Anatomical and Simulation Studies Based on Three-Dimensional-Computed Tomography Image Reconstruction of Femoral Offset
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Learmonth, I.D.; Young, C.; Rorabeck, C. The Operation of the Century: Total Hip Replacement. Lancet 2007, 370, 1508–1519. [Google Scholar] [CrossRef] [PubMed]
- Takao, M.; Nishii, T.; Sakai, T.; Sugano, N. Postoperative Limb-Offset Discrepancy Notably Affects Soft-Tissue Tension in Total Hip Arthroplasty. J. Bone Jt. Surg. Am. 2016, 98, 1548–1554. [Google Scholar] [CrossRef]
- Komiyama, K.; Nakashima, Y.; Hirata, M.; Hara, D.; Kohno, Y.; Iwamoto, Y. Does High Hip Center Decrease Range of Motion in Total Hip Arthroplasty? A Computer Simulation Study. J. Arthroplast. 2016, 31, 2342–2347. [Google Scholar] [CrossRef]
- Sato, H.; Maezawa, K.; Gomi, M.; Kajihara, H.; Hayashi, A.; Maruyama, Y.; Nozawa, M.; Kaneko, K. Effect of Femoral Offset and Limb Length Discrepancy on Hip Joint Muscle Strength and Gait Trajectory after Total Hip Arthroplasty. Gait Posture 2020, 77, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Liebs, T.R.; Nasser, L.; Herzberg, W.; Rüther, W.; Hassenpflug, J. The Influence of Femoral Offset on Health-Related Quality of Life after Total Hip Replacement. Bone Jt. J. 2014, 96, 36–42. [Google Scholar] [CrossRef]
- Weber, M.; Merle, C.; Nawabi, D.H.; Dendorfer, S.; Grifka, J.; Renkawitz, T. Inaccurate Offset Restoration in Total Hip Arthroplasty Results in Reduced Range of Motion. Sci. Rep. 2020, 10, 13208. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Naito, M.; Asayama, I.; Ishiko, T. Total Hip Arthroplasty: The Relationship Between Posterolateral Reconstruction, Abductor Muscle Strength, and Femoral Offset. J. Orthop. Surg. 2004, 12, 164–167. [Google Scholar] [CrossRef]
- Mahmood, S.S.; Mukka, S.S.; Crnalic, S.; Wretenberg, P.; Sayed-Noor, A.S. Association Between Changes in Global Femoral Offset After Total Hip Arthroplasty and Function, Quality of Life, and Abductor Muscle Strength. A Prospective Cohort Study of 222 Patients. Acta Orthop. 2016, 87, 36–41. [Google Scholar] [CrossRef]
- Rüdiger, H.A.; Guillemin, M.; Latypova, A.; Terrier, A. Effect of Changes of Femoral Offset on Abductor and Joint Reaction Forces in Total Hip Arthroplasty. Arch. Orthop. Trauma Surg. 2017, 137, 1579–1585. [Google Scholar] [CrossRef]
- Tanzer, M.; Graves, S.E.; Peng, A.; Shimmin, A.J. Is Cemented or Cementless Femoral Stem Fixation More Durable in Patients Older Than 75 Years of Age? A Comparison of the Best-performing Stems. Clin. Orthop. Relat. Res. 2018, 476, 1428–1437. [Google Scholar] [CrossRef]
- Gwynne-Jones, D.P.; Gray, A.R. Cemented or Uncemented Acetabular Fixation in Combination with the Exeter Universal Cemented Stem. Bone Jt. J. 2020, 102, 414–422. [Google Scholar] [CrossRef]
- Halai, M.; Gupta, S.; Gilmour, A.; Bharadwaj, R.; Khan, A.; Holt, G. The Exeter Technique Can Lead to a Lower Incidence of Leg-Length Discrepancy After Total Hip Arthroplasty. Bone Jt. J. 2015, 97, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Dudda, M.; Kim, Y.J.; Zhang, Y.; Nevitt, M.C.; Xu, L.; Niu, J.; Goggins, J.; Doherty, M.; Felson, D.T. Morphologic Differences Between the Hips of Chinese Women and White Women: Could They Account for the Ethnic Difference in the Prevalence of Hip Osteoarthritis? Arthritis Rheum. 2011, 63, 2992–2999. [Google Scholar] [CrossRef]
- Yang, Z.; Jian, W.; Li, Z.H.; Jun, X.; Liang, Z.; Ge, Y.; Shi, Z.J. The Geometry of the Bone Structure Associated with Total Hip Arthroplasty. PLoS ONE 2014, 9, e91058. [Google Scholar] [CrossRef]
- Takamatsu, T.; Shishido, T.; Takahashi, Y.; Masaoka, T.; Tateiwa, T.; Kubo, K.; Endo, K.; Aoki, M.; Yamamoto, K. Radiographic Determination of Hip Rotation Center and Femoral Offset in Japanese Adults: A Preliminary Investigation Toward the Preoperative Implications in Total Hip Arthroplasty. Biomed. Res. Int. 2015, 2015, 610763. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, R.; Jin, L.; Li, S.; Hou, Z.; Zhang, Y. The Hip Morphology Changes with Ageing in Asian Population. Biomed. Res. Int. 2018, 2018, 1507979. [Google Scholar] [CrossRef]
- Hananouchi, T.; Sugano, N.; Nakamura, N.; Nishii, T.; Miki, H.; Yamamura, M.; Yoshikawa, H. Preoperative Templating of Femoral Components on Plain X-rays. Rotational Evaluation with Synthetic X-rays on ORTHODOC. Arch. Orthop. Trauma Surg. 2007, 127, 381–385. [Google Scholar] [CrossRef]
- Bjarnason, J.A.; Reikeras, O. Changes of Center of Rotation and Femoral Offset in Total Hip Arthroplasty. Ann. Transl. Med. 2015, 3, 355. [Google Scholar] [CrossRef] [PubMed]
- Wiberg, G. Shelf Operation in Congenital Dysplasia of the Acetabulum and in Subluxation and Dislocation of the Hip. J. Bone Jt. Surg. Am. 1953, 35, 65–80. [Google Scholar] [CrossRef]
- Siebenrock, K.A.; Schoeniger, R.; Ganz, R. Anterior Femoro-Acetabular Impingement Due to Acetabular Retroversion. Treatment with Periacetabular Osteotomy. J. Bone Jt. Surg. Am. 2003, 85, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Flecher, X.; Ollivier, M.; Argenson, J.N. Lower Limb Length and Offset in Total Hip Arthroplasty. Orthop. Traumatol. Surg. Res. 2016, 102, S9–S20. [Google Scholar] [CrossRef]
- Wu, G.; Siegler, S.; Allard, P.; Kirtley, C.; Leardini, A.; Rosenbaum, D.; Whittle, M.; D’Lima, D.D.; Cristofolini, L.; Witte, H.; et al. ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion--Part I: Ankle, Hip, and Spine. International Society of Biomechanics. J. Biomech. 2002, 35, 543–548. [Google Scholar] [CrossRef]
- Babisch, J.W.; Layher, F.; Amiot, L.P. The Rationale for Tilt-Adjusted Acetabular Cup Navigation. J. Bone Jt. Surg. Am. 2008, 90, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Majima, T.; Abe, S.; Nakamura, T.; Kanno, T.; Masuda, T.; Minami, A. Using the Transverse Acetabular Ligament as a Landmark for Acetabular Anteversion: An Intra-Operative Measurement. J. Orthop. Surg. 2013, 21, 189–194. [Google Scholar] [CrossRef]
- Evans, J.T.; Blom, A.W.; Timperley, A.J.; Dieppe, P.; Wilson, M.J.; Sayers, A.; Whitehouse, M.R. Factors Associated with Implant Survival Following Total Hip Replacement Surgery: A Registry Study of Data from the National Joint Registry of England, Wales, Northern Ireland and the Isle of Man. PLoS Med. 2020, 17, e1003291. [Google Scholar] [CrossRef]
- Sariali, E.; Mouttet, A.; Pasquier, G.; Durante, E. Three-Dimensional Hip Anatomy in Osteoarthritis. Analysis of the Femoral Offset. J. Arthroplast. 2009, 24, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Lecerf, G.; Fessy, M.H.; Philippot, R.; Massin, P.; Giraud, F.; Flecher, X.; Girard, J.; Mertl, P.; Marchetti, E.; Stindel, E. Femoral Offset: Anatomical Concept, Definition, Assessment, Implications for Preoperative Templating and Hip Arthroplasty. Orthop. Traumatol. Surg. Res. 2009, 95, 210–219. [Google Scholar] [CrossRef]
- Bonnin, M.P.; Archbold, P.H.; Basiglini, L.; Fessy, M.H.; Beverland, D.E. Do We Medialise the Hip Centre of Rotation in Total Hip Arthroplasty? Influence of Acetabular Offset and Surgical Technique. Hip Int. 2012, 22, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Buecking, B.; Boese, C.K.; Bergmeister, V.A.; Frink, M.; Ruchholtz, S.; Lechler, P. Functional Implications of Femoral Offset Following Hemiarthroplasty for Displaced Femoral Neck Fracture. Int. Orthop. 2016, 40, 1515–1521. [Google Scholar] [CrossRef]
- Chapman, R.M.; Van Citters, D.W.; Chapman, D.; Dalury, D.F. Higher Offset Cross-Linked Polyethylene Acetabular Liners: Is Wear A Significant Clinical Concern? Hip Int. 2019, 29, 652–659. [Google Scholar] [CrossRef]
- Meermans, G.; Doorn, J.V.; Kats, J.J. Restoration of the Centre of Rotation in Primary Total Hip Arthroplasty: The Influence of Acetabular Floor Depth and Reaming Technique. Bone Jt. J. 2016, 98, 1597–1603. [Google Scholar] [CrossRef] [PubMed]
Men | Women | p-Value | |
---|---|---|---|
Number | 28 | 38 | |
Age (year) | 52.5 (15.5) | 58.0 (15.7) | 0.159 |
Body length (cm) | 169.4 (5.6) | 154.9 (4.0) | <0.001 |
Body mass index (kg/m2) | 23.5 (3.2) | 23.6 (4.5) | 0.902 |
Center of edge angle, (°) | 31.9 (5.3) | 28.1 (6.8) | 0.015 |
Global offset (mm) | 80.9 (8.8) | 72.6 (5.9) | <0.001 |
Acetabular offset (mm) | 37.7 (4.0) | 34.2 (2.4) | <0.001 |
Femoral offset (mm) | 43.2 (8.3) | 38.4 (5.0) | 0.005 |
Men | Women | p-Value | |
---|---|---|---|
Number | 28 | 38 | |
Femoral offset, mm | 42.1 (4.8) | 38.4 (3.6) | <0.001 |
Cup offset, mm | 48.4 (5.1) | 43.3 (3.4) | <0.001 |
Cup-femoral offset, mm | 6.3 (1.9) | 4.9 (1.8) | 0.002 |
Distance cup-head center, mm | 8.1 (3.0) | 7.2 (2.3) | 0.146 |
Angle cup-head center, ° | 6.2 (4.3) | 7.1 (3.4) | 0.335 |
Femoral anteversion, ° | 13.2 (9.6) | 21.2 (9.9) | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimizu, T.; Takahashi, D.; Ishizu, H.; Yokota, S.; Hasebe, Y.; Uetsuki, K.; Iwasaki, N. Anatomical and Simulation Studies Based on Three-Dimensional-Computed Tomography Image Reconstruction of Femoral Offset. Diagnostics 2023, 13, 1434. https://doi.org/10.3390/diagnostics13081434
Shimizu T, Takahashi D, Ishizu H, Yokota S, Hasebe Y, Uetsuki K, Iwasaki N. Anatomical and Simulation Studies Based on Three-Dimensional-Computed Tomography Image Reconstruction of Femoral Offset. Diagnostics. 2023; 13(8):1434. https://doi.org/10.3390/diagnostics13081434
Chicago/Turabian StyleShimizu, Tomohiro, Daisuke Takahashi, Hotaka Ishizu, Shunichi Yokota, Yoshihiro Hasebe, Keita Uetsuki, and Norimasa Iwasaki. 2023. "Anatomical and Simulation Studies Based on Three-Dimensional-Computed Tomography Image Reconstruction of Femoral Offset" Diagnostics 13, no. 8: 1434. https://doi.org/10.3390/diagnostics13081434
APA StyleShimizu, T., Takahashi, D., Ishizu, H., Yokota, S., Hasebe, Y., Uetsuki, K., & Iwasaki, N. (2023). Anatomical and Simulation Studies Based on Three-Dimensional-Computed Tomography Image Reconstruction of Femoral Offset. Diagnostics, 13(8), 1434. https://doi.org/10.3390/diagnostics13081434