Papillary-Muscle-Derived Radiomic Features for Hypertrophic Cardiomyopathy versus Hypertensive Heart Disease Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Image Acquisition and Analysis
2.3. Definition of Volume of Interest
2.4. Feature Extraction and Feature Selection
2.5. Model Development
2.6. Evaluation of MYO and PM Features
2.7. Comparison of Radiomic Models and Clinical Data Models
2.8. Statistics
3. Results
3.1. Demographic and CMR-Based Clinical Characteristics
3.2. Feature Extraction and Selection
3.3. Multi-Feature Analysis of MYO, PM, and MYO+PM Groups
3.4. Comparison of Radiomics Models to CMR Parameter Models
4. Discussion
4.1. Summary of Main Findings
- The MYO and MYO+PM groups showed great LVH detection based on the AUC and accuracy;
- The MYO+PM group outperformed the MYO group on the HCM vs. HHD differentiation task;
- Our proposed radiomics models showed significantly better performance than the CMR parameter models.
- Our methods showed excellent calibration results and high clinical usefulness, as shown by the calibration curves and decision curves.
4.2. Discussion Based on Results
4.3. Technical Perspectives
4.4. Clinical Perspectives
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AB | AdaBoost |
AUC | area under the curve |
CV | cross-validation |
CMR | cardiovascular magnetic resonance |
DL | deep learning |
FD | Fabry disease |
HC | healthy control |
HCM | hypertrophic cardiomyopathy |
HHD | hypertensive heart disease |
LASSO | least absolute shrinkage and selection operator |
LV | left ventricular/left ventricle |
LVEDV | left ventricular end diastole volume |
LVEF | left ventricular ejection fraction |
LVH | left ventricular hypertrophy |
ML | machine learning |
MYO | myocardium |
KNN | K-nearest neighbor |
PM | papillary muscle |
RF | random forest |
SVM | support vector machine |
VOI | volume of interest |
References
- Giusca, S.; Steen, H.; Montenbruck, M.; Patel, A.R.; Pieske, B.; Erley, J.; Kelle, S.; Korosoglou, G. Multi-parametric assessment of left ventricular hypertrophy using late gadolinium enhancement, T1 mapping and strain-encoded cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2021, 23, 92. [Google Scholar] [CrossRef] [PubMed]
- Writing Committee Members; Ommen, S.R.; Mital, S.; Burke, M.A.; Day, S.M.; Deswal, A.; Elliott, P.; Evanovich, L.L.; Hung, J.; Joglar, J.A.; et al. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients with Hypertrophic Cardiomyopathy: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2020, 142, e533–e557. [Google Scholar] [CrossRef]
- Sen-Chowdhry, S.; Jacoby, D.; Moon, J.C.; McKenna, W.J. Update on hypertrophic cardiomyopathy and a guide to the guidelines. Nat. Rev. Cardiol. 2016, 13, 651–675. [Google Scholar] [CrossRef] [PubMed]
- Nwabuo, C.C.; Vasan, R.S. Pathophysiology of Hypertensive Heart Disease: Beyond Left Ventricular Hypertrophy. Curr. Hypertens. Rep. 2020, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Goto, S.; Solanki, D.; John, J.E.; Yagi, R.; Homilius, M.; Ichihara, G.; Katsumata, Y.; Gaggin, H.K.; Itabashi, Y.; MacRae, C.A.; et al. Multinational Federated Learning Approach to Train ECG and Echocardiogram Models for Hypertrophic Cardiomyopathy Detection. Circulation 2022, 146, 755–769. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, G.; Gao, Z.; Xu, C.; Zhang, Y.; Shi, R.; Keegan, J.; Xu, L.; Zhang, H.; Fan, Z.; et al. Deep Learning for Diagnosis of Chronic Myocardial Infarction on Nonenhanced Cardiac Cine MRI. Radiology 2019, 291, 606–617. [Google Scholar] [CrossRef] [PubMed]
- Cardim, N.; Galderisi, M.; Edvardsen, T.; Plein, S.; Popescu, B.A.; D’Andrea, A.; Bruder, O.; Cosyns, B.; Davin, L.; Donal, E.; et al. Role of multimodality cardiac imaging in the management of patients with hypertrophic cardiomyopathy: An expert consensus of the European Association of Cardiovascular Imaging Endorsed by the Saudi Heart Association. Eur. Hear. J.-Cardiovasc. Imaging 2015, 16, 280. [Google Scholar] [CrossRef] [PubMed]
- Dweck, M.R.; Williams, M.C.; Moss, A.J.; Newby, D.E.; Fayad, Z.A. Computed Tomography and Cardiac Magnetic Resonance in Ischemic Heart Disease. J. Am. Coll. Cardiol. 2016, 68, 2201–2216. [Google Scholar] [CrossRef]
- Rajiah, P.; Fulton, N.L.; Bolen, M. Magnetic resonance imaging of the papillary muscles of the left ventricle: Normal anatomy, variants, and abnormalities. Insights Imaging 2019, 10, 83. [Google Scholar] [CrossRef]
- Farhan, S.; Silbiger, J.J.; Halperin, J.L.; Zhang, L.; Dukkipati, S.R.; Vogel, B.; Kini, A.; Sharma, S.; Lerakis, S. Pathophysiology, Echocardiographic Diagnosis, and Treatment of Atrial Functional Mitral Regurgitation. J. Microbiol. Methods 2018, 80, 2314–2330. [Google Scholar] [CrossRef]
- Teo, E.P.; Teoh, J.G.; Hung, J. Mitral valve and papillary muscle abnormalities in hypertrophic obstructive cardiomyopathy. Curr. Opin. Cardiol. 2015, 30, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Kozor, R.; Nordin, S.; Treibel, T.A.; Rosmini, S.; Castelletti, S.; Fontana, M.; Captur, G.; Baig, S.; Steeds, R.P.; Hughes, D.; et al. Insight into hypertrophied hearts: A cardiovascular magnetic resonance study of papillary muscle mass and T1 mapping. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1034–1040. [Google Scholar] [CrossRef] [PubMed]
- Hoigné, P.; Attenhofer Jost, C.; Duru, F.; Oechslin, E.; Seifert, B.; Widmer, U.; Frischknecht, B.; Jenni, R. Simple criteria for differentiation of Fabry disease from amyloid heart disease and other causes of left ventricular hypertrophy. Int. J. Cardiol. 2006, 111, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Y.; Yang, F.; Bravo, L.; Wan, K.; Xu, Y.; Cheng, W.; Sun, J.; Zhu, Y.; Zhu, T.; et al. Fractal Analysis: Prognostic Value of Left Ventricular Trabecular Complexity Cardiovascular MRI in Participants with Hypertrophic Cardiomyopathy. Radiology 2021, 298, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Leijenaar, R.T.; Deist, T.M.; Peerlings, J.; de Jong, E.E.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.; Even, A.J.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, A.S.; Rowin, E.J.; Arafati, A.; Al-Otaibi, T.; Maron, M.S.; Nezafat, R. Radiomics and deep learning for myocardial scar screening in hypertrophic cardiomyopathy. J. Cardiovasc. Magn. Reson. 2022, 24, 40. [Google Scholar] [CrossRef]
- Raisi-Estabragh, Z.; Jaggi, A.; Gkontra, P.; McCracken, C.; Aung, N.; Munroe, P.B.; Neubauer, S.; Harvey, N.C.; Lekadir, K.; Petersen, S.E. Cardiac Magnetic Resonance Radiomics Reveal Differential Impact of Sex, Age, and Vascular Risk Factors on Cardiac Structure and Myocardial Tissue. Front. Cardiovasc. Med. 2021, 8, 763361. [Google Scholar] [CrossRef]
- Cetin, I.; Sanroma, G.; Petersen, S.E.; Napel, S.; Camara, O.; Ballester, M.A.G.; Lekadir, K. A Radiomics Approach to Computer-Aided Diagnosis with Cardiac Cine-MRI. In International Workshop on Statistical Atlases and Computational Models of the Heart; Springer: Cham, Switzerland, 2018; Volume 10663, pp. 82–90. [Google Scholar] [CrossRef]
- Izquierdo, C.; Casas, G.; Martin-Isla, C.; Campello, V.M.; Guala, A.; Gkontra, P.; Rodríguez-Palomares, J.F.; Lekadir, K. Radiomics-Based Classification of Left Ventricular Non-compaction, Hypertrophic Cardiomyopathy, and Dilated Cardiomyopathy in Cardiovascular Magnetic Resonance. Front. Cardiovasc. Med. 2021, 8, 764312. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39. [Google Scholar] [CrossRef]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T.; et al. Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [CrossRef]
- Prakken, N.H.; Velthuis, B.K.; Teske, A.J.; Mosterd, A.; Mali, W.P.; Cramer, M.J. Cardiac MRI reference values for athletes and nonathletes corrected for body surface area, training hours/week and sex. Eur. J. Prev. Cardiol. 2010, 17, 198–203. [Google Scholar] [CrossRef]
- Bieri, O.; Scheffler, K. Fundamentals of balanced steady state free precession MRI. J. Magn. Reson. Imaging 2013, 38, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Neisius, U.; El-Rewaidy, H.; Nakamori, S.; Rodriguez, J.; Manning, W.J.; Nezafat, R. Radiomic Analysis of Myocardial Native T1 Imaging Discriminates Between Hypertensive Heart Disease and Hypertrophic Cardiomyopathy. JACC Cardiovasc. Imaging 2019, 12, 1946–1954. [Google Scholar] [CrossRef] [PubMed]
- Bartoli, A.; Fournel, J.; Bentatou, Z.; Habib, G.; Lalande, A.; Bernard, M.; Boussel, L.; Pontana, F.; Dacher, J.N.; Ghattas, B.; et al. Deep Learning–based Automated Segmentation of Left Ventricular Trabeculations and Myocardium on Cardiac MR Images: A Feasibility Study. Radiol. Artif. Intell. 2021, 3, e200021. [Google Scholar] [CrossRef] [PubMed]
- Gruner, C.; Chan, R.H.; Crean, A.; Rakowski, H.; Rowin, E.J.; Care, M.; Deva, D.; Williams, L.; Appelbaum, E.; Gibson, C.M.; et al. Significance of left ventricular apical–Basal muscle bundle identified by cardiovascular magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Eur. Hear. J. 2014, 35, 2706–2713. [Google Scholar] [CrossRef] [PubMed]
- van Griethuysen, J.J.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H.J. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection via The Lasso: A Retrospective. J. R. Stat. Soc. Ser. Stat. Methodol. 2011, 73, 273–282. [Google Scholar] [CrossRef]
- Kursa, M.B.; Rudnicki, W.R. Feature Selection with the Boruta Package. J. Stat. Softw. 2010, 36, 2–4. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Paul, P.; Pennell, M.L.; Lemeshow, S. Standardizing the power of the Hosmer–Lemeshow goodness of fit test in large data sets. Stat. Med. 2013, 32, 67–80. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Xu, Z.; Yu, F.; Zhang, B.; Zhang, Q. Intelligent diagnosis of left ventricular hypertrophy using transthoracic echocardiography videos. Comput. Methods Programs Biomed. 2022, 226, 107182. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Shang, J.; Guo, Y.; Ma, S.; Lv, B.; Zhao, N.; Liu, H.; Zhang, J.; Xv, L.; Wang, Y.; et al. Incremental diagnostic value of radiomics signature of pericoronary adipose tissue for detecting functional myocardial ischemia: A multicenter study. Eur. Radiol. 2023, 33, 3007–3019. [Google Scholar] [CrossRef] [PubMed]
- Fournel, J.; Bartoli, A.; Bendahan, D.; Guye, M.; Bernard, M.; Rauseo, E.; Khanji, M.Y.; Petersen, S.E.; Jacquier, A.; Ghattas, B. Medical image segmentation automatic quality control: A multi-dimensional approach. J. Microbiol. Methods 2018, 74, 102213. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallieres, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef]
Clinical Data Entries | Overall (N = 345) | LVH (N = 230) | HCM (N = 158) | HHD (N = 72) | HC (N = 115) | p-Value 1 |
---|---|---|---|---|---|---|
Demographic and Clinical Features | ||||||
Age, year | 51.1 ± 15.7 | 51.4 ± 15.3 | 51.6 ± 15.3 | 50.9 ± 15.4 | 50.6 ± 16.6 | 0.634 |
Male, n (%) | 245 (71) | 165 (72) | 109 (69) | 56 (78) | 80 (70) | 0.171 |
Weight, kg | 71.5 ± 14.3 | 72.4 ± 14.0 | 70.2 ± 12.8 | 77.3 ± 15.4 | 69.8 ± 14.7 | 0.001 |
Height, cm | 168.5 ± 9.0 | 168.3 ± 8.4 | 168.5 ± 8.3 | 170.0 ± 8.5 | 169.1 ± 9.9 | l0.048 |
BMI, kg/m | 25.1 ± 3.9 | 25.4 ± 3.8 | 24.9 ± 3.5 | 26.6 ± 4.2 | 24.3 ± 3.8 | l0.205 |
BSA, m | 1.79 ± 0.22 | 1.80 ± 0.21 | 1.77 ± 0.20 | 1.87 ± 0.23 | 1.77 ± 0.23 | l0.003 |
CMR Parameters | ||||||
LVEF, % | 64.1 ± 10.6 | 63.5 ± 11.9 | 67.5 ± 7.4 | 54.8 ± 15.0 | 65.4 ± 7.2 | l < 0.001 |
LVEDV, mL | 135.3 ± 40.7 | 140.2 ± 42.3 | 130.1 ± 29.6 | 162.5 ± 55.7 | 125.5 ± 35.5 | l < 0.001 |
LVEDV index, mL/m | 75.2 ± 19.0 | 77.7 ± 20.3 | 73.8 ± 15.6 | 86.2 ± 26.2 | 70.2 ± 14.8 | l0.002 |
LV mass, g | 123.9 ± 53.2 | 144.3 ± 52.1 | 146.4 ± 54.4 | 139.7 ± 46.6 | 83.2 ± 24.0 | l0.515 |
LV mass index, g/m | 68.8 ± 27.9 | 80.0 ± 27.3 | 82.7 ± 29.1 | 74.1 ± 21.9 | 46.3 ± 9.5 | l0.031 |
MYO (N = 6) | Relative Importance | PM (N = 6) | Relative Importance |
---|---|---|---|
gradient GLCM correlation | 37.5 | original shape maximum 2D diameter slice | 10.4 |
original shape sphericity | 4.9 | log-sigma-5-0-mm-3D first-order kurtosis | 3.6 |
original shape elongation | 3.5 | original GLSZM ZoneEntropy | 3.2 |
wavelet-LHL GLCM Imc1 | 3.0 | wavelet-HLL GLCM IMC2 | 3.0 |
log-sigma-5-0-mm-3D glszm ZoneEntropy | 1.3 | log-sigma-2-0-mm-3D GLCM correlation | 2.9 |
wavelet-LHH GLCM MCC | 1.2 | gradient GLCM IDMN | 2.4 |
Group | Feature Number | AUC 1 | Accuracy (%) | Precision | Recall | F1 Score |
---|---|---|---|---|---|---|
LVH detection task (SVM model) | ||||||
MYO | 6 | 0.966 2 | 90.4 | 0.903 | 0.829 | 0.853 |
PM | 6 | 0.772 3 | 68.3 | 0.676 | 0.486 | 0.507 |
MYO+PM | 3 + 3 | 0.964 | 91.3 | 0.913 | 0.829 | 0.866 |
HCM vs. HHD differentiation task (SVM model) | ||||||
MYO | 6 | 0.875 4 | 82.6 | 0.831 | 0.773 | 0.739 |
PM | 6 | 0.716 5 | 73.9 | 0.811 | 0.182 | 0.308 |
MYO+PM | 3 + 3 | 0.935 | 87.0 | 0.871 | 0.818 | 0.800 |
Evaluation Metrics | CMR Parameters (LVEF + LVEDV Index + LV Mass Index) | Radiomics (MYO + PM) | Radiomics + CMR Parameters |
---|---|---|---|
AUC 1 | 0.774 2 | 0.935 | 0.906 3 |
Accuracy (%) | 71.0 | 87.0 | 85.5 |
Precision | 0.693 | 0.871 | 0.860 |
Recall | 0.409 | 0.818 | 0.818 |
F1-score | 0.474 | 0.800 | 0.783 |
Task Name | Matrices | MYO | PM | MYO+PM | CMR | MYO+PM+CMR |
---|---|---|---|---|---|---|
LVH detection | AUC | 0.966 | 0.772 | 0.964 | 0.908 | 0.965 |
Accuracy | 90.4 | 68.3 | 91.3 | 81.7 | 91.3 | |
HCM vs. HHD differentiation | AUC | 0.875 | 0.716 | 0.935 | 0.774 | 0.906 |
Accuracy | 82.6 | 73.9 | 87.0 | 71.0 | 85.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Lu, Q.; Chai, Y.; Tao, Z.; Wu, Q.; Jiang, M.; Pu, J. Papillary-Muscle-Derived Radiomic Features for Hypertrophic Cardiomyopathy versus Hypertensive Heart Disease Classification. Diagnostics 2023, 13, 1544. https://doi.org/10.3390/diagnostics13091544
Liu Q, Lu Q, Chai Y, Tao Z, Wu Q, Jiang M, Pu J. Papillary-Muscle-Derived Radiomic Features for Hypertrophic Cardiomyopathy versus Hypertensive Heart Disease Classification. Diagnostics. 2023; 13(9):1544. https://doi.org/10.3390/diagnostics13091544
Chicago/Turabian StyleLiu, Qiming, Qifan Lu, Yezi Chai, Zhengyu Tao, Qizhen Wu, Meng Jiang, and Jun Pu. 2023. "Papillary-Muscle-Derived Radiomic Features for Hypertrophic Cardiomyopathy versus Hypertensive Heart Disease Classification" Diagnostics 13, no. 9: 1544. https://doi.org/10.3390/diagnostics13091544
APA StyleLiu, Q., Lu, Q., Chai, Y., Tao, Z., Wu, Q., Jiang, M., & Pu, J. (2023). Papillary-Muscle-Derived Radiomic Features for Hypertrophic Cardiomyopathy versus Hypertensive Heart Disease Classification. Diagnostics, 13(9), 1544. https://doi.org/10.3390/diagnostics13091544