Automatic Classification of GI Organs in Wireless Capsule Endoscopy Using a No-Code Platform-Based Deep Learning Model
Abstract
:1. Introduction
2. Method
2.1. Data Collection and Labeling
2.2. Automated Deep Learning Tool for Model Establishment
2.3. Data Preprocessing
2.4. Deep Learning Model Development
2.5. Statistics, Primary and Secondary Objectives
3. Result
3.1. Diagnostic Performance of the GI Organ Classification AI Model Using the No-Code Tool-Based Deep Learning Algorithm
3.2. CE Video Application of the GI Organ Classification AI Model
3.3. Performance of the GI Organ Classification AI Model by Diseases in CE Videos
3.4. Visualization of the GI Organ Classification and the Transitional Area
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, J.; Hwang, Y.; Nam, J.H.; Oh, D.J.; Kim, K.B.; Song, H.J.; Kim, S.H.; Kang, S.H.; Jung, M.K.; Jeong Lim, Y. Artificial intelligence that determines the clinical significance of capsule endoscopy images can increase the efficiency of reading. PLoS ONE 2020, 15, e0241474. [Google Scholar] [CrossRef] [PubMed]
- Soffer, S.; Klang, E.; Shimon, O.; Nachmias, N.; Eliakim, R.; Ben-Horin, S.; Kopylov, U.; Barash, Y. Deep learning for wireless capsule endoscopy: A systematic review and meta-analysis. Gastrointest. Endosc. 2020, 92, 831–839.E8. [Google Scholar] [CrossRef]
- Otani, K.; Nakada, A.; Kurose, Y.; Niikura, R.; Yamada, A.; Aoki, T.; Nakanishi, H.; Doyama, H.; Hasatani, K.; Sumiyoshi, T.; et al. Automatic detection of different types of small-bowel lesions on capsule endoscopy images using a newly developed deep convolutional neural network. Endoscopy 2020, 52, 786–791. [Google Scholar] [CrossRef]
- Hwang, Y.; Park, J.; Lim, Y.J.; Chun, H.J. Application of Artificial Intelligence in Capsule Endoscopy: Where Are We Now? Clin. Endosc. 2018, 51, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Leenhardt, R.; Vasseur, P.; Li, C.; Saurin, J.C.; Rahmi, G.; Cholet, F.; Becq, A.; Marteau, P.; Histace, A.; Dray, X. A neural network algorithm for detection of GI angiectasia during small-bowel capsule endoscopy. Gastrointest. Endosc. 2019, 89, 189–194. [Google Scholar] [CrossRef]
- Aoki, T.; Yamada, A.; Aoyama, K.; Saito, H.; Tsuboi, A.; Nakada, A.; Niikura, R.; Fujishiro, M.; Oka, S.; Ishihara, S.; et al. Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointest. Endosc. 2019, 89, 357–363.E2. [Google Scholar] [CrossRef]
- Aoki, T.; Yamada, A.; Kato, Y.; Saito, H.; Tsuboi, A.; Nakada, A.; Niikura, R.; Fujishiro, M.; Oka, S.; Ishihara, S.; et al. Automatic detection of blood content in capsule endoscopy images based on a deep convolutional neural network. J. Gastroenterol. Hepatol. 2020, 35, 1196–1200. [Google Scholar] [CrossRef]
- Hwang, Y.; Lee, H.H.; Park, C.; Tama, B.A.; Kim, J.S.; Cheung, D.Y.; Chung, W.C.; Cho, Y.S.; Lee, K.M.; Choi, M.G.; et al. Improved classification and localization approach to small bowel capsule endoscopy using convolutional neural network. Dig. Endosc. 2021, 33, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Aoki, T.; Aoyama, K.; Kato, Y.; Tsuboi, A.; Yamada, A.; Fujishiro, M.; Oka, S.; Ishihara, S.; Matsuda, T.; et al. Automatic detection and classification of protruding lesions in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointest. Endosc. 2020, 92, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, A.; Oka, S.; Aoyama, K.; Saito, H.; Aoki, T.; Yamada, A.; Matsuda, T.; Fujishiro, M.; Ishihara, S.; Nakahori, M.; et al. Artificial intelligence using a convolutional neural network for automatic detection of small-bowel angioectasia in capsule endoscopy images. Dig. Endosc. 2020, 32, 382–390. [Google Scholar] [CrossRef]
- Ding, Z.; Shi, H.; Zhang, H.; Meng, L.; Fan, M.; Han, C.; Zhang, K.; Ming, F.; Xie, X.; Liu, H.; et al. Gastroenterologist-Level Identification of Small-Bowel Diseases and Normal Variants by Capsule Endoscopy Using a Deep-Learning Model. Gastroenterology 2019, 157, 1044–1054.e5. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Meng, M.Q. Deep learning for polyp recognition in wireless capsule endoscopy images. Med. Phys. 2017, 44, 1379–1389. [Google Scholar] [CrossRef]
- Wang, S.; Xing, Y.; Zhang, L.; Gao, H.; Zhang, H. A systematic evaluation and optimization of automatic detection of ulcers in wireless capsule endoscopy on a large dataset using deep convolutional neural networks. Phys. Med. Biol. 2019, 64, 235014. [Google Scholar] [CrossRef] [PubMed]
- Brotz, C.; Nandi, N.; Conn, M.; Daskalakis, C.; DiMarino, M.; Infantolino, A.; Katz, L.C.; Schroeder, T.; Kastenberg, D. A validation study of 3 grading systems to evaluate small-bowel cleansing for wireless capsule endoscopy: A quantitative index, a qualitative evaluation, and an overall adequacy assessment. Gastrointest. Endosc. 2009, 69, 262–270.e1. [Google Scholar] [CrossRef]
- Kim, S.H.; Lim, Y.J. Artificial Intelligence in Capsule Endoscopy: A Practical Guide to Its Past and Future Challenges. Diagnostics 2021, 11, 1722. [Google Scholar] [CrossRef]
- Byrne, M.F.; Donnellan, F. Artificial intelligence and capsule endoscopy: Is the truly “smart” capsule nearly here? Gastrointest. Endosc. 2019, 89, 195–197. [Google Scholar] [CrossRef] [PubMed]
- Rondonotti, E.; Pennazio, M.; Toth, E.; Koulaouzidis, A. How to read small bowel capsule endoscopy: A practical guide for everyday use. Endosc. Int. Open 2020, 8, E1220–E1224. [Google Scholar] [CrossRef]
- Koulaouzidis, A.; Dabos, K.; Philipper, M.; Toth, E.; Keuchel, M. How should we do colon capsule endoscopy reading: A practical guide. Ther. Adv. Gastrointest. Endosc. 2021, 14, 26317745211001983. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, Y.-T.; Lee, J.-B.; Jeong, S.-N. A performance comparison between automated deep learning and dental professionals in classification of dental implant systems from dental imaging: A multi-center study. Diagnostics 2020, 10, 910. [Google Scholar] [CrossRef]
- Bang, C.S.; Lim, H.; Jeong, H.M.; Hwang, S.H. Use of Endoscopic Images in the Prediction of Submucosal Invasion of Gastric Neoplasms: Automated Deep Learning Model Development and Usability Study. J. Med. Internet Res. 2021, 23, e25167. [Google Scholar] [CrossRef]
- Gong, E.J.; Bang, C.S.; Lee, J.J.; Seo, S.I.; Yang, Y.J.; Baik, G.H.; Kim, J.W. No-Code Platform-Based Deep-Learning Models for Prediction of Colorectal Polyp Histology from White-Light Endoscopy Images: Development and Performance Verification. J. Pers. Med. 2022, 12, 963. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-W.; Kim, S.-Y.; Jeong, S.-N.; Lee, J.-H. Artificial intelligence in fractured dental implant detection and classification: Evaluation using dataset from two dental hospitals. Diagnostics 2021, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Oh, J.; Shah, S.K.; Yuan, X.; Tang, S.J. Automatic classification of digestive organs in wireless capsule endoscopy videos. In Proceedings of the 2007 ACM Symposium on Applied Computing, Seoul, Republic of Korea, 11–15 March 2007; pp. 1041–1045. [Google Scholar]
- Zou, Y.; Li, L.; Wang, Y.; Yu, J.; Li, Y.; Deng, W. Classifying digestive organs in wireless capsule endoscopy images based on deep convolutional neural network. In Proceedings of the 2015 IEEE International Conference on Digital Signal Processing (DSP), Singapore, 21–24 July 2015; pp. 1274–1278. [Google Scholar]
- Adewole, S.; Yeghyayan, M.; Hyatt, D.; Ehsan, L.; Jablonski, J.; Copland, A.; Syed, S.; Brown, D. Deep Learning Methods for Anatomical Landmark Detection in Video Capsule Endoscopy Images. In Proceedings of the Future Technologies Conference 2020 (FTC 2020), Vancouver, BC, Canada, 5–6 November 2020; Volume 1288, pp. 426–434. [Google Scholar] [CrossRef]
- Yogapriya, J.; Chandran, V.; Sumithra, M.; Anitha, P.; Jenopaul, P.; Suresh Gnana Dhas, C. Gastrointestinal tract disease classification from wireless endoscopy images using pretrained deep learning model. Comput. Math. Methods Med. 2021, 2021, 5940433. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.H.; Hwang, Y.; Oh, D.J.; Park, J.; Kim, K.B.; Jung, M.K.; Lim, Y.J. Development of a deep learning-based software for calculating cleansing score in small bowel capsule endoscopy. Sci. Rep. 2021, 11, 4417. [Google Scholar] [CrossRef] [PubMed]
- Viazis, N.; Sgouros, S.; Papaxoinis, K.; Vlachogiannakos, J.; Bergele, C.; Sklavos, P.; Panani, A.; Avgerinos, A. Bowel preparation increases the diagnostic yield of capsule endoscopy: A prospective, randomized, controlled study. Gastrointest. Endosc. 2004, 60, 534–538. [Google Scholar] [CrossRef]
- Son, G.; Eo, T.; An, J.; Oh, D.J.; Shin, Y.; Rha, H.; Kim, Y.J.; Lim, Y.J.; Hwang, D. Small Bowel Detection for Wireless Capsule Endoscopy Using Convolutional Neural Networks with Temporal Filtering. Diagnostics 2022, 12, 1858. [Google Scholar] [CrossRef]
- Waring, J.; Lindvall, C.; Umeton, R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artif. Intell. Med. 2020, 104, 101822. [Google Scholar] [CrossRef]
- Cho, B.-J.; Bang, C.S.; Lee, J.J.; Seo, C.W.; Kim, J.H. Prediction of submucosal invasion for gastric neoplasms in endoscopic images using deep-learning. J. Clin. Med. 2020, 9, 1858. [Google Scholar] [CrossRef]
- Yang, Y.J.; Cho, B.-J.; Lee, M.-J.; Kim, J.H.; Lim, H.; Bang, C.S.; Jeong, H.M.; Hong, J.T.; Baik, G.H. Automated classification of colorectal neoplasms in white-light colonoscopy images via deep learning. J. Clin. Med. 2020, 9, 1593. [Google Scholar] [CrossRef]
Organ | Accuracy | Recall | Specificity | Precision | NPV | F1 Score | AUROC | 95% CI |
---|---|---|---|---|---|---|---|---|
Esophagus | 0.99 | 0.97 | 0.99 | 0.66 | 1.0 | 0.78 | 0.998 | 0.996–1.000 |
Stomach | 0.97 | 0.94 | 0.99 | 0.97 | 0.98 | 0.96 | 0.995 | 0.994–0.996 |
Small bowel | 0.99 | 1.0 | 0.99 | 0.97 | 1.0 | 0.98 | 1.000 | 1.000–1.000 |
Colon | 0.98 | 0.96 | 0.99 | 0.98 | 0.97 | 0.97 | 0.995 | 0.995–0.996 |
Total | 0.98 | 0.97 | 0.99 | 0.89 | 0.99 | 0.92 | 0.941 | 0.935–0.947 |
AI Score Threshold | GI Organ | Accuracy | Recall | Specificity | Precision | NPV | F1 Score |
---|---|---|---|---|---|---|---|
0 | Esophagus (n = 5340) | 0.98 (0.97–0.99) | 0.96 (0.93–0.98) | 0.98 (0.97–0.99) | 0.26 (0.19–0.32) | 1.0 (1.0–1.0) | 0.33 (0.26–0.40) |
Stomach (n = 217,974) | 0.96 (0.95–0.97) | 0.89 (0.86–0.92) | 0.98 (0.96–0.99) | 0.85 (0.81–0.90) | 0.97 (0.96–0.98) | 0.85 (0.81–0.88) | |
Small bowel (n = 987,613) | 0.87 (0.85–0.89) | 0.83 (0.80–0.85) | 0.98 (0.97–0.99) | 0.98 (0.97–0.99) | 0.68 (0.63–0.72) | 0.89 (0.88–0.91) | |
Colon (n = 193,276) | 0.87 (0.85–0.89) | 0.91 (0.86–0.96) | 0.88 (0.86–0.89) | 0.54 (0.48–0.61) | 0.97 (0.95–0.99) | 0.64 (0.58–0.70) | |
Overall (n = 1,404,203) | 0.92 (0.91–0.93) | 0.89 (0.88–0.91) | 0.96 (0.95–0.96) | 0.67 (0.63–0.71) | 0.90 (0.88–0.92) | 0.69 (0.65–0.72) | |
≥99.9% | Esophagus (n = 4135) | 0.99 (0.98–1.0) | 0.98 (0.95–1.0) | 0.99 (0.98–1.0) | 0.71 (0.63–0.79) | 1.0 (1.0–1.0) | 0.76 (0.69–0.84) |
Stomach (n = 128,737) | 0.98 (0.96–1.0) | 0.95 (0.92–0.98) | 0.98 (0.96–1.0) | 0.95 (0.92–0.98) | 0.99 (0.99–1.0) | 0.94 (0.91–0.97) | |
Small bowel (n = 638,053) | 0.94 (0.93–0.96) | 0.92 (0.90–0.94) | 0.99 (0.99–1.0) | 1.0 (0.99–1.0) | 0.83 (0.80–0.87) | 0.95 (0.94–0.97) | |
Colon (n = 133,981) | 0.94 (0.92–0.96) | 0.94 (0.89–0.99) | 0.94 (0.93–0.96) | 0.73 (0.66–0.79) | 0.99 (0.97–1.0) | 0.82 (0.77–0.87) | |
Overall (n = 904,906) | 0.96 (0.96–0.97) | 0.94 (0.93–0.96) | 0.98 (0.97–0.99) | 0.85 (0.82–0.88) | 0.95 (0.94–0.96) | 0.87 (0.85–0.90) |
AI Score Threshold | Diseases | Accuracy | Recall | Specificity | Precision | NPV | F1 Score |
---|---|---|---|---|---|---|---|
0 | Normal (n = 390,410) | 0.93 (0.91–0.95) | 0.90 (0.88–0.93) | 0.96 (0.94–0.97) | 0.67 (0.60–0.74) | 0.91 (0.87–0.94) | 0.70 (0.64–0.75) |
Blood (n = 336,656) | 0.89 (0.86–0.91) | 0.83 (0.77–0.88) | 0.93 (0.91–0.95) | 0.58 (0.48–0.67) | 0.89 (0.84–0.93) | 0.57 (0.48–0.66) | |
Inflamed (n = 250,158) | 0.93 (0.91–0.95) | 0.91 (0.89–0.94) | 0.97 (0.95–0.98) | 0.72 (0.64–0.80) | 0.90 (0.85–0.94) | 0.73 (0.66–0.80) | |
Vascular (n = 239,632) | 0.93 (0.91–0.95) | 0.90 (0.86–0.93) | 0.96 (0.94–0.98) | 0.69 (0.59–0.78) | 0.89 (0.83–0.94) | 0.70 (0.62–0.78) | |
Polypoid (n = 187,347) | 0.94 (0.92–0.96) | 0.94 (0.92–0.97) | 0.96 (0.95–0.98) | 0.72 (0.62–0.81) | 0.92 (0.88–0.96) | 0.74 (0.66–0.82) | |
≥99.9% | Normal (n = 261,234) | 0.96 (0.95–0.98) | 0.96 (0.94–0.98) | 0.97 (0.96–0.99) | 0.85 (0.81–0.90) | 0.96 (0.94–0.98) | 0.88 (0.85–0.92) |
Blood (n = 196,127) | 0.95 (0.92–0.97) | 0.88 (0.83–0.94) | 0.97 (0.95–0.99) | 0.74 (0.65–0.83) | 0.94 (0.92–0.97) | 0.76 (0.68–0.85) | |
Inflamed (n = 168,331) | 0.97 (0.96–0.98) | 0.96 (0.94–0.98) | 0.98 (0.97–1.0) | 0.92 (0.88–0.96) | 0.94 (0.90–0.97) | 0.93 (0.89–0.96) | |
Vascular (n = 153,850) | 0.98 (0.97–0.99) | 0.96 (0.93–0.98) | 0.99 (0.98–1.0) | 0.86 (0.78–0.93) | 0.95 (0.91–0.98) | 0.88 (0.83–0.94) | |
Polypoid (n = 125,364) | 0.97 (0.96–0.99) | 0.98 (0.96–1.0) | 0.98 (0.97–1.0) | 0.91 (0.86–0.96) | 0.97 (0.94–0.99) | 0.93 (0.89–0.97) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, J.; Oh, D.J.; Park, J.; Kim, S.H.; Lim, Y.J. Automatic Classification of GI Organs in Wireless Capsule Endoscopy Using a No-Code Platform-Based Deep Learning Model. Diagnostics 2023, 13, 1389. https://doi.org/10.3390/diagnostics13081389
Chung J, Oh DJ, Park J, Kim SH, Lim YJ. Automatic Classification of GI Organs in Wireless Capsule Endoscopy Using a No-Code Platform-Based Deep Learning Model. Diagnostics. 2023; 13(8):1389. https://doi.org/10.3390/diagnostics13081389
Chicago/Turabian StyleChung, Joowon, Dong Jun Oh, Junseok Park, Su Hwan Kim, and Yun Jeong Lim. 2023. "Automatic Classification of GI Organs in Wireless Capsule Endoscopy Using a No-Code Platform-Based Deep Learning Model" Diagnostics 13, no. 8: 1389. https://doi.org/10.3390/diagnostics13081389
APA StyleChung, J., Oh, D. J., Park, J., Kim, S. H., & Lim, Y. J. (2023). Automatic Classification of GI Organs in Wireless Capsule Endoscopy Using a No-Code Platform-Based Deep Learning Model. Diagnostics, 13(8), 1389. https://doi.org/10.3390/diagnostics13081389