Jackson, P. Front Matter. In Radioisotope Gauges for Industrial Process Measurements; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Rheinberger, H.-J. Putting Isotopes to Work: Liquid Scintillation Counters, 1950–1970. In Instrumentation Between Science, State and Industry; Springer: Cham, The Netherlands, 2001; pp. 143–174. [Google Scholar]
- L’Annunziata, M.F.; Tarancón, A.; Bagán, H.; García, J.F. Liquid Scintillation Analysis: Principles and Practice. In Handbook of Radioactivity Analysis; Elsevier: Amsterdam, The Netherlands, 2020; pp. 575–801. [Google Scholar]
- Peng, C.T. Quenching Correction in Liquid Scintillation Counting. In Advances in Tracer Methodology; Springer: New York, NY, USA, 1966; pp. 81–94. [Google Scholar]
- Jelley, J.V. Cerenkov radiation and its applications. Br. J. Appl. Phys. 1955, 6, 227–232. [Google Scholar] [CrossRef]
- Khoshakhlagh, M.; Islamian, J.; Abedi, S.; Mahmoudian, B. Development of scintillators in nuclear medicine. World J. Nucl. Med. 2015, 14, 156–159. [Google Scholar] [CrossRef]
- Wilde, C.; Ottewell, D. A practical guide to gamma-counting in radioimmunoassay. Ann. Clin. Biochem. Int. J. Lab. Med. 1980, 17, 1–9. [Google Scholar] [CrossRef]
- Vollmer, M. Physics of the Electromagnetic Spectrum. In Electromagnetic Technologies in Food Science; Wiley: Hoboken, NJ, USA, 2021; pp. 1–32. [Google Scholar]
- Crouthamel, C.E.; Freddy, A.; Richard, D. Applied Gamma-Ray Spectrometry; Elsevier: Amsterdam, The Netherlands, 2013; Volume 41. [Google Scholar]
- Kulp, W.D. Ionizing Radiation Detectors. In Nuclear Energy; Springer: New York, NY, USA, 2018; pp. 341–354. [Google Scholar]
- Ota, R. Photon counting detectors and their applications ranging from particle physics experiments to environmental radiation monitoring and medical imaging. Radiol. Phys. Technol. 2021, 14, 134–148. [Google Scholar] [CrossRef]
- Lodge, M.A.; Holt, D.P.; Kinahan, P.E.; Wong, D.F.; Wahl, R.L. Performance assessment of a NaI(Tl) gamma counter for PET applications with methods for improved quantitative accuracy and greater standardization. EJNMMI Phys. 2015, 2, 11. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, P.S. The role of coordination chemistry in the development of copper and rhenium radiopharmaceuticals. Dalton Trans. 2011, 40, 999. [Google Scholar] [CrossRef]
- Orteca, G.; Sinnes, J.-P.; Rubagotti, S.; Iori, M.; Capponi, P.C.; Piel, M.; Rösch, F.; Ferrari, E.; Asti, M. Gallium-68 and scandium-44 labelled radiotracers based on curcumin structure linked to bifunctional chelators: Synthesis and characterization of potential PET radiotracers. J. Inorg. Biochem. 2020, 204, 110954. [Google Scholar] [CrossRef]
- Dearling, J.L.J.; Lewis, J.S.; Mullen, G.E.D.; Rae, M.T.; Zweit, J.; Blower, P.J. Design of Hypoxia-targeting radiopharmaceuticals: Selective uptake of Copper-64 complexes in Hypoxic cells in vitro. Eur. J. Nucl. Med. Mol. Imaging 1998, 25, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Fujibayashi, Y.; Cutler, C.; Anderson, C.; McCarthy, D.; Jones, L.; Sharp, T.; Yonekura, Y.; Welch, M. Comparative studies of Cu-64-ATSM and C-11-acetate in an acute myocardial infarction model: Ex vivo imaging of hypoxia in rats. Nucl. Med. Biol. 1999, 26, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.S.; Laforest, R.; Buettner, T.L.; Song, S.-K.; Fujibayashi, Y.; Connett, J.M.; Welch, M.J. Copper-64-Diacetyl-Bis(N4-Methylthiosemicarbazone): An agent for radiotherapy. Proc. Natl. Acad. Sci. USA 2001, 98, 1206–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab. 2016, 23, 27–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chellan, P.; Sadler, P.J. The elements of life and medicines. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140182. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Tu, Y.; Hu, X.; Bao, A.; Chen, H.; Ma, X.; Doyle, T.; Shi, H.; Cheng, Z. Pilot Study of 64Cu(I) for PET imaging of melanoma. Sci. Rep. 2017, 7, 2574. [Google Scholar] [CrossRef] [PubMed]
- Catalogna, G.; Talarico, C.; Dattilo, V.; Gangemi, V.; Calabria, F.; D’Antona, L.; Schenone, S.; Musumeci, F.; Bianco, C.; Perrotti, N.; et al. The SGK1 kinase inhibitor SI113 sensitizes theranostic effects of the 64CuCl2 in human glioblastoma Multiforme cells. Cell. Physiol. Biochem. 2017, 43, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Righi, S.; Ugolini, M.; Bottoni, G.; Puntoni, M.; Iacozzi, M.; Paparo, F.; Cabria, M.; Ceriani, L.; Gambaro, M.; Giovanella, L.; et al. Biokinetic and dosimetric aspects of 64CuCl2 in human prostate cancer: Possible theranostic implications. EJNMMI Res. 2018, 8, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanbhag, V.C.; Gudekar, N.; Jasmer, K.; Papageorgiou, C.; Singh, K.; Petris, M.J. Copper metabolism as a unique vulnerability in cancer. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2021, 1868, 118893. [Google Scholar] [CrossRef]
- Gutfilen, B.; Souza, S.; Valentini, G. Copper-64: A real theranostic agent. Drug Des. Devel. Ther. 2018, 12, 3235–3245. [Google Scholar] [CrossRef] [Green Version]
- Karimi, Z.; Sadeghi, M.; Mataji-Kojouri, N. 64 Cu, a powerful positron emitter for immunoimaging and theranostic: Production via nat ZnO and nat ZnO-NPs. Appl. Radiat. Isot. 2018, 137, 56–61. [Google Scholar] [CrossRef]
- Schreiter, V.; Reimann, C.; Geisel, D.; Schreiter, N. Nuclear medicine imaging of prostate cancer. RöFo-Fortschr. Geb. Röntgenstrahlen Bildgeb. Verfahr. 2016, 188, 1037–1044. [Google Scholar] [CrossRef] [Green Version]
- Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature 2011, 473, 317–325. [Google Scholar] [CrossRef]
- Qaim, S.M.; Scholten, B.; Neumaier, B. New developments in the production of theranostic pairs of radionuclides. J. Radioanal. Nucl. Chem. 2018, 318, 1493–1509. [Google Scholar] [CrossRef] [Green Version]
- Saraste, A.; Nekolla, S.G.; Schwaiger, M. Cardiovascular molecular imaging: An overview. Cardiovasc. Res. 2009, 83, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Nahrendorf, M.; Keliher, E.; Panizzi, P.; Zhang, H.; Hembrador, S.; Figueiredo, J.-L.; Aikawa, E.; Kelly, K.; Libby, P.; Weissleder, R. 18F-4V for PET–CT Imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc. Imaging 2009, 2, 1213–1222. [Google Scholar] [CrossRef] [Green Version]
- Rudd, J.H.F.; Myers, K.S.; Bansilal, S.; Machac, J.; Pinto, C.A.; Tong, C.; Rafique, A.; Hargeaves, R.; Farkouh, M.; Fuster, V.; et al. Atherosclerosis inflammation imaging with 18F-FDG PET: Carotid, Iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J. Nucl. Med. 2008, 49, 871–878. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.W.; Baek, H.; Mahakian, L.M.; Kusunose, J.; Hamzah, J.; Ruoslahti, E.; Ferrara, K.W. 64Cu-Labeled LyP-1-DENDRIMER for PET-CT imaging of atherosclerotic plaque. Bioconjug. Chem. 2014, 25, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Denayer, T.; Stöhr, T.; Van Roy, M. Animal models in translational medicine: Validation and prediction. Eur. J. Mol. Clin. Med. 2014, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Bates, R.C.; Bellovin, D.I.; Brown, C.; Maynard, E.; Wu, B.; Kawakatsu, H.; Sheppard, D.; Oettgen, P.; Mercurio, A.M. Transcriptional activation of integrin Β6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J. Clin. Investig. 2005, 115, 339–347. [Google Scholar] [CrossRef]
- Janes, S.M.; Watt, F.M. New roles for integrins in squamous-cell Carcinoma. Nat. Rev. Cancer 2006, 6, 175–183. [Google Scholar] [CrossRef]
- Hazelbag, S.; Kenter, G.; Gorter, A.; Dreef, E.; Koopman, L.; Violette, S.; Weinreb, P.; Fleuren, G. Overexpression of the Avβ6 Integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J. Pathol. 2007, 212, 316–324. [Google Scholar] [CrossRef]
- Li, H.-X.; Zheng, J.-H.; Fan, H.-X.; Li, H.-P.; Gao, Z.-X.; Chen, D. Expression of Avβ6 integrin and collagen fibre in oral squamous cell carcinoma: Association with clinical outcomes and prognostic implications. J. Oral Pathol. Med. 2013, 42, 547–556. [Google Scholar] [CrossRef]
- Huynh, T.T.; Sreekumar, S.; Mpoy, C.; Rogers, B.E. A Comparison of 64Cu-Labeled Bi-Terminally PEGylated A20FMDV2 peptides targeting integrin Aνβ6. Oncotarget 2022, 13, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Bellavia, M.C.; Nyiranshuti, L.; Latoche, J.D.; Ho, K.-V.; Fecek, R.J.; Taylor, J.L.; Day, K.E.; Nigam, S.; Pun, M.; Gallazzi, F.; et al. PET Imaging of VLA-4 in a New BRAFV600E mouse model of melanoma. Mol. Imaging Biol. 2022, 24, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, B.A.; Brown, A.M.; Ahn, S.H.; Robinson, J.R.; Boros, E. Is less more? Influence of the coordination geometry of Copper(II) picolinate chelate complexes on metabolic stability. Inorg. Chem. 2020, 59, 16095–16108. [Google Scholar] [CrossRef]
- Endres, C.J. Time profile of cerebral [18f]6-Fluoro-L-DOPA metabolites in nonhuman primate: Implications for the kinetics of therapeutic L-DOPA. Front. Biosci. 2004, 9, 505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virgolini, I.; Ambrosini, V.; Bomanji, J.B.; Baum, R.P.; Fanti, S.; Gabriel, M.; Papathanasiou, N.D.; Pepe, G.; Oyen, W.; de Cristoforo, C.; et al. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 2004–2010. [Google Scholar] [CrossRef] [PubMed]
- Chechev, V.P.; Kuzmenko, N.K. Decay data evaluation project (DDEP): Updated decay data evaluations for 24 Na, 46 Sc, 51 Cr, 54 Mn, 57 Co, 59 Fe, 88 Y, 198 Au. Appl. Radiat. Isot. 2016, 109, 139–145. [Google Scholar] [CrossRef]
- Bosio, L. Crystal structures of Ga(II) and Ga(III). J. Chem. Phys. 1978, 68, 1221–1223. [Google Scholar] [CrossRef]
- Moon, S.-H.; Hong, M.K.; Kim, Y.J.; Lee, Y.-S.; Lee, D.S.; Chung, J.-K.; Jeong, J.M. Development of a Ga-68 labeled PET tracer with short linker for prostate-specific membrane antigen (PSMA) targeting. Bioorgan. Med. Chem. 2018, 26, 2501–2507. [Google Scholar] [CrossRef]
- Rösch, F. Past, present and future of 68Ge/68Ga generators. Appl. Radiat. Isot. 2012, 76, 24–30. [Google Scholar] [CrossRef]
- Harris, W.R.; Pecoraro, V.L. Thermodynamic binding constants for gallium transferrin. Biochemistry 1983, 22, 292–299. [Google Scholar] [CrossRef]
- Mirzaei, A.; Jalilian, A.R.; Akhlaghi, M.; Beiki, D. Production of 68Ga-citrate based on a SnO2 generator for short-term turpentine oil-induced inflammation imaging in rats. Curr. Radiopharm. 2016, 9, 208–214. [Google Scholar] [CrossRef]
- Wadas, T.J.; Wong, E.H.; Weisman, G.R.; Anderson, C.J. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem. Rev. 2010, 110, 2858–2902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanni, C.; Errani, C.; Boriani, L.; Fantini, L.; Ambrosini, V.; Boschi, S.; Rubello, D.; Pettinato, C.; Mercuri, M.; Gasbarrini, A.; et al. 68Ga-Citrate PET/CT for evaluating patients with infections of the bone: Preliminary results. J. Nucl. Med. 2010, 51, 1932–1936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Boddeti, D.K.; Evans, S.G.; Angelides, S. 68Ga-Citrate-PET for diagnostic imaging of infection in rats and for intra-abdominal infection in a patient. Curr. Radiopharm. 2012, 5, 71–75. [Google Scholar] [CrossRef]
- Silvola, J.M.; Laitinen, I.; Sipilä, H.J.; Laine, V.J.O.; Leppänen, P.; Ylä-Herttuala, S.; Knuuti, J.; Roivainen, A. Uptake of 68gallium in atherosclerotic plaques in LDLR-/-ApoB100/100 mice. EJNMMI Res. 2011, 1, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzello, A.; Di Pierro, D.; Lodi, F.; Trespidi, S.; Cicoria, G.; Pancaldi, D.; Nanni, C.; Marengo, M.; Marzola, M.C.; Al-Nahhas, A.; et al. Synthesis and quality control of 68Ga citrate for routine clinical PET. Nucl. Med. Commun. 2009, 30, 542–545. [Google Scholar] [CrossRef]
- Mitterhauser, M.; Toegel, S.; Wadsak, W.; Lanzenberger, R.R.; Mien, L.-K.; Kuntner, C.; Wanek, T.; Eidherr, H.; Ettlinger, D.E.; Viernstein, H.; et al. Pre vivo, ex vivo and in vivo evaluations of [68Ga]-EDTMP. Nucl. Med. Biol. 2007, 34, 391–397. [Google Scholar] [CrossRef]
- Ogawa, K.; Ishizaki, A.; Takai, K.; Kitamura, Y.; Kiwada, T.; Shiba, K.; Odani, A. Development of novel radiogallium-labeled bone imaging agents using oligo-aspartic acid peptides as carriers. PLoS ONE 2013, 8, e84335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Herder, W.W.; Hofland, L.J.; Van Der Lely, A.J.; Lamberts, S.W.J. Somatostatin receptors in gastroentero-pancreatic neuroendocrine tumours. Endocr.-Relat. Cancer 2003, 10, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, M.; Maecke, H.; Börner, A.; Weckesser, E.; Schöffski, P.; Oei, M.; Schumacher, J.; Henze, M.; Heppeler, A.; Meyer, G.; et al. Biokinetics and Imaging with the Somatostatin Receptor PET Radioligand 68Ga-DOTATOC: Preliminary Data. Eur. J. Nucl. Med. 2001, 28, 1751–1757. [Google Scholar] [CrossRef]
- Gabriel, M.; Decristoforo, C.; Kendler, D.; Dobrozemsky, G.; Heute, D.; Uprimny, C.; Kovacs, P.; Von Guggenberg, E.; Bale, R.; Virgolini, I.J. 68Ga-DOTA-Tyr3-Octreotide PET in Neuroendocrine Tumors: Comparison with somatostatin receptor scintigraphy and CT. J. Nucl. Med. 2007, 48, 508–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jindal, T.; Kumar, A.; Venkitaraman, B.; Dutta, R.; Kumar, R. Role of68Ga-DOTATOC PET/CT in the evaluation of primary pulmonary carcinoids. Korean J. Intern. Med. 2010, 25, 386–391. [Google Scholar] [CrossRef]
- Velikyan, I.; Sundin, A.; Sörensen, J.; Lubberink, M.; Sandström, M.; Garske-Román, U.; Lundqvist, H.; Granberg, D.; Eriksson, B. Quantitative and qualitative intrapatient comparison of 68Ga-DOTATOC and 68Ga-DOTATATE: Net uptake rate for accurate quantification. J. Nucl. Med. 2013, 55, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Sudbrock, F.; Fischer, T.; Zimmermanns, B.; Guliyev, M.; Dietlein, M.; Drzezga, A.; Schomäcker, K. Characterization of SnO2-Based 68Ge/68Ga Generators and 68Ga-DOTATATE Preparations: Radionuclide purity, radiochemical yield and long-term constancy. EJNMMI Res. 2014, 4, 36. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Kan, Y.; Ge, B.H.; Yuan, L.; Li, C.; Zhao, W. Diagnostic role of Gallium-68 DOTATOC and Gallium-68 DOTATATE PET in patients with neuroendocrine tumors: A meta-analysis. Acta Radiol. 2014, 55, 389–398. [Google Scholar] [CrossRef]
- Ocak, M.; Demirci, E.; Kabasakal, L.; Aygun, A.; Tutar, R.O.; Araman, A.; Kanmaz, B. Evaluation and comparison of Ga-68 DOTA-TATE and Ga-68 DOTA-NOC PET/CT imaging in well-differentiated thyroid cancer. Nucl. Med. Commun. 2013, 34, 1084–1089. [Google Scholar] [CrossRef]
- Wild, D.; Bomanji, J.B.; Benkert, P.; Maecke, H.; Ell, P.J.; Reubi, J.C.; Caplin, M.E. Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J. Nucl. Med. 2013, 54, 364–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, X.-F.; Auernhammer, C.J.; Ilhan, H.; Lindner, S.; Nölting, S.; Maurer, J.; Spöttl, G.; Orth, M. Combination of 5-Fluorouracil with Epigenetic Modifiers Induces Radiosensitization, Somatostatin Receptor 2 Expression, and radioligand binding in neuroendocrine Tumor cells in vitro. J. Nucl. Med. 2019, 60, 1240–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hicks, R.J.; Kwekkeboom, D.J.; Krenning, E.; Bodei, L.; Grozinsky-Glasberg, S.; Arnold, R.; Borbath, I.; Cwikla, J.; Toumpanakis, C.; Kaltsas, G.; et al. ENETS consensus guidelines for the standards of care in neuroendocrine neoplasms: Peptide receptor radionuclide therapy with radiolabelled somatostatin analogues. Neuroendocrinology 2017, 105, 295–309. [Google Scholar] [CrossRef]
- Brabander, T.; van der Zwan, W.A.; Teunissen, J.J.M.; Kam, B.L.R.; Feelders, R.A.; de Herder, W.W.; van Eijck, C.H.J.; Franssen, G.J.H.; Krenning, E.P.; Kwekkeboom, D.J. Long-Term Efficacy, Survival, and Safety of [177Lu-DOTA0,Tyr3]Octreotate in Patients with Gastroenteropancreatic and bronchial neuroendocrine tumors. Clin. Cancer Res. 2017, 23, 4617–4624. [Google Scholar] [CrossRef] [Green Version]
- Auernhammer, C.J.; Spitzweg, C.; Angele, M.K.; Boeck, S.; Grossman, A.; Nölting, S.; Ilhan, H.; Knösel, T.; Mayerle, J.; Reincke, M.; et al. Advanced neuroendocrine tumours of the small intestine and pancreas: Clinical developments, controversies, and future strategies. Lancet Diabetes Endocrinol. 2018, 6, 404–415. [Google Scholar] [CrossRef]
- Demetri, G.D.; Benjamin, R.S.; Blanke, C.D.; Blay, J.-Y.; Casali, P.; Choi, H.; Corless, C.L.; Debiec-Rychter, M.; DeMatteo, R.P.; Ettinger, D.S.; et al. NCCN task force report: Management of patients with gastrointestinal stromal tumor (GIST)—Update of the NCCN clinical practice guidelines. J. Natl. Compr. Cancer Netw. 2007, 5, S-1–S-29. [Google Scholar] [CrossRef]
- Schmidt, S.; Dunet, V.; Koehli, M.; Montemurro, M.; Meuli, R.; Prior, J.O. Diffusion-weighted magnetic resonance imaging in metastatic gastrointestinal stromal tumor (GIST): A pilot study on the assessment of treatment response in comparison with 18F-FDG PET/CT. Acta Radiol. 2013, 54, 837–842. [Google Scholar] [CrossRef]
- Sternini, C.; Wong, H.; Wu, S.V.; de Georgio, R.; Yang, M.; Reeve, J., Jr.; Brecha, N.C.; Walsh, J.H. Somatostatin 2A receptor is expressed by enteric neurons, and by interstitial cells of cajal and enterochromaffin-like cells of the gastrointestinal tract. J. Comp. Neurol. 1997, 386, 396–408. [Google Scholar] [CrossRef]
- Gromova, P.; Rubin, B.P.; Thys, A.; Erneux, C.; Vanderwinden, J.-M. Neurotensin Receptor 1 Is Expressed in gastrointestinal stromal tumors but not in interstitial cells of cajal. PLoS ONE 2011, 6, e14710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riccabona, G.; Decristoforo, C. Peptide targeted imaging of cancer. Cancer Biother. Radiopharm. 2003, 18, 675–687. [Google Scholar] [CrossRef]
- Paulmichl, A.; Summer, D.; Manzl, C.; Rangger, C.; Orlandi, F.; Niedermoser, S.; Taguchi, T.; Wängler, B.; Decristoforo, C. Targeting gastrointestinal stromal tumor with 68 Ga-labeled peptides: An in vitro study on gastrointestinal stromal tumor-cell lines. Cancer Biother. Radiopharm. 2016, 31, 302–310. [Google Scholar] [CrossRef]
- Reubi, J.C.; Schär, J.-C.; Waser, B.; Wenger, S.; Heppeler, A.; Schmitt, J.S.; Mäcke, H.R. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur. J. Nucl. Med. Mol. Imaging 2000, 27, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, D.; Rangger, C.; Kolenc Peitl, P.; Garnuszek, P.; Maurin, M.; Ihli, L.; Kroselj, M.; Maina, T.; Maecke, H.; Erba, P.; et al. From preclinical development to clinical application: Kit formulation for radiolabelling the minigastrin analogue CP04 with In-111 for a first-in-human clinical trial. Eur. J. Pharm. Sci. 2016, 85, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mascarin, A.; Valverde, I.E.; Mindt, T.L. Structure-activity relationship studies of amino acid substitutions in radiolabeled neurotensin conjugates. ChemMedChem 2016, 11, 102–107. [Google Scholar] [CrossRef]
- Thomas, R.; Chen, J.; Roudier, M.M.; Vessella, R.L.; Lantry, L.E.; Nunn, A.D. In vitro binding evaluation of 177Lu-AMBA, a Novel 177Lu-Labeled GRP-R agonist for systemic radiotherapy in human tissues. Clin. Exp. Metastasis 2009, 26, 105–119. [Google Scholar] [CrossRef]
- Nock, B.A.; Kaloudi, A.; Lymperis, E.; Giarika, A.; Kulkarni, H.R.; Klette, I.; Singh, A.; Krenning, E.P.; de Jong, M.; Maina, T.; et al. Theranostic perspectives in prostate cancer with the gastrin-releasing peptide receptor antagonist NeoBOMB1: Preclinical and first clinical results. J. Nucl. Med. 2017, 58, 75–80. [Google Scholar] [CrossRef]
- González, A.J. International policies and strategies for the remediation of land contaminated by radioactive material residues. J. Environ. Radioact. 2013, 119, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Petrik, M.; Franssen, G.M.; Haas, H.; Laverman, P.; Hörtnagl, C.; Schrettl, M.; Helbok, A.; Lass-Flörl, C.; Decristoforo, C. Preclinical evaluation of Two 68Ga-siderophores as potential radiopharmaceuticals for aspergillus fumigatus infection imaging. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 1175–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrik, M.; Haas, H.; Dobrozemsky, G.; Lass-Flörl, C.; Helbok, A.; Blatzer, M.; Dietrich, H.; Decristoforo, C. 68 Ga-Siderophores for PET imaging of invasive pulmonary aspergillosis: Proof of principle. J. Nucl. Med. 2010, 51, 639–645. [Google Scholar] [CrossRef] [Green Version]
- Komohara, Y.; Takeya, M. CAFs and TAMs: Maestros of the tumour microenvironment. J. Pathol. 2017, 241, 313–315. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Jeong, H.; Bae, Y.; Shin, K.; Kang, S.; Kim, H.; Oh, J.; Bae, H. Targeting of M2-like Tumor-Associated Macrophages with a Melittin-Based pro-Apoptotic Peptide. J. Immunother. Cancer 2019, 7, 147. [Google Scholar] [CrossRef] [Green Version]
- Molgora, M.; Esaulova, E.; Vermi, W.; Hou, J.; Chen, Y.; Luo, J.; Brioschi, S.; Bugatti, M.; Omodei, A.S.; Ricci, B.; et al. TREM2 modulation remodels the tumor myeloid landscape enhancing Anti-PD-1 immunotherapy. Cell 2020, 182, 886–900.e17. [Google Scholar] [CrossRef] [PubMed]
- Blum, L.; Geisslinger, G.; Parnham, M.J.; Grünweller, A.; Schiffmann, S. Natural antiviral compound silvestrol modulates human monocyte-derived macrophages and Dendritic cells. J. Cell Mol. Med. 2020, 24, 6988–6999. [Google Scholar] [CrossRef]
- Shi, D.; Si, Z.; Xu, Z.; Cheng, Y.; Lin, Q.; Fu, Z.; Fu, W.; Yang, T.; Shi, H.; Cheng, D. Synthesis and evaluation of 68Ga-NOTA-COG1410 targeting to TREM2 of TAMs as a specific PET probe for digestive tumor diagnosis. Anal. Chem. 2022, 94, 3819–3830. [Google Scholar] [CrossRef]
- DeBlasi, A.; O’Reilly, K.; Motulsky, H.J. Calculating receptor number from binding experiments using same compound as radioligand and competitor. Trends Pharmacol. Sci. 1989, 10, 227–229. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Gao, H.; Zhou, Y.; Ma, Y.; Quan, Q.; Lang, L.; Chen, K.; Niu, G.; Yan, Y.; Chen, X. 18F-Labeled GRPR agonists and antagonists: A comparative study in prostate cancer imaging. Theranostics 2011, 1, 220–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.; Ananias, H.J.K.; Carlucci, G.; Hoving, H.D.; Helfrich, W.; Dierckx, R.A.; Wang, F.; De Jong, I.J.; Elsinga, P.H. An update of radiolabeled bombesin analogs for gastrin-releasing peptide receptor targeting. Curr. Pharm. Des. 2013, 19, 3329–3341. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Lang, L.; Wang, Z.; Jacobson, O.; Yung, B.C.; Zhu, G.; Gu, D.; Ma, Y.; Zhu, X.; Niu, G.; et al. Positron Emission Tomography Imaging of Prostate Cancer with Ga-68-Labeled gastrin-releasing peptide receptor agonist BBN7–14 and antagonist RM26. Bioconjugate Chem. 2018, 29, 410–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergeron, D.E.; Cessna, J.T. An update on ‘dose calibrator’ settings for nuclides used in nuclear medicine. Nucl. Med. Commun. 2018, 39, 500–504. [Google Scholar] [CrossRef] [PubMed]
- Bolzati, C.; Duatti, A. The emerging value of 64Cu for molecular imaging and therapy. Q. J. Nucl. Med. Mol. Imaging 2020, 64, S1824–S4785. [Google Scholar] [CrossRef]
- Schottelius, M.; Ludescher, M.; Richter, F.; Kapp, T.G.; Kessler, H.; Wester, H.-J. Validation of [125I]CPCR4.3 as an investigative tool for the sensitive and specific detection of HCXCR4 and MCXCR4 expression in vitro and in vivo. EJNMMI Res. 2019, 9, 75. [Google Scholar] [CrossRef]
- Morgenroth, A.; Vogg, A.T.J.; Neumaier, B.; Mottaghy, F.M.; Zlatopolskiy, B.D. Radioiodinated indomethacin amide for molecular imaging of Cyclooxygenase-2 expressing tumors. Oncotarget 2017, 8, 18059–18069. [Google Scholar] [CrossRef] [Green Version]
- McQuade, P.; Martin, K.E.; Castle, T.C.; Went, M.; Blower, P.; Welch, M.J.; Lewis, J.S. Investigation into 64Cu-labeled Bis(selenosemicarbazone) and Bis(thiosemicarbazone) complexes as hypoxia imaging agents. Nucl. Med. Biol. 2005, 32, 147–156. [Google Scholar] [CrossRef]
- El-Kawy, O.A.; Abdelaziz, G. Preparation, characterization and evaluation of [125I]-pirarubicin: A new therapeutic agent for urinary bladder cancer with potential for use as theranostic agent. Appl. Radiat. Isot. 2022, 179, 110007. [Google Scholar] [CrossRef]
- Chen, L.; Wu, N.; Kennedy, L.; Francis, H.; Ceci, L.; Zhou, T.; Samala, N.; Kyritsi, K.; Wu, C.; Sybenga, A.; et al. Inhibition of secretin/secretin receptor axis ameliorates NAFLD phenotypes. Hepatology 2021, 74, 1845–1863. [Google Scholar] [CrossRef]
- Hayes, G.M.; Carrigan, P.E.; Dong, M.; Reubi, J.; Miller, L.J. A novel secretin receptor splice variant potentially useful for early diagnosis of pancreatic carcinoma. Gastroenterology 2007, 133, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Klussmeier, A.; Aurich, S.; Niederstadt, L.; Wiedenmann, B.; Grötzinger, C. Secretin receptor as a target in gastrointestinal cancer: Expression analysis and ligand development. Biomedicines 2022, 10, 536. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xiong, M.; Yang, C.; Yang, D.; Zheng, J.; Fan, Y.; Wang, S.; Gai, Y.; Lan, X.; Chen, H.; et al. PEGylated and acylated elabela analogues show enhanced receptor binding, prolonged stability, and remedy of acute kidney injury. J. Med. Chem. 2020, 63, 16028–16042. [Google Scholar] [CrossRef]
- Read, C.; Nyimanu, D.; Williams, T.L.; Huggins, D.J.; Sulentic, P.; Macrae, R.G.C.; Yang, P.; Glen, R.C.; Maguire, J.J.; Davenport, A.P. International union of basic and clinical pharmacology. CVII. structure and pharmacology of the apelin receptor with a recommendation that elabela/toddler is a second endogenous peptide ligand. Pharmacol. Rev. 2019, 71, 467–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, T.; Sato, C.; Kadowaki, A.; Watanabe, H.; Ho, L.; Ishida, J.; Yamaguchi, T.; Kimura, A.; Fukamizu, A.; Penninger, J.M.; et al. ELABELA-APJ axis protects from pressure overload heart failure and angiotensin II-induced cardiac damage. Cardiovasc. Res. 2017, 113, 760–769. [Google Scholar] [CrossRef] [Green Version]
- Ho, L.; van Dijk, M.; Chye, S.T.J.; Messerschmidt, D.M.; Chng, S.C.; Ong, S.; Yi, L.K.; Boussata, S.; Goh, G.H.-Y.; Afink, G.B.; et al. ELABELA deficiency promotes preeclampsia and cardiovascular malformations in mice. Science 2017, 357, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Freyer, L.; Hsu, C.-W.; Nowotschin, S.; Pauli, A.; Ishida, J.; Kuba, K.; Fukamizu, A.; Schier, A.F.; Hoodless, P.A.; Dickinson, M.E.; et al. Loss of apela peptide in mice causes low penetrance embryonic lethality and defects in early mesodermal derivatives. Cell Rep. 2017, 20, 2116–2130. [Google Scholar] [CrossRef] [Green Version]
- Trân, K.; Murza, A.; Sainsily, X.; Coquerel, D.; Côté, J.; Belleville, K.; Haroune, L.; Longpré, J.-M.; Dumaine, R.; Salvail, D.; et al. A systematic exploration of macrocyclization in Apelin-13: Impact on binding, signaling, stability, and cardiovascular effects. J. Med. Chem. 2018, 61, 2266–2277. [Google Scholar] [CrossRef]
- Fischer, C.; Lamer, T.; Wang, W.; McKinnie, S.M.; Iturrioz, X.; Llorens-Cortes, C.; Oudit, G.Y.; Vederas, J.C. Plasma kallikrein cleaves and inactivates apelin-17: Palmitoyl- and PEG-extended apelin-17 analogs as metabolically stable blood pressure-lowering agents. Eur. J. Med. Chem. 2019, 166, 119–124. [Google Scholar] [CrossRef]
- Potalitsyn, P.; Selicharová, I.; Sršeň, K.; Radosavljević, J.; Marek, A.; Nováková, K.; Jiráček, J.; Žáková, L. A radioligand binding assay for the insulin-like growth factor 2 receptor. PLoS ONE 2020, 15, e0238393. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Lucas, M.; Viana da Silva, S.; di Scala, M.; Garcia-Barroso, C.; González-Aseguinolaza, G.; Mulle, C.; Alberini, C.M.; Cuadrado-Tejedor, M.; Garcia-Osta, A. Insulin-like growth factor 2 reverses memory and synaptic deficits in APP transgenic mice. EMBO Mol. Med. 2014, 6, 1246–1262. [Google Scholar] [CrossRef]
- Stern, S.A.; Chen, D.Y.; Alberini, C.M. The effect of insulin and insulin-like growth factors on hippocampus- and amygdala-dependent long-term memory formation. Learn. Mem. 2014, 21, 556–563. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.Y.; Stern, S.A.; Garcia-Osta, A.; Saunier-Rebori, B.; Pollonini, G.; Bambah-Mukku, D.; Blitzer, R.D.; Alberini, C.M. A Critical Role for IGF-II in memory consolidation and enhancement. Nature 2011, 469, 491–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberini, C.M.; Chen, D.Y. Memory enhancement: Consolidation, reconsolidation and insulin-like growth factor 2. Trends Neurosci. 2012, 35, 274–283. [Google Scholar] [CrossRef] [Green Version]
- Arano, Y. Recent advances In99mTc radiopharmaceuticals. Ann. Nucl. Med. 2002, 16, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Schwochau, K. Technetium radiopharmaceuticals—Fundamentals, synthesis, structure, and development. Angew. Chem. Int. Ed. 1994, 33, 2258–2267. [Google Scholar] [CrossRef]
- Dorbala, S.; Ananthasubramaniam, K.; Armstrong, I.S.; Chareonthaitawee, P.; DePuey, E.G.; Einstein, A.J.; Gropler, R.J.; Holly, T.A.; Mahmarian, J.J.; Park, M.-A.; et al. Single photon emission computed tomography (spect) myocardial perfusion imaging guidelines: Instrumentation, acquisition, processing, and interpretation. J. Nucl. Cardiol. 2018, 25, 1784–1846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Hu, X.; Xiang, D. Nanoparticle drug delivery systems: An excellent carrier for tumor peptide vaccines. Drug Deliv. 2018, 25, 1319–1327. [Google Scholar] [CrossRef]
- Ulrich, A.S. Biophysical aspects of using liposomes as delivery vehicles. Biosci. Rep. 2002, 22, 129–150. [Google Scholar] [CrossRef]
- Liu, Y.; Castro Bravo, K.M.; Liu, J. Targeted liposomal drug delivery: A nanoscience and biophysical perspective. Nanoscale Horiz. 2021, 6, 78–94. [Google Scholar] [CrossRef] [PubMed]
- Karpuz, M.; Silindir-Gunay, M.; Ozer, A.Y.; Ozturk, S.C.; Yanik, H.; Tuncel, M.; Aydin, C.; Esendagli, G. Diagnostic and therapeutic evaluation of folate-targeted paclitaxel and vinorelbine encapsulating theranostic liposomes for non-small cell lung cancer. Eur. J. Pharm. Sci. 2020, 156, 105576. [Google Scholar] [CrossRef] [PubMed]
- Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer 2018, 18, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W.; Potschka, H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2005, 2, 86–98. [Google Scholar] [CrossRef]
- Kono, Y.; Utsunomiya, K.; Kanno, S.; Tanigawa, N. Longitudinal time-dependent effects of irradiation on multidrug resistance in a non–small lung cancer cell line. Mol. Cancer Ther. 2014, 13, 2706–2712. [Google Scholar] [CrossRef] [Green Version]
- Chou, P.M.; Reyes-Mugica, M.; Barquin, N.; Yasuda, T.; Tan, X.; Tomita, T. Multidrug resistance gene expression in childhood medulloblastoma: Correlation with clinical outcome and DNA ploidy in 29 patients. Pediatr. Neurosurg. 1995, 23, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, H.; Hwang, J.-H.; Lee, H.S.; Cho, J.Y.; Yoon, Y.-S.; Han, H.-S. Breast cancer resistance protein expression is associated with early recurrence and decreased survival in resectable pancreatic cancer patients. Pathol. Int. 2012, 62, 167–175. [Google Scholar] [CrossRef]
- Piwnica-Worms, D.; Chiu, M.L.; Budding, M.; Kronauge, J.F.; Kramer, R.A.; Croop, J.M. Functional imaging of multidrug-resistant p-glycoprotein with an organotechnetium complex. Cancer Res. 1993, 53, 977–984. [Google Scholar]
- Gomes, C.M.F.; Abrunhosa, A.J.; Pauwels, E.K.J.; Botelho, M.F. P-glycoprotein Versus MRP1 on Transport Kinetics of Cationic Lipophilic Substrates: A Comparative Study Using [99mTc]Sestamibi and [99mTc]Tetrofosmin. Cancer Biother. Radiopharm. 2009, 24, 215–227. [Google Scholar] [CrossRef]
- Yüksel, M.; Çermik, T.; Doğanay, L.; Karlıkaya, C.; Çakır, E.; Salan, A.; Berkarda, S. 99mTc-MIBI SPET in non-small cell lung cancer in relationship with Pgp and prognosis. Eur. J. Nucl. Med. 2002, 29, 876–881. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Nishiyama, Y.; Fukunaga, K.; Satoh, K.; Fujita, J.; Ohkawa, M. 99mTc-MIBI SPECT in small cell lung cancer patients before chemotherapy and after unresponsive chemotherapy. Ann. Nucl. Med. 2001, 15, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.-M.; Hsu, W.-H.; Huang, W.-T.; Wang, J.-J.; Ho, S.-T.; Kao, A. Usefulness of chest single photon emission computed tomography with technetium-99m methoxyisobutylisonitrile to predict taxol based chemotherapy response in advanced non-small cell lung cancer. Cancer Lett. 2003, 199, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Akgun, A.; Cok, G.; Karapolat, I.; Goksel, T.; Burak, Z. Tc-99m MIBI SPECT in prediction of prognosis in patients with small cell lung cancer. Ann. Nucl. Med. 2006, 20, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Mohan, H.K.; Miles, K.A. Cost-Effectiveness of 99mTc-sestamibi in predicting response to chemotherapy in patients with lung cancer: Systematic review and meta-analysis. J. Nucl. Med. 2009, 50, 376–381. [Google Scholar] [CrossRef] [Green Version]
- Van Dam, G.M.; Themelis, G.; Crane, L.M.; Harlaar, N.J.; Pleijhuis, R.G.; Kelder, W.; Sarantopoulos, A.; De Jong, J.S.; Arts, H.J.; Van Der Zee, A.G.; et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: First in-human results. Nat. Med. 2011, 17, 1315–1319. [Google Scholar] [CrossRef] [PubMed]
- Hall, N.C.; Plews, R.L.; Agrawal, A.; Povoski, S.P.; Wright, C.L.; Zhang, J.; Martin, E.W.; Phay, J. Intraoperative scintigraphy using a large field-of-view portable gamma camera for primary hyperparathyroidism: Initial experience. BioMed Res. Int. 2015, 2015, 930575. [Google Scholar] [CrossRef] [Green Version]
- Cuccurullo, V.; di Stasio, G.; Mansi, L. Nuclear medicine in prostate cancer: A new era for radiotracers. World J. Nucl. Med. 2018, 17, 70–78. [Google Scholar] [CrossRef]
- Weber, W.A.; Morris, M.J. Molecular imaging and targeted radionuclide therapy of prostate cancer. J. Nucl. Med. 2016, 57, 3S–5S. [Google Scholar] [CrossRef] [Green Version]
- Jadvar, H. Molecular imaging of prostate cancer: PET radiotracers. Am. J. Roentgenol. 2012, 199, 278–291. [Google Scholar] [CrossRef] [Green Version]
- Reubi, J.C. Peptide Receptors as Molecular Targets for Cancer Diagnosis and Therapy. Endocr. Rev. 2003, 24, 389–427. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Zhu, H.; Lin, X.; Chu, T.; Luo, R.; Wang, Y.; Yang, Z. Synthesis and radiolabeling of 64Cu-labeled 2-nitroimidazole derivative 64Cu-BMS2P2 for hypoxia imaging. Bioorgan. Med. Chem. Lett. 2016, 26, 1397–1400. [Google Scholar] [CrossRef] [PubMed]
- Weeks, A.J.; Paul, R.L.; Marsden, P.K.; Blower, P.J.; Lloyd, D.R. Radiobiological effects of hypoxia-dependent uptake of 64Cu-ATSM: Enhanced DNA damage and cytotoxicity in hypoxic cells. Eur. J. Nucl. Med. 2009, 37, 330–338. [Google Scholar] [CrossRef]
- Billinghurst, M.W.; Palser, R.F. Some factors affecting the calibration of radionuclide calibrators—I. 99mTc. Int. J. Nucl. Med. Biol. 1983, 10, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Paras, P.; Hamilton, D.R.; Evans, C.; Herrera, N.E.; Lagunas-Solar, M.C. Iodine-123 assay using a radionuclide calibrator. Int. J. Nucl. Med. Biol. 1983, 10, 111–115. [Google Scholar] [CrossRef] [PubMed]
Radionuclide | T1/2 | Mode of Decay * | Decay Product | Energy (keV) |
---|---|---|---|---|
64Cu | 12.7 h | EC β+ (61.5%) β− (38.5%) | 64Ni 64Zn | 278.01 190.74 |
68Ga | 68.1 min | EC β+ (100%) | 68Zn | 836 |
125I | 59.4 day | EC (100%) | 125Te | 35.5 |
99mTc | 6.06 h | IT(89%) | 99Tc | 140.511 |
177Lu | 6.64 d | β− (100%) | 177Hf | 148.8 |
90Y | 64.05 h | β− (100%) | 90Zr | 932.4 |
225Ac | 9.92 d | α (100%) | 221Fr | 5830 |
67Cu | 3 d | β− (100%) γ (52%) | 67Zn | 185 |
123I | 13.2 h | EC(100%) | 123Te | 159 |
124I | 1003.2 h | EC β+ (100%) | 124Te | 366.8 |
131I | 8.02 d | β− (100%) | 131Xe | 191.6 |
86Y | 14.74 h | EC β+ (100%) | 86Sr | 589 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benfante, V.; Stefano, A.; Ali, M.; Laudicella, R.; Arancio, W.; Cucchiara, A.; Caruso, F.; Cammarata, F.P.; Coronnello, C.; Russo, G.; et al. An Overview of In Vitro Assays of 64Cu-, 68Ga-, 125I-, and 99mTc-Labelled Radiopharmaceuticals Using Radiometric Counters in the Era of Radiotheranostics. Diagnostics 2023, 13, 1210. https://doi.org/10.3390/diagnostics13071210
Benfante V, Stefano A, Ali M, Laudicella R, Arancio W, Cucchiara A, Caruso F, Cammarata FP, Coronnello C, Russo G, et al. An Overview of In Vitro Assays of 64Cu-, 68Ga-, 125I-, and 99mTc-Labelled Radiopharmaceuticals Using Radiometric Counters in the Era of Radiotheranostics. Diagnostics. 2023; 13(7):1210. https://doi.org/10.3390/diagnostics13071210
Chicago/Turabian StyleBenfante, Viviana, Alessandro Stefano, Muhammad Ali, Riccardo Laudicella, Walter Arancio, Antonino Cucchiara, Fabio Caruso, Francesco Paolo Cammarata, Claudia Coronnello, Giorgio Russo, and et al. 2023. "An Overview of In Vitro Assays of 64Cu-, 68Ga-, 125I-, and 99mTc-Labelled Radiopharmaceuticals Using Radiometric Counters in the Era of Radiotheranostics" Diagnostics 13, no. 7: 1210. https://doi.org/10.3390/diagnostics13071210
APA StyleBenfante, V., Stefano, A., Ali, M., Laudicella, R., Arancio, W., Cucchiara, A., Caruso, F., Cammarata, F. P., Coronnello, C., Russo, G., Miele, M., Vieni, A., Tuttolomondo, A., Yezzi, A., & Comelli, A. (2023). An Overview of In Vitro Assays of 64Cu-, 68Ga-, 125I-, and 99mTc-Labelled Radiopharmaceuticals Using Radiometric Counters in the Era of Radiotheranostics. Diagnostics, 13(7), 1210. https://doi.org/10.3390/diagnostics13071210