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1. Introduction

Optical coherence tomography (OCT) is a revolutionary imaging technology in the
field of ophthalmic medical imaging. It is a low-radiation, non-invasive, rapid, and high-
resolution imaging technique. Since OCT was invented in 1991, it has been widely used
for vivo examination of the eye, especially of the fundus [1]. OCT is based on the prin-
ciple of coherence scanning interferometry, during which reflected and scattered light is
collected from tissues at different depths, and the collected scanning duration and the re-
constructed signals are analyzed to construct two- or three-dimensional (3D) images. OCT
has progressed through three generations (time-domain [TD], spectral-domain [SD], and
swept-source [SS] OCT), with improvements in the resolution, penetration depth, speed of
scanning, and mode of image acquisition [1]. SD-OCT is by far the predominant imaging
modality in ophthalmic clinical practice and is widely accepted by retinal specialists. How-
ever, the main limitation of SD-OCT is the imaging depth (1.8–2.2 mm). It is insufficient for
ultra-widefield retina imaging, imaging of highly myopic eyes, imaging of posterior scleral
staphylomas, and imaging of the anterior segment, all of which are substantially improved
with SS-OCT. The latest SS-OCT systems mainly involve vertical-cavity surface-emitting
lasers (VCSELs). They surpass SD-OCT in all aspects, including the scanning speed, sensi-
tivity, and imaging depth [2]. They are gradually becoming indispensable in the diagnosis
of, and follow-up for, ophthalmic diseases [3].

2. Characteristics of SS-OCT
2.1. Speed

The core device in SS-OCT is a frequency-swept laser source, which emits coherent,
narrow-band light. It has the advantages of single-point scanning, characteristic of TD-
OCT, and fast imaging, characteristic of SD-OCT, which are integral for en face OCT and
OCT angiography (OCTA). SS-OCT also has an improved speed of data acquisition and
computerized data-processing capabilities. At present, commercial SS-OCT offers speeds of
100,000, 200,000, and 400,000 sweeps per second. In 2019, Intalight launched the first device
in ophthalmic SS-OCT capable of 200,000 sweeps per second (SVision VG200, SVision
Imaging, Ltd., Luoyang, China) to obtain China National Medical Products Administration
clearance. Carl Zeiss established an ophthalmic SS-OCT device capable of 200,000 sweeps
per second (Elite 9000, Carl Zeiss AG, Oberkochen, Germany) in the EU and US five months
later. In 2020, TowardPi unveiled their ophthalmic SS-OCT system, capable of 400,000
A-scans per second (BM-400K BMizar, TowardPi Medical Technology Ltd., Beijing, China),
and started marketing it in China one year later. SS-OCTA provides wider and finer scans
than SD-OCTA, and even though its range is several times wider than that of SD-OCTA,
local details remain clear when the image is enlarged. Figure 1 is an example of a healthy
eye examined via high-resolution, widefield SS-OCTA with a speed of 200,000 sweeps per

Diagnostics 2024, 14, 47. https://doi.org/10.3390/diagnostics14010047 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics14010047
https://doi.org/10.3390/diagnostics14010047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-7966-9713
https://doi.org/10.3390/diagnostics14010047
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics14010047?type=check_update&version=2


Diagnostics 2024, 14, 47 2 of 11

second and a range of 12 × 12 mm (1024 × 1024 pixels). The central area displays copasetic
detail of macular capillaries, which is barely possible with SD-OCTA.
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2.2. Signal-to-Noise Ratio and Sensitivity 
In SS-OCT, a balanced photodetector is used to reduce the signal loss of light. It has 

a comparatively facile structure, which efficiently restrains common mode noise. As a con-
sequence, even at the same scanning speed, SS-OCT yields a better sensitivity and higher 
image signal-to-noise ratio (SNR) than SD-OCT, even in the case of weak OCT signals due 
to refractive medium turbidity, such as that caused by cataracts or vitreous hemorrhage. 
This latter shortcoming is overcome by the penetration depth and sensitivity of the tech-
nique. Figure 2 reveals the difference between SD- and SS-OCT in acquiring retinal images 
from a patient with refractive medium turbidity. SS-OCT is better able to display the char-
acteristics of tissue structures, improving clinical diagnosis. 

 
Figure 2. B-scan images of a patient with refractive medium turbidity and a huge choroidal colo-
boma. (A) Spectral-domain OCT (SD-OCT) image showing a part of the coloboma, but the structure 
is blurry (The green arrow in the left image indicated the orientation of B scan OCT in the right 
image). (B) An oblique SS-OCT scan of the same choroidal coloboma and the macular area. Even the 
posterior scleral space can be visualized. (C) A B-scan SS-OCT image with a range of 20 × 20 mm 
showing the full extent of the choroidal coloboma. 

Figure 1. A healthy eye examined via high-resolution, widefield swept-source (SS) optical coherence
tomography angiography (OCTA), with a range of 12 × 12 mm. The central area displays copasetic
detail of macular capillaries.

2.2. Signal-to-Noise Ratio and Sensitivity

In SS-OCT, a balanced photodetector is used to reduce the signal loss of light. It has
a comparatively facile structure, which efficiently restrains common mode noise. As a
consequence, even at the same scanning speed, SS-OCT yields a better sensitivity and
higher image signal-to-noise ratio (SNR) than SD-OCT, even in the case of weak OCT
signals due to refractive medium turbidity, such as that caused by cataracts or vitreous
hemorrhage. This latter shortcoming is overcome by the penetration depth and sensitivity
of the technique. Figure 2 reveals the difference between SD- and SS-OCT in acquiring
retinal images from a patient with refractive medium turbidity. SS-OCT is better able to
display the characteristics of tissue structures, improving clinical diagnosis.
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Figure 2. B-scan images of a patient with refractive medium turbidity and a huge choroidal coloboma.
(A) Spectral-domain OCT (SD-OCT) image showing a part of the coloboma, but the structure is blurry
(The green arrow in the left image indicated the orientation of B scan OCT in the right image). (B) An
oblique SS-OCT scan of the same choroidal coloboma and the macular area. Even the posterior scleral
space can be visualized. (C) A B-scan SS-OCT image with a range of 20 × 20 mm showing the full
extent of the choroidal coloboma.
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2.3. Penetration Depth

Biomedical optics requires imaging at a wavelength of 600 to 1000 nm, as tissue
absorption is low within this range. SD-OCT is mainly performed at a wavelength of
800 to 900 nm. SS-OCT is mainly performed in the near-infrared radiation spectrum, at
wavelengths of 1020 to 1080 nm, as the water absorption coefficient is low at a wavelength
of 1060 nm [4], which contributes to better imaging of tissues with a low water content.
The improved penetration depth of SS-OCT with less scattering is attributable to its longer
wavelength used for imaging. The images in Figure 3 were obtained for a patient with
refractive medium turbidity and a macular hole. On the SD-OCT images, the retina
and choroidal folds are visible over a certain range, whereas the SS-OCT images display
everything from the vitreous to the choroid layer. Currently, most SS-OCT instruments
are based on VCSELs, which have a coherence length exceeding 100 mm. Coupled with
high-speed data acquisition, they allow steady imaging at a depth of 45 mm in tissue.
Therefore, SS-OCT provides a 16 mm field of view in full-eye imaging, as illustrated in
Figure 4. This is also the basis for the 3D imaging of the anterior segment.
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Figure 3. B-scan images of a patient with slightly refractive medium turbidity and a macular hole.
(A,C) SD-OCT images revealing a macular hole and a part of the detached retina; the choroid is
not visible because the retina detachment is too high. (B,D) SS-OCT images with a depth of 6 mm
and width of 24 mm, clearly visualizing the retinal detachment, as well as the choroid and part of
the sclera.
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Figure 4. Full-eye, super-depth SS-OCT, achieving an imaging depth up to 40 mm and a 16 mm field
of view. CT, cornea thickness; ACD, anterior chamber depth; LT, lens thickness; AXL, axial length;
VIT, vitreous.
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2.4. Field of View

SD-OCT has a limited scope of examinations, and folding artifacts are an inescapable
problem because of the technique’s limited imaging depth. When the width of the examined
field is expanded, the OCT system requires a deeper range to surround the whole field
and avoid folding artifacts. SS-OCT overcomes this problem by enhancing the detection
resolution of the interference spectrum. Consequently, it has an impressive range and
quality, as demonstrated in Figure 5.
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Figure 5. B-scan images of a patient with proliferative diabetic retinopathy. (A) SD-OCT showing
retinal detachment, with the large proliferative membranes, causing a folding artifact. The choroidal
layer is incompletely captured. SD-OCT was unable to capture the whole proliferating membrane
and the choroidal tissue below because the retinal bulge was too high (The green arrow in the left
image indicated the orientation of B scan OCT in the right image). (B) SS-OCT displays an almost
identical position. It reveals details of the retina and choroid, even including the choroidal–scleral
boundary and part of the sclera. The pre-retinal proliferating membrane extending into the vitreous
cavity and the retinal detachment on the nasal side of the optic disk are also clearly visible.

2.5. Accurate Segmentation Algorithm

OCTA is one of the considerable advances in the OCT field [5]. The main principle
of OCTA is the detection of the signal reflection of erythrocyte movement in the vessels.
The reflected signal changes as the erythrocytes move, whereas the signal does not change
for static tissues. Through scanning the same position at different moments, calculating
the differences in the OCT signals, and suppressing the static tissue to the shot-noise limit,
the blood vessels are imaged. The segmentation algorithm is indispensable to the overall
OCTA algorithm. As the human retina has diverse vascular networks at different layers,
each layer needs to be thoroughly examined for an accurate diagnosis. Previously, the
segmentation algorithm commonly used was the “graph cut” algorithm. That algorithm is
suitable for the segmentation of healthy retinas with continuous and relatively flat layers.
However, in pathological cases, layers may be rough, uneven, thinned or thickened, and
even fractured. In such cases, the graph cut algorithm may not be able to distinguish
between the various layers. SS-OCT is based on a deep learning algorithm and an artificial
intelligence (AI) autonomic machine learning model. In terms of computational speed, with
the support of high-end graphics processors, it is no less efficient than traditional algorithms.
Figures 6 and 7 are two examples of such images. SS-OCTA also provides quantitative
metrics, such as the foveal avascular zone, vascular density (VD), and choroidal vascularity
index. Accurate quantization is based on accurate segmentation algorithms.
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imaging depth of 16.2 mm for the anterior segment, as demonstrated in Figure 8. SS-OCT 
examination is faster and more reproducible than previous generations of OCT. For pa-
tients with ocular trauma who cannot be examined using ultrasound biomicroscopy, SS-
OCT can be used to discover small injuries to the lens and iris that may be overlooked 
when using slit-lamp examination. 

Figure 6. Ultra-wide (24 × 20 mm) SS-OCTA image of a patient with diabetic retinopathy revealing
retinal neovascularization at the infratemporal vascular arch, growing into the vitreous. (A) Superfi-
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Figure 7. SS-OCTA image of a patient with polypoidal choroidal vasculopathy. (A) Infrared fundus
image. (B) Normal retinal superficial vascular network. (C) SS-OCTA demonstrating choroidal
neovascularization and a polypoidal lesion under the elevated pigment epithelial detachment (PED)
in the avascular layer of the retina. (D) The choriocapillaris exhibits a branching neovascular
network. SS-OCT clearly reveals the vascular structure within the PED, which was barely revealed
using SD-OCT.

3. New Applications of Ultra-Widefield SS-OCT and SS-OCTA
3.1. Anterior Segment SS-OCT

SS-OCT not only enables the examination of the cornea, anterior chamber angle,
and iris, as with the previous generations of anterior segment OCT, but also allows the
visualization of the entire crystal lens and the vitreous behind it. It yields an unprecedented
imaging depth of 16.2 mm for the anterior segment, as demonstrated in Figure 8. SS-OCT
examination is faster and more reproducible than previous generations of OCT. For patients
with ocular trauma who cannot be examined using ultrasound biomicroscopy, SS-OCT can
be used to discover small injuries to the lens and iris that may be overlooked when using
slit-lamp examination.
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Figure 8. SS-OCT with a depth of 16.2 mm for the anterior segment.

3.2. Anterior Segment 3D-OCT

The acquisition efficiency of SS-OCT is tremendously improved over that of SD-OCT.
That ultrafast speed, together with efficient horizontal and longitudinal scanning, enables
the creation of 3D images, as displayed in Figure 9. It allows for a more intuitive and stereo-
scopic view of the positional relationships between the structures of the anterior segment.
The 3D imaging of the anterior segment may greatly improve ophthalmic imaging diagno-
sis for conditions such as intraocular lens implantation (Figure 10) and anterior chamber
space-occupying lesions. Anterior 3D-OCT is helpful in enabling precise customization in
refractive surgeries, cataract intraocular lens implantation, and assessing the anterior angle
and aqueous outflow for glaucoma diagnosis and monitoring [6].
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is clear. (B) The frontal view. (C) The side view, in which the entire side of the iris is clearly visible
(white arrow), as well as the lower interface of the IOL.

3.3. Anterior-Segment OCTA

SS-OCTA can penetrate more easily through the dense pigment of the iris than previous
generations of OCTA, clearly visualizing the iris flow. In addition, with the help of AI
segmentation, this technique easily clarifies the vessels around the limbus and on the iris
(Figure 11). Anterior OCTA has a similar ability to indocyanine angiography to reveal
corneal vascularization and is superior to fluorescein angiography in revealing iris vascular
morphology [7].
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However, quantification via anterior segment angiography is still under exploration.
To date, two modalities of quantitative measurements have been developed, “grid” and
“EDTRS grid”, each displaying the VD in the grid (Figure 12). However, these modalities
do not enable meaningful zoning or provide cues, such as the quantification of the fundus.
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3.4. Ultra-Widefield OCTA

SS-OCTA modalities with a scanning frequency of 200,000 sweeps per second or
more enable ultra-wide-angle imaging. Currently, SS-OCTA modalities with a scanning
frequency of 400,000 sweeps per second can yield an image of 29 × 24 mm (inner an-
gle = 150◦) with a single scan, which is larger than that yielded using ultra-widefield (102◦)
fluorescence angiography (Figure 13). A montage of a field of view > 220◦ may provide
much more diagnostic information for diseases characterized by extensive lesions in a non-
invasive and more efficient way than imaging with an Optos-Panoramic 200 scanning laser
ophthalmoscope (Figures 14 and 15). It may also lead to a more complete understanding of
the nuanced variations in the human eye.
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Figure 15. An OCTA image of the choroidal layer as a montage of five ultra-wide angle OCTA
images, extending the range to 220◦ (inner angle). The vortex vein ampullae in all four quadrants are
clearly visible.

3.5. Optic-Nerve-Head OCTA

Optic-nerve-head OCTA is widely used in the assessment of diseases that cause
changes in the optic disc, such as glaucoma, anterior ischemic optic neuropathies, and
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papilledema. Stratification of the optic disc blood flow via SS-OCTA maintains the tradi-
tional OCTA division, including the superficial capillary plexus, deep capillary plexus, and
radial peripapillary plexus (Figure 16). It can also be used to quantify the perfusion and
VD of circumpapillary regions or the entire optic nerve head. However, the current role of
optic-nerve-head OCTA seems to be more supportive and used for follow-up rather than
diagnosis [8].
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Figure 16. SS-OCTA images of the optic nerve head and corresponding vascular density. (A,D) Radial
peripapillary capillary (RPC). (B,E) Superficial capillary plexus (SCP). (C,F) Deep capillary plexus
(DCP). Pink and green arrows indicated the orientation of B scan OCT.

4. Future Development

OCT was invented only 30 years ago; as such, it is still a nascent technology compared
to traditional imaging modalities, such as ultrasound and computed tomography. It has
been applied in clinical practice for less than 20 years, but it has had a revolutionary and
long-term impact on ophthalmic imaging diagnosis. The technique is still being improved,
with the third generation currently gaining traction. The perfection of the core components
will improve the speed, penetration depth, image width, and cost of ophthalmic OCT.
Additionally, the rapid progression of AI has also brought revolutionary developments
to medical imaging. Many manufacturers have added AI to their image analysis and
quantification software as a critical component, optimizing image interpretation. It frees
doctors from the routine task of image interpretation and reporting. It can also help human
doctors avoid missing precursor lesions or minor lesions.

The two key points that remain to be developed in OCTA are quantification and artifact
removal. OCTA blood-flow quantification and related parameters allow doctors to more accu-
rately describe the current status of disease and the level of lesion changes, facilitating meticulous
diagnosis, follow-up, and treatment. However, different manufacturers use different algorithms,
yielding considerably different results. Moreover, projection artifacts are a critical annoyance that
directly affects doctors’ judgment. As the mechanism of artifact formation is very complex, the
algorithms currently used to remove them are all based on empirical formulas. A major challenge
is the removal of artifacts while retaining key information. With the help of AI, quantitative
diagnosis and artifact reduction via angiography are likely to quickly progress.

The retina is the only organ in which the structure of the microcirculation and nerve
fibers can be directly observed. OCTA, as the only non-invasive vascular imaging tech-
nology, will likely become very valuable in the diagnosis of, and follow-up for, various
systemic diseases, especially cardiovascular and cerebrovascular diseases, such as hyper-
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tension, hyperlipidemia, and Alzheimer disease [9]. The future prospects for OCT imaging
technology are great. Combined with AI, it will bring epoch-making progress in the field
of ophthalmic imaging-based diagnosis and will be of great service to humanity.
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