Artificial Intelligence in Predicting Microsatellite Instability and KRAS, BRAF Mutations from Whole-Slide Images in Colorectal Cancer: A Systematic Review
Abstract
:1. Introduction
1.1. Epidemiology
1.2. Treatment
1.3. d-MMR/MSI Status
1.4. KRAS and BRAF Mutational Status
1.5. Artificial Intelligence Applied to Digital Pathology
1.6. Performance Evaluation
1.7. Aim of the Review
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Data Extraction and Assessment of the Risk
3. Results
3.1. Flowchart
3.2. Prediction of d-MMR/MSI Status
3.3. Prediction of KRAS and BRAF Mutations
3.4. Assessment of the Risk of Bias and Applicability
4. Discussion
4.1. Summary of the Review
4.2. Present Review Limitations
4.3. Limits of Traditional Techniques, Interest in Non-Contributive and Discordant Cases and AI Tools
4.4. AI Approaches Bias and Applicability
4.5. Radiomics Interest Alone and Combined with Pathomics
4.6. The Application of an Artificial Intelligence Tool
4.7. Interpretability
4.8. Artificial Intelligence in Routine and Ethics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | accuracy |
AI | artificial intelligence |
AUC | area under the curve |
CNN | convoluted neural network |
CRC | colorectal cancer |
d-MMR/p-MMR | deficient/proficient MMR |
NN | neural network |
PCR | polymerase chain reaction |
ROC | receiver operating characteristic |
WSI | whole slide image |
References
- Baidoun, F.; Elshiwy, K.; Elkeraie, Y.; Merjaneh, Z.; Khoudari, G.; Sarmini, M.T.; Gad, M.; Al-Husseini, M.; Saad, A. Colorectal Cancer Epidemiology: Recent Trends and Impact on Outcomes. Curr. Drug Targets 2021, 22, 998–1009. [Google Scholar] [PubMed]
- Mattiuzzi, C.; Sanchis-Gomar, F.; Lippi, G. Concise update on colorectal cancer epidemiology. Ann. Transl. Med. 2019, 7, 609. [Google Scholar] [CrossRef]
- Argilés, G.; Tabernero, J.; Labianca, R.; Hochhauser, D.; Salazar, R.; Iveson, T.; Laurent-Puig, P.; Quirke, P.; Yoshino, T.; Taieb, J.; et al. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1291–1305. [Google Scholar] [CrossRef] [PubMed]
- Johdi, N.A.; Sukor, N.F. Colorectal Cancer Immunotherapy: Options and Strategies. Front. Immunol. 2020, 11, 1624. [Google Scholar] [CrossRef] [PubMed]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA 2021, 325, 669–685. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Ramos, M.A. Satellite DNA: An Evolving Topic. Genes 2017, 8, 230. [Google Scholar] [CrossRef]
- Pećina-Šlaus, N.; Kafka, A.; Salamon, I.; Bukovac, A. Mismatch Repair Pathway, Genome Stability and Cancer. Front. Mol. Biosci. 2020, 7, 122. [Google Scholar] [CrossRef]
- Mann, S.A.; Cheng, L. Microsatellite instability and mismatch repair deficiency in the era of precision immuno-oncology. Expert Rev. Anticancer Ther. 2020, 20, 1–4. [Google Scholar] [CrossRef]
- Luchini, C.; Bibeau, F.; Ligtenberg, M.J.L.; Singh, N.; Nottegar, A.; Bosse, T.; Miller, R.; Riaz, N.; Douillard, J.-Y.; Andre, F.; et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: A systematic review-based approach. Ann. Oncol. 2019, 30, 1232–1243. [Google Scholar] [CrossRef]
- Evaluation du Statut MMR Tumoral—Synthèse—2021—Ref: RECOSYNTMMR21. Available online: https://www.e-cancer.fr/Expertises-et-publications/Catalogue-des-publications/Evaluation-du-statut-MMR-tumoral-synthese-2021 (accessed on 25 March 2023).
- Nguyen, H.T.; Le, D.T.; Duong, Q.H.; Tatipamula, V.B.; Van Nguyen, B. High frequency of microsatellite instability and its substantial co-existence with KRAS and BRAF mutations in Vietnamese patients with colorectal cancer. Oncol. Lett. 2021, 21, 41. [Google Scholar] [CrossRef]
- Larki, P.; Gharib, E.; Yaghoob Taleghani, M.; Khorshidi, F.; Nazemalhosseini-Mojarad, E.; Asadzadeh Aghdaei, H. Coexistence of KRAS and BRAF Mutations in Colorectal Cancer: A Case Report Supporting The Concept of Tumoral Heterogeneity. Cell J. Yakhteh 2017, 19, 113–117. [Google Scholar] [CrossRef]
- Basu, G.D.; Xiu, J.; Arguello, D.; Feldman, R.A.; Millis, S.Z.; Bender, R.P.; Gatalica, Z.; Paul, L.; Braiteh, F.S. Prevalence of KRAS, BRAF, NRAS, PIK3CA, and PTEN alterations in colorectal cancer: Analysis of a large international cohort of 5900 patients. J. Clin. Oncol. 2014, 32, 399. [Google Scholar] [CrossRef]
- Gong, J.; Cho, M.; Sy, M.; Salgia, R.; Fakih, M. Molecular profiling of metastatic colorectal tumors using next-generation sequencing: A single-institution experience. Oncotarget 2017, 8, 42198–42213. [Google Scholar] [CrossRef] [PubMed]
- Zarkavelis, G.; Boussios, S.; Papadaki, A.; Katsanos, K.H.; Christodoulou, D.K.; Pentheroudakis, G. Current and future biomarkers in colorectal cancer. Ann. Gastroenterol. 2017, 30, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Yaeger, R.; Cercek, A.; O’Reilly, E.M.; Reidy, D.L.; Kemeny, N.; Wolinsky, T.; Capanu, M.; Gollub, M.J.; Rosen, N.; Berger, M.F.; et al. Pilot trial of combined BRAF and EGFR inhibition in BRAF-mutant metastatic colorectal cancer patients. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015, 21, 1313–1320. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, M.; Golshan, H.; Hasanzadeh, R.P.R. Non-local adaptive hysteresis despeckling approach for medical ultrasound images. Biomed. Signal Process. Control 2023, 85, 105042. [Google Scholar] [CrossRef]
- Rajabi, M.; Hasanzadeh, R.P.R. A Modified Adaptive Hysteresis Smoothing Approach for Image Denoising Based on Spatial Domain Redundancy. Sens. Imaging 2021, 22, 42. [Google Scholar] [CrossRef]
- Madabhushi, A.; Lee, G. Image analysis and machine learning in digital pathology: Challenges and opportunities. Med. Image Anal. 2016, 33, 170–175. [Google Scholar] [CrossRef]
- Schmauch, B.; Romagnoni, A.; Pronier, E.; Saillard, C.; Maillé, P.; Calderaro, J.; Kamoun, A.; Sefta, M.; Toldo, S.; Zaslavskiy, M.; et al. A deep learning model to predict RNA-Seq expression of tumours from whole slide images. Nat. Commun. 2020, 11, 3877. [Google Scholar] [CrossRef]
- Echle, A.; Ghaffari Laleh, N.; Quirke, P.; Grabsch, H.I.; Muti, H.S.; Saldanha, O.L.; Brockmoeller, S.F.; van den Brandt, P.A.; Hutchins, G.G.A.; Richman, S.D.; et al. Artificial intelligence for detection of microsatellite instability in colorectal cancer-a multicentric analysis of a pre-screening tool for clinical application. ESMO Open 2022, 7, 100400. [Google Scholar] [CrossRef]
- Jiang, W.; Mei, W.-J.; Xu, S.-Y.; Ling, Y.-H.; Li, W.-R.; Kuang, J.-B.; Li, H.-S.; Hui, H.; Li, J.-B.; Cai, M.-Y.; et al. Clinical actionability of triaging DNA mismatch repair deficient colorectal cancer from biopsy samples using deep learning. eBioMedicine 2022, 81, 104120. [Google Scholar] [CrossRef] [PubMed]
- Echle, A.; Grabsch, H.I.; Quirke, P.; van den Brandt, P.A.; West, N.P.; Hutchins, G.G.A.; Heij, L.R.; Tan, X.; Richman, S.D.; Krause, J.; et al. Clinical-Grade Detection of Microsatellite Instability in Colorectal Tumors by Deep Learning. Gastroenterology 2020, 159, 1406–1416.e11. [Google Scholar] [CrossRef]
- Krause, J.; Grabsch, H.I.; Kloor, M.; Jendrusch, M.; Echle, A.; Buelow, R.D.; Boor, P.; Luedde, T.; Brinker, T.J.; Trautwein, C.; et al. Deep learning detects genetic alterations in cancer histology generated by adversarial networks. J. Pathol. 2021, 254, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, R.; Long, J.; Longacre, T.; Peng, L.; Berry, G.; Martin, B.; Higgins, J.; Rubin, D.L.; Shen, J. Deep learning model for the prediction of microsatellite instability in colorectal cancer: A diagnostic study. Lancet Oncol. 2021, 22, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Yang, F.; Ma, S.-C.; Liu, L.; Zhao, Y.; Li, Y.; Wu, D.-H.; Wang, T.; Lu, W.-J.; Cai, W.-J.; et al. Development and interpretation of a pathomics-based model for the prediction of microsatellite instability in Colorectal Cancer. Theranostics 2020, 10, 11080–11091. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Song, I.H.; Jang, H.-J. Feasibility of deep learning-based fully automated classification of microsatellite instability in tissue slides of colorectal cancer. Int. J. Cancer 2021, 149, 728–740. [Google Scholar] [CrossRef] [PubMed]
- Kather, J.N.; Heij, L.R.; Grabsch, H.I.; Loeffler, C.; Echle, A.; Muti, H.S.; Krause, J.; Niehues, J.M.; Sommer, K.A.J.; Bankhead, P.; et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat. Cancer 2020, 1, 789–799. [Google Scholar] [CrossRef]
- Zhang, R.; Osinski, B.L.; Taxter, T.J.; Perera, J.; Lau, D.J.; Khan, A.A. Adversarial deep learning for microsatellite instability prediction from histopathology slides. In Proceedings of the 1st Conference on Medical Imaging with Deep Learning (MIDL 2018), Amsterdam, The Netherlands, 4–6 July 2018; pp. 4–6. [Google Scholar]
- Schirris, Y.; Gavves, E.; Nederlof, I.; Horlings, H.M.; Teuwen, J. DeepSMILE: Contrastive self-supervised pre-training benefits MSI and HRD classification directly from H&E whole-slide images in colorectal and breast cancer. Med. Image Anal. 2022, 79, 102464. [Google Scholar] [CrossRef]
- Bilal, M.; Raza, S.E.A.; Azam, A.; Graham, S.; Ilyas, M.; Cree, I.A.; Snead, D.; Minhas, F.; Rajpoot, N.M. Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: A retrospective study. Lancet Digit. Health 2021, 3, e763–e772. [Google Scholar] [CrossRef]
- Lou, J.; Xu, J.; Zhang, Y.; Sun, Y.; Fang, A.; Liu, J.; Mur, L.A.J.; Ji, B. PPsNet: An improved deep learning model for microsatellite instability high prediction in colorectal cancer from whole slide images. Comput. Methods Programs Biomed. 2022, 225, 107095. [Google Scholar] [CrossRef]
- Chang, X.; Wang, J.; Zhang, G.; Yang, M.; Xi, Y.; Xi, C.; Chen, G.; Nie, X.; Meng, B.; Quan, X. Predicting colorectal cancer microsatellite instability with a self-attention-enabled convolutional neural network. Cell Rep. Med. 2023, 4, 100914. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.-J.; Lee, A.; Kang, J.; Song, I.H.; Lee, S.H. Prediction of clinically actionable genetic alterations from colorectal cancer histopathology images using deep learning. World J. Gastroenterol. 2020, 26, 6207–6223. [Google Scholar] [CrossRef]
- Schrammen, P.L.; Ghaffari Laleh, N.; Echle, A.; Truhn, D.; Schulz, V.; Brinker, T.J.; Brenner, H.; Chang-Claude, J.; Alwers, E.; Brobeil, A.; et al. Weakly supervised annotation-free cancer detection and prediction of genotype in routine histopathology. J. Pathol. 2022, 256, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Saillard, C.; Dubois, R.; Tchita, O.; Loiseau, N.; Garcia, T.; Adriansen, A.; Carpentier, S.; Reyre, J.; Enea, D.; von Loga, K.; et al. Validation of MSIntuit as an AI-based pre-screening tool for MSI detection from colorectal cancer histology slides. Nat. Commun. 2023, 14, 6695. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Luchini, C.; Veronese, N.; Nottegar, A.; Shin, J.I.; Gentile, G.; Granziol, U.; Soysal, P.; Alexinschi, O.; Smith, L.; Solmi, M. Assessing the quality of studies in meta-research: Review/guidelines on the most important quality assessment tools. Pharm. Stat. 2021, 20, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Bristol U of. QUADAS-2 [Internet]. University of Bristol. Available online: https://www.bristol.ac.uk/population-health-sciences/projects/quadas/quadas-2/ (accessed on 29 December 2022).
- Fernandez-Felix, B.M.; López-Alcalde, J.; Roqué, M.; Muriel, A.; Zamora, J. CHARMS and PROBAST at your fingertips: A template for data extraction and risk of bias assessment in systematic reviews of predictive models. BMC Med. Res. Methodol. 2023, 23, 44. [Google Scholar] [CrossRef] [PubMed]
- Wolff, R.F.; Moons, K.G.M.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S.; PROBAST Group. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann. Intern. Med. 2019, 170, 51–58. [Google Scholar] [CrossRef]
- Iacopetta, B.; Grieu, F.; Amanuel, B. Microsatellite instability in colorectal cancer. Asia Pac. J. Clin. Oncol. 2010, 6, 260–269. [Google Scholar] [CrossRef]
- Fu, Y.; Jung, A.W.; Torne, R.V.; Gonzalez, S.; Vöhringer, H.; Shmatko, A.; Yates, L.R.; Jimenez-Linan, M.; Moore, L.; Gerstung, M. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat. Cancer 2020, 1, 800–810. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, E.Y.; Luchini, C.; Eccher, A.; Tizaoui, K.; Shin, J.I.; Lim, B.J. Artificial Intelligence for Predicting Microsatellite Instability Based on Tumor Histomorphology: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 2462. [Google Scholar] [CrossRef]
- Sounderajah, V.; Ashrafian, H.; Rose, S.; Shah, N.H.; Ghassemi, M.; Golub, R.; Kahn, C.E.; Esteva, A.; Karthikesalingam, A.; Mateen, B.; et al. A quality assessment tool for artificial intelligence-centered diagnostic test accuracy studies: QUADAS-AI. Nat. Med. 2021, 27, 1663–1665. [Google Scholar] [CrossRef] [PubMed]
- Cabitza, F.; Campagner, A. The need to separate the wheat from the chaff in medical informatics: Introducing a comprehensive checklist for the (self)-assessment of medical AI studies. Int. J. Med. Inf. 2021, 153, 104510. [Google Scholar] [CrossRef] [PubMed]
- Acs, B.; Rantalainen, M.; Hartman, J. Artificial intelligence as the next step towards precision pathology. J. Intern. Med. 2020, 288, 62–81. [Google Scholar] [CrossRef] [PubMed]
- Bera, K.; Schalper, K.A.; Rimm, D.L.; Velcheti, V.; Madabhushi, A. Artificial intelligence in digital pathology—New tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 2019, 16, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Nagasaka, T.; Hamelin, R.; Boland, C.R. An optimized pentaplex PCR for detecting DNA mismatch repair-deficient colorectal cancers. PLoS ONE 2010, 5, e9393. [Google Scholar] [CrossRef]
- Loughrey, M.B.; McGrath, J.; Coleman, H.G.; Bankhead, P.; Maxwell, P.; McGready, C.; Bingham, V.; Humphries, M.P.; Craig, S.G.; McQuaid, S.; et al. Identifying mismatch repair-deficient colon cancer: Near-perfect concordance between immunohistochemistry and microsatellite instability testing in a large, population-based series. Histopathology 2021, 78, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xu, J.; Wang, A.; Chen, Y.; Wang, T.; Chen, D.; Zhang, J.; Brismar, T.B. Systematic review of machine learning-based radiomics approach for predicting microsatellite instability status in colorectal cancer. Radiol. Med. 2023, 128, 136–148. [Google Scholar] [CrossRef]
- Fan, S.; Li, X.; Cui, X.; Zheng, L.; Ren, X.; Ma, W.; Ye, Z. Computed Tomography-Based Radiomic Features Could Potentially Predict Microsatellite Instability Status in Stage II Colorectal Cancer: A Preliminary Study. Acad. Radiol. 2019, 26, 1633–1640. [Google Scholar] [CrossRef]
- WHO Classification of Tumours Editorial Board. Digestive System Tumours, 5th ed.; WHO Classification of Tumours Series; International Agency for Research on Cancer: Lyon, France, 2019; Volume 1. [Google Scholar]
- Debunne, H.; Ceelen, W. Mucinous differentiation in colorectal cancer: Molecular, histological and clinical aspects. Acta Chir. Belg. 2013, 113, 385–390. [Google Scholar] [CrossRef]
- Price, W.N. Big data and black-box medical algorithms. Sci. Transl. Med. 2018, 10, eaao5333. [Google Scholar] [CrossRef] [PubMed]
- Saillard, C.; Schmauch, B.; Laifa, O.; Moarii, M.; Toldo, S.; Zaslavskiy, M.; Pronier, E.; Laurent, A.; Amaddeo, G.; Regnault, H.; et al. Predicting Survival After Hepatocellular Carcinoma Resection Using Deep Learning on Histological Slides. Hepatol. Baltim. Md 2020, 72, 2000–2013. [Google Scholar] [CrossRef] [PubMed]
- Hood, L.; Friend, S.H. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat. Rev. Clin. Oncol. 2011, 8, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Toll, D.B.; Janssen, K.J.M.; Vergouwe, Y.; Moons, K.G.M. Validation, updating and impact of clinical prediction rules: A review. J. Clin. Epidemiol. 2008, 61, 1085–1094. [Google Scholar] [CrossRef]
- Ahn, S.; Woo, J.W.; Kim, H.; Cho, E.Y.; Kim, A.; Kim, J.Y.; Kim, C.; Lee, H.J.; Lee, J.S.; Bae, Y.K.; et al. Programmed Death Ligand 1 Immunohistochemistry in Triple-Negative Breast Cancer: Evaluation of Inter-Pathologist Concordance and Inter-Assay Variability. J. Breast Cancer 2021, 24, 266–279. [Google Scholar] [CrossRef]
Auteur | Year | Molecular Alteration | Data set | Neural Network | Magnification | Internal Validation | External Validation | Performance Metrics | Reference Molecular Status |
---|---|---|---|---|---|---|---|---|---|
Zhang et al. [29] | 2018 | MSI | TCGA | Inception-V3 | x20 magnification | Random split | no | TCGA CRC Accuracy: 98.3% | not specified |
(CRC n = 585) | |||||||||
Schmauch et al. [20] | 2019 | ||||||||
MSI | TCGA CRC FFPE | HE2RNA with ResNet50 | x40 magnification | 3-fold cross validation | no | PCR | |||
(n = 465 pts) | TCGA CRC FFPE: 0.82 | ||||||||
Echle et al. [23] | 2020 | random split | no | MSIDETECT CRC: 0.92 (0.90–0.93) | DACHS: PCR(1) | ||||
MSIDETECT CRC | Shuffle net | MSIDETECT CRC: 0.92 (0.91–0.93) | TCGA: PCR | ||||||
(n = 6406 pts) | 3-fold cross validation | YCR-BCIP-RESECT (n = 771 pts): 0.96 | QUASAR and NLCS: IHC (3) | ||||||
MSI | not specified | (0.93–0.98) | YCR-BCIP: IHC | ||||||
yes | YCR-BCIP-BIOPSY (n = 1531 pts): 0.78 | ||||||||
(0.75–0.81) | |||||||||
YCR-BCIP-BIOPSY | 3-fold cross validation | no | YCR-BCIP-BIOPSY: 0.89 (0.88–0.91) | ||||||
(n = 1531 pts) | |||||||||
Kather et al. [28] | 2020 | MSI | TCGA CRC FFPE | ShuffleNet | x20 magnification | 3-fold cross validation | yes | DACHS FFPE (n = 379 pts): 0.89 (0.88–0.92) | TCGA: PCR |
(n = 426 pts) | DACHS: PCR (1) | ||||||||
Cao et al. [26] | 2020 | TCGA-COAD Frozen | Random split | yes | TCGA-COAD: 0.8848 (0.8185–0.9512) | ||||
Total number including test cohort: | Asian-CRC FFPE (n = 785 WSIs): 0.6497 | ||||||||
429 WSIs | (0.6061–0.6933) | ||||||||
TCGA-COAD Frozen (90%) + | no | Asian-CRC FFPE (n = 785 WSIs): 0.8504 | TCGA-COAD: NGS (2) | ||||||
Asian-CRC FFPE (10%) | (0.7591–0.9323) | Asian-CRC: PCR | |||||||
TCGA-COAD Frozen (70%) + | no | Asian-CRC FFPE (n = 785 WSIs): 0.8627 | |||||||
MSI | Asian-CRC FFPE (30%) | ResNet-18 | x20 magnification | (0.8208–0.9045) | |||||
TCGA-COAD Frozen (60%) + | no | Asian-CRC FFPE (n = 785 WSIs): 0.8967 | |||||||
Asian-CRC FFPE (40%) | (0.8596–0.9338) | ||||||||
TCGA-COAD Frozen (30%) + | no | Asian-CRC FFPE (n = 785 WSIs): 0.9028 | |||||||
Asian-CRC FFPE (60%) | (0.8534–0.9522) | ||||||||
TCGA-COAD Frozen (30%) + | no | Asian-CRC FFPE (n = 785 WSIs): 0.9264 | |||||||
Asian-CRC FFPE (70%) | (0.8806–0.9722) | ||||||||
Jang, H.-J et al. [34]. | 2020 | TCGA-COAD/TCGA-READ | TCGA:FFPE: 0.645(0.594–0.736) | ||||||
n = 249 | no | TCGA: Frozen: 0.778(0.675–0.937) | |||||||
KRAS | Inception-v3 models | x20 magnification | 10-fold cross validation | Sequencing | |||||
SMH | yes | SMH: 0.58 | |||||||
n = 75 | |||||||||
Yamashita et al. [25]. | 2021 | Random split | no | Stanford dataset (n = 15 pts): 0.931 | Stanford dataset: IHC/PCR | ||||
(0.771–1.000) | Four-fold TCGA: PCR | ||||||||
MSI | Stanford dataset (n = 85 pts) | MSInet | x40 magnification | ||||||
4- fold cross validation | Stanford dataset (n = 15 pts): 0.936 | ||||||||
yes | TCGA (n = 479 pts): 0.779 (0.720–0.838) | ||||||||
Lee et al. [27] | 2021 | TCGA FFPE | TCGA FFPE: 0.892 (0.855–0.929) | ||||||
(n = 470,825 patches) | no | SMH FFPE: 0.972 (0.956–0.987) | |||||||
SMH FFPE | |||||||||
MSI | (n = 274 WSIs) | x20 magnification | TCGA: PCR | ||||||
TCGA FFPE | Inception-V3 | 10-fold cross validation | yes | TCGA FFPE: 0.861 (0.819–0.903) | SMH: PCR/IHC | ||||
(n = 470,825 patches) | SMH FFPE: 0.787 (0.743–0.830) | ||||||||
TCGA Frozen | no | ||||||||
(n = 562,837 patches) | TCGA Frozen: 0.942 (0.925–0.959) | ||||||||
Krause et al. [24] | 2021 | MSI | TCGA FFPE (n = 256 pts) | ShuffleNet | x20 magnification | Random split | no | TCGA FFPE (n = 142 pts): 0.742 (0.681–0.854) | PCR |
Bilal et al. [31] | 2021 | MSI | TCGA-CRC-DX: 0.86 (0.82–0.90) | PCR | |||||
TCGA-CRC-DX | yes | PAIP: 0.98 | |||||||
BRAF | n = 499 | Resnet 34 | x20 magnification | 4-fold cross validation | 0.79 (0.78–0.80) | NGS | |||
PAIP | no | ||||||||
KRAS | n = 47 | 0.60 (0.56–0.64) | NGS | ||||||
Schrammen et al. [35] | 2021 | MSI | YCR-BCIP | DACHS: 0.909 (0.888–0.929) | DACHS: PCR (1) | ||||
n = 889 | yes | YCR-BCIP: 0.900 (0.864–0.931) | PCR | ||||||
KRAS | DACHS: 0.609 (0.579–0.623) | not specified | |||||||
DACHS | SLAM | not specified | 3-fold cross validation | no | |||||
BRAF | n = 2448 | DACHS: 0.821 (0.786–0.852) | not specified | ||||||
Echle et al. [21] | 2022 | DACHS | DACHS: 0.89 (0.87–0.92) | PCR(1) | |||||
n = 2039 | |||||||||
MUNICH | MUNICH: 0.88 (0.80–0.95) | IHC | |||||||
n = 287 | |||||||||
TCGA | TCGA: 0.91 (0.87–0.95) | PCR | |||||||
n = 426 | |||||||||
QUASSAR | QUASSAR: 0.93 (0.91–0.95) | IHC | |||||||
MSI | n = 1774 | Resnet-18 | not specified | 8-fold cross validation | no | ||||
UMM | UMM: 0.92 (0.69–1.00) | PCR | |||||||
n = 35 | |||||||||
MECC | MECC: 0.74 (0.69–0.80) | PCR | |||||||
n = 683 | |||||||||
NLCS | NLCS: 0.92 (0.90–0.94) | IHC | |||||||
n = 2098 | |||||||||
DUSSEL | DUSSEL: 0.85 (0.74–0.93 | IHC | |||||||
n = 196 | |||||||||
YORK SHIRE | yes | YORK SHIRE:0.96 (0.94–0.98) | IHC | ||||||
n = 805 | |||||||||
Wu Jiang et al. [22] | 2022 | TCGA | TCGA validation: 0.8888 (0.8531–0,9245) | ||||||
n = 441 | |||||||||
SYSUCC-surgical | SYSUCC-surgical: 0.8457 (0.8224–0.8690) | ||||||||
MSI | n = 355 | IHC | |||||||
SYSUCC-biopsy | MIL | not specified | 3-fold cross validation | yes | SYSUCC-biopsy: 0.7679 (0.7337–0.8021) | ||||
n = 341 | |||||||||
PAIP | PAIP: 0.8806 (0.8574–0.9038) | ||||||||
n = 78 | |||||||||
Schirris et al. [30] | 2022 | MSI | TCGA-CR | ||||||
n = 360 | DeepSMile | not specified | Random Split | no | TCGA CR: 0.82 (0.77–0.86) | PCR | |||
Lou et al. [32] | 2022 | MSI | Shandong Hospitals | PPsNET | x20 magnification | Random Split | no | Shandong Hospitals: 0.9429 | IHC |
n = 144 | |||||||||
Chang et al. [33] | 2023 | TSMCC | TSMCC: 0.954 (0.94–0.96) | ||||||
MSI | n = 1579 | WiseMSI | not specified | 10-fold cross validation | PCR | ||||
TCGA | TCGA: 0.632 (0.703–0.733) | ||||||||
n = 609 | yes | ||||||||
Saillard et al. [36] | 2023 | MSI | TCGA | TCGA: 0.93 (0.90–0.96) | |||||
n = 859 | |||||||||
PAIP | MSIntuit | not specified | PAIP: 0.97 (0.90–0.99) | PCR | |||||
n = 47 | yes | ||||||||
MPATH | MPATH-DP200: 0.88 (0.84–0.91) | IHC | |||||||
n = 600 | MPATH-UFS: 0.86 (0.83–0.90) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guitton, T.; Allaume, P.; Rabilloud, N.; Rioux-Leclercq, N.; Henno, S.; Turlin, B.; Galibert-Anne, M.-D.; Lièvre, A.; Lespagnol, A.; Pécot, T.; et al. Artificial Intelligence in Predicting Microsatellite Instability and KRAS, BRAF Mutations from Whole-Slide Images in Colorectal Cancer: A Systematic Review. Diagnostics 2024, 14, 99. https://doi.org/10.3390/diagnostics14010099
Guitton T, Allaume P, Rabilloud N, Rioux-Leclercq N, Henno S, Turlin B, Galibert-Anne M-D, Lièvre A, Lespagnol A, Pécot T, et al. Artificial Intelligence in Predicting Microsatellite Instability and KRAS, BRAF Mutations from Whole-Slide Images in Colorectal Cancer: A Systematic Review. Diagnostics. 2024; 14(1):99. https://doi.org/10.3390/diagnostics14010099
Chicago/Turabian StyleGuitton, Theo, Pierre Allaume, Noémie Rabilloud, Nathalie Rioux-Leclercq, Sébastien Henno, Bruno Turlin, Marie-Dominique Galibert-Anne, Astrid Lièvre, Alexandra Lespagnol, Thierry Pécot, and et al. 2024. "Artificial Intelligence in Predicting Microsatellite Instability and KRAS, BRAF Mutations from Whole-Slide Images in Colorectal Cancer: A Systematic Review" Diagnostics 14, no. 1: 99. https://doi.org/10.3390/diagnostics14010099
APA StyleGuitton, T., Allaume, P., Rabilloud, N., Rioux-Leclercq, N., Henno, S., Turlin, B., Galibert-Anne, M. -D., Lièvre, A., Lespagnol, A., Pécot, T., & Kammerer-Jacquet, S. -F. (2024). Artificial Intelligence in Predicting Microsatellite Instability and KRAS, BRAF Mutations from Whole-Slide Images in Colorectal Cancer: A Systematic Review. Diagnostics, 14(1), 99. https://doi.org/10.3390/diagnostics14010099